七年级期中数学考试模拟试题

合集下载

江苏淮安2024年七年级上学期数学期中模拟试题

江苏淮安2024年七年级上学期数学期中模拟试题

淮安市2024-2025学年七年级数学期中模拟(附答案)一、选择题(本大题共8小题,每小题3分,共24分) 1.下列各组中,是同类项的是( )A .2x −与5yB .22a b −与2a bC .2xy −与26x yD .2m 与2n2.(2023秋·湖南长沙·七年级校联考期中)下列说法中,不正确...的是( ) A . 是整式 B .是二次二项式C .多项式的三次项的系数为D .的项有3. 下列6个数﹣33,227,π, 0, 0.1010010001,2019 中,有理数有( )个. A. 2 B. 3 C. 4 D. 54. 下列是一元一次方程的是( )A. 230x −=B. 54x y +=C. 23x +D. 534x +=5.已知 a ,b ,c ,d 表示 4 个不同的正整数,满足 23490a b c d +++=,其中 1d >,则 a b c d +++ 的最大值是( )A .55B .64C .70D .726. 在解方程213123x x −−=− 时,去分母后正确的是( ) A. 3(2x ﹣1)=1﹣2(3﹣x ) B. 3(2x ﹣1)=1﹣(3﹣x )C. 3(2x ﹣1)=6﹣2(3﹣x )D. 2(2x ﹣1)=6﹣3(3﹣x ) 7. 如图,用规格相同的小棒摆成组图案,图案①需要4根小棒,图案②需要12根小棒,图案③需要20根小棒,…,按此规律摆下去,第2023个图案需要小棒数是( )A .8092B .16188C .12136D .161808. 观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,…,通过观察,用你所发现的规律确定32014的个位数字是( )A. 3B. 9C. 7D. 1二、填空题(本大题共10小题,每小题3分,共30分)9. 2022年12月16日,一场雾霾席卷华夏大地,大约有160万平方千米的范围被雾霾包裹,其中160万用科学记数法可以表示为_______________.10.已知代数式23x x +的值为3,则代数式2937x x +−的值为 .11. 在数轴上距离原点2.5个单位长度的点表示的数是________.12. 如果向东走10米记作10+米,那么向西走15米可记作_____米.13. 已知x=4是关于x 的方程3x ﹣2a=9的解,则a 的值为______.14.按一定规律排列的单项式:2a ,33a −,109a ,1527a −,2681a ,…,第n 个单项式是____ .15. 如图是一数值转换机的示意图,当x=-1时,则输出结果是_____16. 已知,|a |=5,|b |=3,且a <b ,则a +b =______.17. 假期中6名老同学聚会,每两名同学握一次手,则握手的次数一共是______.18. 小明和小红两人做游戏,小明对小红说:“你任意想一个数,把这个数加上5,然后乘以2接着减去4,最后除以2,把得到的结果告诉我,我就知道你想的是什么数结果小红把按规则计算出结果为20告诉了小明.”如果你是小明,你应该告诉小红,她想的数是______.三、解答题(本大题共7小题,共66分)19. 计算:(1)()()3-242+÷− (2)20. 解方程:(1)32(1)5x x −−=(2)2213123x x −+−=+ 21. 先化简,后求值:()()22223x y xy x y xy x y +−−−,其中1x =,1y =−.22. 算24点游戏是一种使用扑克牌来进行的益智类游戏,游戏内容是:从一副扑克牌中抽去大小王剩下52张,任意抽取4张牌,把牌面上的数运用你所学过的加、减、乘、除、乘方运算得出24.每张牌都必须使用一次,但不能重复使用.(1)如图1,在玩“24点”游戏时,小明抽到以下4张牌:请你帮他写出运算结果为24的算式:(写出2个); 、 ;(2)如图2,如果、表示正,. 表示负,J 表示11点,Q 表示12点.请你用下列4张牌表示的数写出运算结果为24的算式(写出1个): .23. 若规定一种运算,23a b a b ∗=−,(1)计算:5(3)∗−;(2) (3)(21)5x x −∗−=,则x 是多少?24.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)按要求填空:①你认为图②中的阴影部分的正方形的边长等于;②请用两种不同的方法表示图②中阴影部分的面积:方法1:;方法2:;③观察图②,直接写出三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系:;(2)根据(1)题中的等量关系,解决如下问题:若m+n=6,mn=4,求(m﹣n)2的值.25. 如图,正方形ABCD和CEFG的边长分别为m、n,且B、C、E三点在一直线上试说明△AEG的面积只与n 的大小有关.26. 如图在数轴上A点表示数a,B 点表示数b,数a,b满足|a+2|+|b-4|=0;(1)点 A 表示的数为 ;点 B 表示的数为 ;(2)若在原点O处放一挡板,小球甲从点 A 处以1个单位/秒的速度向左运动;同时另一小球乙从点 B 处以-2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,小球甲到原点的距离= ;小球乙到原点的距离= ;当t=3时,小球甲到原点的距离= ;小球乙到原点的距离= ;②试探究:甲、乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲、乙两小球到原点的距离相等时经历的时间.淮安市2024-2025学年七年级数学期中模拟(附答案)参考答案一、选择题(本大题共8小题,每小题3分,共24分) 1.下列各组中,是同类项的是( )A .2x −与5yB .22a b −与2a bC .2xy −与26x yD .2m 与2n1.B2.(2023秋·湖南长沙·七年级校联考期中)下列说法中,不正确...的是( ) A .是整式 B .是二次二项式C .多项式的三次项的系数为 D .的项有 【答案】C【分析】分别根据整式和多项式的定义判断即可;单项式和多项式统称为整式;几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;多项式中次数最高的项的次数叫做多项式的次数;【详解】A 、是多项式,属于整式,原说法正确,故本选项不合题意; B 、是二次二项式,说法正确,故本选项不合题意;C 、多项式的三次项的系数为,原说法错误,故本选项符合题意;D 、的项有,说法正确故本选项不合题意;故选:C 【点睛】本题考查了整式和多项式,掌握相关定义是解答本题的关键.3. 下列6个数﹣33,227,π, 0, 0.1010010001,2019 中,有理数有( )个. A. 2B. 3C. 4D. 5 【答案】D【解析】【分析】根据有理数的概念:整数和分数统称为有理数,找出有理数即可.【详解】解:根据有理数的定义可知:﹣33,227,0, 0.1010010001,2019是有理数,共5个, 故选D.【点睛】本题考查了有理数的知识,解答本题的关键是掌握有理数的概念:整数和分数统称为有理数. 4. 下列是一元一次方程的是( ) A. 230x −= B. 54x y += C. 23x + D. 534x +=【答案】D【解析】【详解】A.230x−= ,不是整式方程,故错误;B. 54x y += ,含有两个未知数,故错误;C. 23x + ,不是等式,故错误;D. 534x +=,是一元一次方程,正确,故选D. 5.已知 a ,b ,c ,d 表示 4 个不同的正整数,满足 23490a b c d +++=,其中 1d >,则 a b c d +++ 的最大值是( )A .55B .64C .70D .72 5.C6. 在解方程213123x x −−=− 时,去分母后正确的是( )A. 3(2x﹣1)=1﹣2(3﹣x)B. 3(2x﹣1)=1﹣(3﹣x)C. 3(2x﹣1)=6﹣2(3﹣x)D. 2(2x﹣1)=6﹣3(3﹣x)【答案】C【解析】【分析】方程左右两边乘以6去分母得到结果,即可作出判断.【详解】解:在解方程213123x x−−=−时,去分母得:3(2x﹣1)=6﹣2(3﹣x),故选:C.【点睛】本题考查解一元一次方程的知识,解方程的过程就是一个方程变形的过程,变形的依据是等式的基本性质,在去分母的过程中注意分数线起到括号的作用,并注意不能漏乘没有分母的项.7. 如图,用规格相同的小棒摆成组图案,图案①需要4根小棒,图案②需要12根小棒,图案③需要20根小棒,…,按此规律摆下去,第2023个图案需要小棒数是()A.8092 B.16188 C.12136 D.161807.D8. 观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,…,通过观察,用你所发现的规律确定32014的个位数字是()A. 3B. 9C. 7D. 1【答案】B【解析】【分析】观察不难发现,每4个数为一个循环组,个位数字依次循环,用2014÷3,根据商和余数的情况确定答案即可.【详解】解:个位数字分别为3、9、7、1依次循环,∵2014÷4=503余2,∴32014的个位数字与循环组的第2个数的个位数字相同,是9.故选B.【点睛】本题考查了尾数特征,观察数据发现每4个数为一个循环组,个位数字依次循环是解题的关键.【答案】A【解析】【分析】本题考查了图形的变化类问题,仔细观察图形并从中找到规律,然后利用找到的规律即可得到答案.解题的关键是仔细的观察图形并正确的找到规律.【详解】第1个图形中黑色正方形的数量为11212+=+, 第2个图形中黑色正方形的数量为2322=+, 第3个图形中黑色正方形的数量为31532+=+, 第4个图形中黑色正方形的数量为4642=+, 第5个图形中黑色正方形的数量为51852+=+, …∴当n 为偶数时,第n 个图形中黑色正方形的数量为2n n +个; 当n 为奇数时第n 个图形中黑色正方形的数量为12n n ++个, ∴当101n 时,黑色正方形的个数为10111011522++=个. 故选:A . 二、填空题(本大题共10小题,每小题3分,共30分)9. 2022年12月16日,一场雾霾席卷华夏大地,大约有160万平方千米的范围被雾霾包裹,其中160万用科学记数法可以表示为_______________.【答案】1.6×106【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于160万有7位,所以可以确定n=7-1=6.【详解】160万=1600000=1.6×106,故答案为1.6×106.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.10.已知代数式23x x +的值为3,则代数式2937x x +−的值为 .10.211. 在数轴上距离原点2.5个单位长度的点表示的数是________.【答案】2.5或 2.5−【解析】【分析】分在原点左边与右边两种情况讨论求解.【详解】解:①该点在原点左边时,表示的数是−2.5;②该点在原点右边时,表示的数是2.5.故答案为2.5或 2.5−.【点睛】本题考查了数轴,难点在于要分点在原点的左边与右边两种情况讨论求解.12. 如果向东走10米记作10+米,那么向西走15米可记作_____米.【答案】15−【解析】【分析】明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:∵向东走10米记作10+米,∴向西走15米记作15−米.故答案为:15−.【点睛】本题考查正负数的意义.熟练掌握正负数表示意义相反的量,是解题的关键.13. 已知x=4是关于x 的方程3x ﹣2a=9的解,则a 的值为______. 【答案】32【解析】【分析】把x =4代入方程计算,即可求出a 的值.【详解】解:把x =4代入3x ﹣2a=9得:12−2a =9,解得:a =32, 故答案为32. 【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.按一定规律排列的单项式:2a ,33a −,109a ,1527a −,2681a ,…,第n 个单项式是____ .14.()121(1)3n n n a ++−−−(n 为正整数).15. 如图是一数值转换机的示意图,当x=-1时,则输出结果是_____【答案】7 3【解析】【分析】根据数值转换机的运算得出输出结果即可.【详解】根据数值转换机中的运算得:输出结果是22 (3)29233x x−−=,当x=-1时,原式=29(1)2733×−−=.故答案为7 3【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16. 已知,|a|=5,|b|=3,且a<b,则a+b=______.【答案】-8或 -2【解析】【分析】根据绝对值的性质求出a、b的值,再分情况相加即可得解.【详解】∵|a|=5,|b|=3,∴a=±5,b=±3,∵a<b,∴a=-5时,b=-3,a+b=-5+(-3)=-8,a=-5时,b=3,a+b=-5+3=-2,综上所述,a+b的值为-8或-2.故答案为-8或-2.【点睛】本题考查了有理数的减法,绝对值的性质,有理数的大小比较,难点在于确定出a、b的对应情况.17. 假期中6名老同学聚会,每两名同学握一次手,则握手的次数一共是______.【答案】15【解析】【分析】每两名同学握一次手,则每个同学参与了5次握手,但每一次握手算了2次,据此列式计算即可.【详解】解:有6名同学,因此每个人握手的次数和为5×6=30次,由于每一次握手算了2次,所以它们握手的总次数为30÷2=15次,故答案为15.【点睛】本题考查握手问题,握手要做到不重不漏,类似于求对角线的条数.本题需注意每一次握手对每个人来说重复算了一次,也类似于比赛类问题中的单循环赛制.18. 小明和小红两人做游戏,小明对小红说:“你任意想一个数,把这个数加上5,然后乘以2接着减去4,最后除以2,把得到的结果告诉我,我就知道你想的是什么数结果小红把按规则计算出结果为20告诉了小明.”如果你是小明,你应该告诉小红,她想的数是______.【答案】17【解析】【分析】设这个数为a ,根据小明的运算规律列出方程,求出a 即是小红想的数.【详解】解:设这个数为a ,则小明的运算规律为:[(a+5)×2-4]÷2,∵小红按规则计算出结果为20,∴[(a+5)×2-4]÷2=20,解得a=17,即小红想的数是17.故答案为17【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题(本大题共7小题,共66分)19. 计算:(1)()()3-242+÷− (2) 【详解】解:(1)原式()-8210=+−=−;(2)原式,20. 解方程: (1)32(1)5x x −−=(2)2213123x x −+−=+ 【详解】解:(1)去括号得:3225x x −+=,移项得:2523x x −−=−−,合并同类项得:75x −=−, 解得:57x =; (2)去分母得:()()18322216x x −−=++,去括号得:1836426x x −+++,移项得:3426618x x −−=+−−,合并同类项得:716x −=−, 解得:167x =. 21.先化简,后求值:()()22223x y xy x y xy x y +−−−,其中1x =,1y =−. 答案:22−x y+5xy ,-322.算24点游戏是一种使用扑克牌来进行的益智类游戏,游戏内容是:从一副扑克牌中抽去大小王剩下52张,任意抽取4张牌,把牌面上的数运用你所学过的加、减、乘、除、乘方运算得出24.每张牌都必须使用一次,但不能重复使用.(1)如图1,在玩“24点”游戏时,小明抽到以下4张牌:请你帮他写出运算结果为24的算式:(写出2个); 、 ;(2)如图2,如果、表示正,. 表示负,J 表示11点,Q 表示12点.请你用下列4张牌表示的数写出运算结果为24的算式(写出1个): .【答案】(1)3×4+2×6、2×4×(6﹣3);(2)(﹣5)2﹣12﹣(﹣11).【解析】【分析】(1)利用24点游戏规则列出算式即可;(2)利用24点游戏规则列出算式即可.【详解】(1)根据题意得:3×4+2×6、2×4×(6﹣3);(2)根据题意得:(﹣5)2﹣12﹣(﹣11).故答案为(1)3×4+2×6、2×4×(6﹣3);(2)(﹣5)2﹣12﹣(﹣11)23. 若规定一种运算,23a b a b ∗=−,(1)计算:5(3)∗−;(2) (3)(21)5x x −∗−=,则x 是多少? 【答案】(1)19 ;(2)12【解析】【分析】(1)直接根据23a b a b ∗=−,进行计算即可;(2)根据题中新运算列出方程,解方程即可得到x 的值.【详解】解:(1)∵23a b a b ∗=−,∴()5(3)253310919∗−=×−×−=+=; (2)由题意得:2(3)3(21)5x x −−−=, 去括号得:62635x x −−+=,移项合并得:84x −=−, 解得:12x =. 【点睛】本题主要考查了有理数的乘法运算及解一元一次方程,正确理解新运算是解题关键.24.如图①所示是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)按要求填空:①你认为图②中的阴影部分的正方形的边长等于 ;②请用两种不同的方法表示图②中阴影部分的面积:方法1: ;方法2: ;③观察图②,直接写出三个代数式(m+n )2,(m ﹣n )2, mn 之间的等量关系: ;(2)根据(1)题中的等量关系,解决如下问题:若m+n =6,mn =4,求(m ﹣n )2的值.【答案】(1)①m n −;②()2m n −,()24m n mn +−,③()()224m n m n mn +−−=;(2)20. 【解析】【分析】(1)①结合图形可得出阴影部分正方形边长为m-n ;②可以直接利用小正方形的边长求面积,还可以用大正方形的面积减去四个小长方形的面积;③利用面积相等即可得出()()224m n m n mn +−−=;(2)结合(1)中得出的等量关系代入求解即可.【详解】解:(1)①观察图②中的阴影部分的正方形的边长为:m ﹣n .故答案为m ﹣n ;②两种不同的方法表示图②中阴影部分的面积:方法1:()2m n −;方法2: ()2m n +-4mn故答案为:()2m n − 、()2m n +-4mn ;③观察图②,三个代数式()2m n +,()2m n −,mn 之间的等量关系: ()2m n − =()2m n +-4mn故答案为:()2m n − =()2m n +-4mn ;(2)根据(1)题中的等量关系:把m+n =6,mn =4代入:()2m n − =()2m n +-4mn∴()2m n −=36-16=20.答:()2m n −的值为20.【点睛】本题考查的知识点是列代数式以及代数式的求值,解此题的关键是将阴影部分小正方形的面积用不同的代数式表示出来.25. 如图,正方形ABCD 和CEFG 的边长分别为m 、n ,且B 、C 、E 三点在一直线上试说明△AEG 的面积只与n 的大小有关.【答案】见解析【解析】【详解】试题分析:列代数式计算△AEG的面积,或说明△AEG的面积即为△CEG的面积=n2(5分)所以△AEG的面积只与n的大小有关. (6分)试题解析:根据图形可得:S△AEG=S△CGE+S梯形ABCG-S△ABE,因为四边形ABCD和CEFG是正方形,所以△GCE、△ABE是直角三角形,所以△GCE的面积=•CG•CE=n2.而四边形ABCG是直角梯形,所以面积=(AB+CG)•BC=(m+n)•m;又因为△ABE的面积=BE•AB=(m+n)•m所以S△AEG=S△CGE+S梯形ABCG-S△ABE =n2.故△AEG的面积的值只与n的大小有关.考点:1.正方形的性质;2.列代数式;3.整式的加减.26. 如图在数轴上A点表示数a,B 点表示数b,数a,b满足|a+2|+|b-4|=0;(1)点 A 表示的数为 ;点 B 表示的数为 ;(2)若在原点O处放一挡板,小球甲从点 A 处以1个单位/秒的速度向左运动;同时另一小球乙从点 B处以-2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,小球甲到原点的距离= ;小球乙到原点的距离= ;当t=3时,小球甲到原点的距离= ;小球乙到原点的距离= ;②试探究:甲、乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲、乙两小球到原点的距离相等时经历的时间.解:(1)∵|a+2|+|b-4|=0,∴a=-2,b=4,∴点A 表示的数为-2,点 B 表示的数为4,故答案为:-2,4;(2)①当t=1时,∵小球甲从点A 处以1个单位/秒的速度向左运动,∴小球甲1秒钟向左运动1个单位,此时,小球甲到原点的距离=3,∵小球乙从点 B 处以2个单位/秒的速度也向左运动,∴小球乙1秒钟向左运动2个单位,此时,小球乙到原点的距离=4-2=2,故答案为:3,2;当t=3时,∵小球甲从点 A 处以1个单位/秒的速度向左运动,∴小球甲3秒钟向左运动3个单位,此时,小球甲到原点的距离=5,∵小球乙从点 B处以2个单位/秒的速度也向左运动,∴小球乙 2秒钟向左运动4个单位,此时,刚好碰到挡板,改变方向向右运动,再向右运动1秒钟,运动2个单位,∴乙小球到原点的距离=2,故答案为5,2;②当( 时,得t+2=4-2t,解得当t>2时,得t+2=2t-4,解得t=6.故当秒或t=6秒时,甲、乙两小球到原点的距离相等.。

2023_2024学年黑龙江省哈尔滨市七年级上册期中数学模拟测试卷(附答案)

2023_2024学年黑龙江省哈尔滨市七年级上册期中数学模拟测试卷(附答案)

2023_2024学年黑龙江省哈尔滨市七年级上册期中数学模拟测试卷考生须知:1.本试卷满分为120分,考试时间为120分钟.2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内.3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题纸上答题无效.4.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.5.保持卡面整洁,不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸刀.第Ⅰ卷选择题(共30分)(涂卡)一、选择题(每小题3分,共计30分)1.下列方程是一元一次方程的是()A .B .C .D .316y +=37x +>431x x =-34a -2.下列、、、四幅图案中,能通过平移图案(1)得到的是()()A ()B ()C ()D(1) (A )(B )(C )(D )3.下列运用等式性质进行的变形,正确的是()A .若,则B .若.则ac bc =a b=a bc c=a b =C .若,则D .若,则22a b =a b =163x -=2x =-4.如图,点是直线外一点,、、三点在直线上,于点,那么点P m A B C m PB AC ⊥B 到直线的距离是线段()的长度P m第4题图A .B .C .D .PAPBPCAB5.如图,给出了过直线外一点作已知直线的平行线的方法,其依据,是()第5题图A .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同位角相等6.若与互为相反数,则的值等于()2a 1a -a 1.0B .-1C .D .12137.下列图形中,由,能达到的是()AB CD ∥12∠=∠A .B .C .D .8.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件.设原计划每小时生产个零件,则所列方程为()x A .B .1312(10)60x x =++12(10)1360x x +=+C .D .60101312x x +-=60101213x x+-=9.如图,2022年北京冬奥会男子500米短道速滑冠军高亭玉在一次速滑训练中,经过两次拐弯后的速滑方向与原来的方向相反,则两次拐弯的角度可能是()第9题图A .第一次向左拐52,第二次向右拐52°B .第一次向左拐48,第二次向左扮48°C .第一次向左拐73,第二次向右拐107°D .第一次向左拐32,第二次向左拐148°10.下列真命题的个数是()①平移变换中,各组对应点连接而成的线段平行且相等.②同旁内角互补.③若两个角有公共顶点和一条公共边,并且它们的和为180°,则这两个角互为邻补角.④过一点有且只有一条直线与已知直线垂直.A .0B .1C .2D .3第II 卷非选择题(共90分)二、填空题(每小题3分,共计18分)11.根据条件“比的一半大3的数等于的7倍”中的数量关系列出方程为______.x y 12.小明同学在体育课上跳远后留下的脚印如图所示,为了测量他的跳远成绩,测量了脚印上最后的点到起跳线的距离,应该选择线段______的长度作为小明的跳远成绩.P第12题图13.如图所示方式拜访纸杯测量角的基本原理是______.第13题图14.“”表示一种运算符号,其定义是.例如.如果⊗2a b a b ⊗=-+37237⊗=-⨯+.那么______.()53x ⊗-=x =15.在与中,,,若则______.AOB ∠CDE ∠OA CD ∥OB DE ∥60CDE ︒∠=AOB ∠=16.若一列火车匀速行驶,经过一条长310米的隧道需要18秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯照在火车上的时间是8秒,则这列火车长是______米.三、解答题(共计72分)17.解方程(本题8分)(1)(2)37(1)32(3)x x x --=-+12226y y y -+-=-18.(本题6分)如图所示,在网格中,请根据下列要求作图:(1)先将向下平移3个单位长度,再向右平移4个单位长度得到(与,ABC △DEF △A D 与,与分別对应);B E C F (2)连接、,直接写出以,,为顶点的三角形的面积______.BD CD B C D (3)过点作直线,使得.交的延长线于点.F GF FG CD ∥AC G19.(本题6分)如图,直线、交于点,平分,,,求AB CD O OD AOF ∠EO OD ⊥55EOA ︒∠=的度数.BOF ∠20.(本题6分)如图,两个直角三角形重叠在一起,将三角形沿点到点的方向平移ABC B C 到三角形的位置,已知,.求图中阴影部分的面积.DEF 12AB =5DH =21.(本题8分)用型和型机器生产同样的产品,已知5台型机器一天的产品装满8箱后还剩4个.7台A B A 型机器一天的产品装满11箱后还剩1个,每台型机器比型机器一天多生产1个产品.B A B (1)求每箱装多少个产品?(2)3台型机器和2台型机器一天能生产多少个产品?A B 22.(本题8分)完成下面推理过程,并在括号内填上依据.已知:如图,,,.AD BC ⊥GF BC ⊥4B ∠=∠求证:.12∠=∠证明:,(已知)AD BC ⊥GF BC ⊥(______)∴90ADC GFD ︒∠=∠=(______)∴AD ∥(______)∴13∠=∠又(已知)4B ∠=∠(______)∴DE ∥∴23∠=∠又 13∠=∠(______)∴12∠=∠23.(本题8分)定义:关于的方程与方程(、均为不等于0的常数)称互为“反对x 0ax b -=0bx a -=a b 方程”,例如:方程与方程互为“反对方程”.210x -=20x -=(1)若关于的方程与方程互为“反对方程”,则______.x 230x -=30x c -=c =(2)若关于的方程与方程互为“反对方程”,求的值.x 4310x m ++=520x n -+=mn (3)若关于的方程与其“反对方程”的解都是整数,求整数的值.x 30x c -=c 24.(本题10分)七年级1班共有学生45人、其中男生人数比女生人数少3人.美术课上老师组织同学们做圆柱形笔筒,每名学生一节课能做筒身30个或筒底90个.(1)七年级1班有男生和女生各多少人?(2)原计划女生负责做筒身,男生做筒底,若每个筒身需要匹配2个筒底,那么这节课做出的筒身和筒底配套吗?如果不配套,男生需要支援女生几人,才能使本节课制作的筒身和筒底刚好配套?25.(本题12分)已知,点为直线、所确定的平面内一点.AB CD ∥P AB CD (1)如图1,直接写出、,之间的数量关系;(不用写具体证明过程)P ∠A ∠C ∠(2)如图2,求证:;P C A ∠=∠-∠(3)如图3,点在直线上,若,,过点作,作E AB 20APC ︒∠=30PAB ︒∠=E EF PC ∥,的平分线交于点,求的度数.PEG PEF ∠=∠BEG ∠PC H PEH ∠图1图2图3数学答案与评分标准一、选择题(每小题3分,共计30分)题号12345678910答案ADBBABBBDA二、填空题(每小题3分,共18分)题号111213141516答案1372x y +=PC对顶角相等-460°或120°148三、解答题(共计72分)17.(本题8分,每题4分)37(1)32(3)x x x --=-+377326x x x -+=--4732x x -+=--4237x x -+=--210x -=-5x =(2)12226y y y -+-=-63(1)12(2)y y y --=-+633122y y y -+=--3103y y +=-47y =74y =18.(6分)(2)2.5图形略,每问2分,(3)问如果没画直线,没有画出交点等各扣1分.19.(6分)解: EO OD ⊥∴90EOD ∠=︒,.55EOA ∠=︒ 1905535EOD EOA ∴∠=∠-∠=︒-︒=︒平分. OD AOF ∠.∴11352AOF ∠=∠=︒.∴70AOF ∠=︒ 180BOA BOF AOF ∠=∠+∠=︒.∴180********BOF AOF ∠=︒-∠=︒-︒=︒第19题图20.(6分)解:将沿点到点的方向平移到的位置,ABC △B C DEF △,ABC DFFS S∴=△△∴()() 111212565722ABEH S AB E E G S B ==⨯=⨯+-⨯+=阴梯形(若使用三角形的面积差也可以,酌情给分)21.(8分)(1)设型机器一天生产个产品,则型机器一天生产个产品,B x A (1)x +由题意得:5(1)471811x x +--=解得:,(个)19.71132x x =-=1321112÷=答:每箱装12个产品.(2)(个)(1284)53(12111)72⨯+÷⨯+⨯+÷⨯203192603898=⨯+⨯=+=答:3台型机器和2台型机器一天能生产98个产品.A B 22.(本题8分)证明:,(已知)AD BC ⊥GF BC ⊥(_垂直定义)∴90ADC GFD ︒∠=∠=(同位角相等,两直线平行)∴AD ∥GF (两直线平行,同位角相等)∴13∠=∠又(已知)4B ∠=∠(同位角相等,两直线平行)∴DE ∥AB (两直线平行,内错角相等)∴23∠=∠又:13∠=∠(等量代换)∴12∠=∠(每空一分)23.(本题8分)(1)2c =(2),2m =-6n =12mn =-(3)3c =±24.(本题10分)(1)解:设七年级1班有女生人.有男生人根据题意得:x (3)x -(3)45x x +-=∴24x =此时(人)324321x -=-=答:七年级1班有男生21人女生24人(2)不配套,理由是:本节课女生可以做筒身(个),2430720⨯=男生可以做筒底(个),2191890.⨯=11 / 11,72021401890⨯=≠这节课做出的筒身和筒底不配套.男生做出的筒底多∴筒身和筒底刚好配套(不换未知数的字母扣一分)根据题意得:90(21)30(24)2y y -=+⨯∴3y =答:男生需要支援女生3人,才能使本节课制作的筒身和筒底刚好配套.25.(12分)解:(1)分P A C ∠=∠+∠(2)过点作P PE AB∥ AB CD∥,∴PE AB CD ∥∥,∴EPC C ∠=∠PAB EPA∠=∠∴APC EPC EPA C A∠=∠-∠=∠-∠(3),,由(2)知, 20APC ∠=︒30PAB ∠=︒1C ∠=∠P C A ∠=∠-∠,,,∴150APC PAB ∠=∠+∠=︒ EF PC ∥∴150FEB ∠=∠=︒,的平分线交于点,PEG PEF ∠=∠BEG ∠PC H ,,∴12GEH BEG ∠=∠12PEG FEG ∠=∠.∴()112522PEH PEG GEH FEG BEG FEB ∠=∠-∠=∠-∠=∠=︒。

24-25七年级数学期中模拟卷【人教版2024七年级上册第一章至第四章】(内蒙古呼和浩特专用)考试版

24-25七年级数学期中模拟卷【人教版2024七年级上册第一章至第四章】(内蒙古呼和浩特专用)考试版

2024-2025学年七年级数学上学期期中模拟卷(内蒙古呼和浩特专用)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版2024七年级上册第一章至第四章。

5.难度系数:0.82。

一、选择题:本大题共有10小题,每小题3分,共30分.每小题只有一个正确选项,请将答题卡上对应题自的答案标号涂黑.1.小戴同学的微信钱包账单如图所示, 5.20+表示收入5.20元,下列说法正确的是( )A . 1.00-表示收入1.00元B . 1.00-表示支出1.00元C . 1.00-表示支出 1.00-元D .收支总和为6.20元2.亚洲、欧洲、非洲和南美洲的最低海拔如下表所示表,其中最低海拔最小的大洲是( )大洲亚洲欧洲非洲南美洲最低海拔/m415-28-156-40-A .亚洲B .欧洲C .非洲D .南美洲3.已知a ,b 两个数在数轴上对应的点如图所示,则下列结论正确的是( )A .0a b +>B .a b ->-C .0a b +=D .a b-<-4.下列各数:45-,1,8.6,7-,0,56, 243-,101+,0.05-,9-中,( )A .只有1,7-,101+,9-是整数B .其中有三个数是正整数C .非负数有1,8.6,101+,0D .只有45-,243-,0.05-是负分数5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( )A .717.510´B .81.7510´C .91.7510´D .90.17510´6.下列各数中,互为相反数的是( )A .()3--和3-B .2-和()2--C .12--和12æö-+ç÷èøD .0.6和()0.6---7.下列计算正确的是( )A .523xy xy -=B .2235x x x +=C .422422a a a -=D .352a a a-=-8.若623a x y -与13b x y +-的和为单项式,则a b 、的值分别为( )A .5a =,5b =B .3a =,5b =C .5a =,3b =D .3a =,3b =9.若1x =时,式子39ax bx ++的值为4.则当1x =-时,式子39ax bx ++的值为( )A .14-B .4C .13D .1410.一组按照规律排列的式子如下:2m 、25m -、310m 、417m -、526m 、……,请根据规律写出第21个式子为( )A .21401mB .21401m -C .21442m D .21442m -第II 卷(非选择题)二、填空题:本大题共有6小题,每小题3分,共18分.请将答案填在答题卡上对应的横线上.11.单项式5ab -的系数是__________,次数是__________.12.多项式2234x x --是由__________项组成的,它们分别是__________.13.已知120a b ++-=,则a b +=__________.14.对于有理数a b 、,若规定a b a ab *=-,则(2)5-*的值为__________.15.如图,化简b a b -+=__________.16.有下列说法:①若|a |=|b |,则a =b ;②两个数相加,若和为负数,则这两个数必定都是负数;③如果a +b <0,ab <0,那么这两个数一定一正一负,且负数的绝对值大;④正数的倒数大于它本身.则其中正确的序号有__________.三、解答题:本大题共有8小题,共72分.请将必要的文字说明、计算过程或推理过程写在答题卡的对应位置.17.(本小题满分10分)计算或化简:(1)()32024116231-+¸-´--;(2)()()224243x x x x +--+.18.(本小题满分7分)在数轴上表示下列各数,并用“<”号把它们按照从小到大的顺序排列.3,()1--, 1.5-,0,2--,132-;______.19.(本小题满分10分)阅读下面的解题过程:计算:11(15)632æö-¸-´ç÷èø.解:原式1(15)66æö=-¸-´ç÷èø (第一步)(15)(1)=-¸- (第二步)15=- (第三步)回答:(1)上面解题过程中有两处错误,第一处是第二步,错误的原因是______,第二处是第三步,错误的原因是______.(2)把正确的解题过程写出来.20.(本小题满分7分)先化简,再求值:222243(25)(65)x y xy y x -++-,已知13x =,15y =.21.(本小题满分7分)张叔叔到某大厦办事,若乘电梯向上一层记作1+层,向下一层记作1-层.张叔叔从1楼出发,电梯上下楼层依次记录如下(单位:层)6+,3-,10+,8-,12+,7-,10-.(1)请你通过计算说明张叔叔最后是否回到出发层1楼;(2)该中心大楼每层高3米,电梯每向上或向下1米需要耗电0.2度,根据张叔叔上下楼的记录计算,他办事时电梯耗电多少度?22.(本小题满分9分)我们知道,分类讨论思想在数学中是非常重要的数学思想.请同学们阅读下面试题并把解题过程补充完整:已知若|x |=2,|y |=5,且x <0,求x +y 的值.解:因为|x |=2,|y |=5.所以x =±2,y =±5.因为x <0,所以x =__________.所以当x =__________,y =__________,x +y =__________;当x =__________,y =__________,x +y =__________.23.(本小题满分10分)【实践与应用】学校举办诗歌颂祖国活动,需要定制一批奖品颁发给表现突出的同学,每份奖品包含纪念徽章与纪念品各一个,现有两家供应商可以提供纪念徽章设计、制作和纪念品制作业务,报价如下:纪念徽章设计费纪念徽章制作费纪念品费用甲供应商300元3元/个18元/个乙供应商免设计费6元/个不超过100个时,20元/个;超过100个时,其中100个单价仍是20元/个,超出部分打九折(1)若学校需要定制20份奖品,则选甲供应商需要支付____________元,选乙供应商需要支付____________元;(2)现学校需要定制()100x x >份奖品.若选择甲供应商,需要支付的费用为____________元;(用含x 的代数式表示,结果需化简)若选择乙供应商,需要支付的费用为____________元;(用含x 的代数式表示,结果需化简)(3)如果学校需要定制150份奖品,请你通过计算说明选择哪家供应商比较省钱.24.(本小题满分12分)结合数轴与绝对值的知识回答下列问题:(1)数轴上表示3和2的两点之间的距离是_____;表示―2和1两点之间的距离是_____;一般地,数轴上表示数m 和数n 的两点之间的距离等于|m ―n |.(2)如果|x+1|=2,那么x=______;(3)若|a―3|=4,|b+2|=3,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是______,最小距离是_____.(4)若数轴上表示数a的点位于―3与5之间,则|a+3|+|a―5|=_____.(5)当a=_____时,|a―1|+|a+5|+|a―4|的值最小,最小值是_____.。

人教版(2024)数学七年级上册期中模拟试卷(第一至四章)(无答案)

人教版(2024)数学七年级上册期中模拟试卷(第一至四章)(无答案)

七年级上册数学人教版期中模拟试卷(第一至四章)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.一个物体做左右方向的运动,规定向右运动4m记作+4m,那么向左运动4m记作()A.-4mB.4mC.8mD.-8m2.在有理数12,-(-3),-|-4|,0,-2²,+(-1)中,正整数一共有()A.1个B.2个C.3个D.4个3.下列有关近似数的结论不正确的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.50(精确到百分位)D.0.100(精确到0.1)4.小夏同学捡卖废品既保护了环境,又积攒了零花钱.下表是他某个月的部分收支情况(单位:元):日期收入(+)或支出(-)结余备注2日 3.58.5卖废品3日-4.5 4.0买圆珠笔、铅笔芯4日-1.2买科普期刊,不够部分同学代付但由于保存不当,4日的收入(+)或支出(-)被墨水涂污了,则4日的收入(+)或支出(-)以及1日的结余分别是()A.5.2元,5元B.-5.2元,5元C.-5元,-5元D.-5.2元,-5元5.按如图所示的运算程序,下列能使输出的结果为32的是()A. x=2,y=4B. x=2,y=-4C. x=4,y=2D. x=-4,y=26.若aᵐ⁺⁴b³与23a2b n的和仍是单项式,则m n为()A.-8B.8C.-6D.67.如图,下列结论正确的是()A. c>a>bB.1b >1cC.|a|<|b|D. abc>08.多项式A与多项式B=2x²−3xy−y²的和是多项式C=x²+xy+y²,则A等于()A.3x²−2xyB.x²−4xy−2y²C.3x²−2xy−2y²D.−x²+4xy+2y²9.已知a-b=3,b-c=4,c-d=5,则(a-c)(d-b)的值为()A.7B.9C.-63D.1210.如图所示,圆的周长为4个单位长度,在圆的4等分点处依次标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向无滑动滚动,那么数轴上的数-2024将与圆周上的哪个数字重合()A.0B.1C.2D.3二、填空题11. 94的倒数是12.数18500…0用科学记数法表示是1.85×10⁹,则这个数中0有个.13.对于有理数a,b,定义一种新运算“※”,即a※b=3a+2b,则式子[(x+y)※(x-y)]※3x化简后得到 .14.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第4个图案中所贴剪纸“◯”的个数为个,第n个图案中所贴剪纸“◯”的个数为个.三、解答题(本大题共8个小题,满分75分)15.(12分)计算:(1)(29−16+118)÷(−118);(2)(−3)2−(112)3×29−6÷|−23|;(3)3a²−2a+4a²−7a;(4)9m²−4(2m²−3mn+n²)+4n².16.(6分)有理数x,y在数轴上的对应点如图所示:(1)在数轴上表示-x, |y|;(2)试把x,y,0,-x,|y|这五个数按从小到大的顺序排列,并用“<”连接;(3)化简:|x+y|−|y−x|+|y|.17.(7分)先化简,再求值: 7x3−2l(x3−13x y2r)+3(19x y2−32x3r),其中x,y满足(x+1)2²+|y+3|=0.18.(9分)某粮库6天内粮食进、出库的数量如下(单位:1.“+”表示进库,“-”表示出库): +24,-31,-10,+36,-39,-25,(1)经过这6天,仓库里的粮食是增加了还是减少了?(2)经过这6天,仓库管理员结算时发现仓库里还存有480t粮,那么6天前仓库里存粮多少吨?(3)如果进、出仓库的装卸费都是每吨4元,那么这6天要付多少装卸费?19.(10分)某种窗户的形状如图所示,其上部是半圆形,下部是边长相同的四个小正方形.已知下部的小正方形的边长为 am,计算:(1)窗户的面积;(2)窗框(实线部分)的总长;(3)若a=1,窗户上安装的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不计,求制作一个这种窗户需要的费用是多少元(π≈ 3.14,结果保留整数).20. (10分)某兴趣小组为探究被3整除的数的规律,提出了以下问题:(1)在312,465,522,458中不能被3整除的数是 .(2)abc表示百位、十位、个位上的数字分别是a,b,c(a,b,c为0~9之间的整数,且a ≠0)的三位数,那么abc=100a+10b+ c.如果a+b+c是3的倍数,那么abc能被3整除吗? 如果能,请写出计算过程;如果不能,请说明理由.(3)若一个能被3整除的两位正整数ab(a,b为1~9之间的整数),交换其个位上的数字与十位上的数字得到一个新数,新数减去原数等于54,求这个正整数ab.21.(10分)某超市在春节期间对顾客实行优惠,规定如下:一次性购物优惠办法少于200元不予优惠低于500元但不低于200元全部给予九折优惠不低于500元其中500元部分给予九折优惠,超过500元部分给予八折优惠(1)王老师一次性购物600元,他实际付款元.(2)若顾客在该超市一次性购物x元,当x小于500但不小于200时,他实际付款元;当x大于或等于500时,他实际付款元.(用含x的代数式表示)(3)如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a<300),用含a 的代数式表示王老师两次购物实际付款合计多少元.22.(11分)如图,已知数轴上的点A表示的数为6,点B表示的数为-4,C到A,B两点的距离相等,动点P从点B出发,以每秒1个单位长度的速度沿数轴向右匀速运动,设运动时间为xs(x⟩0).(1)当x= s时,点P到达点A;(2)运动过程中点P表示的数是 (用含x的代数式表示);(3)当P,C两点之间的距离为2个单位长度时,求x的值.。

2024年第一学期七年级数学期中考试数学试题卷

2024年第一学期七年级数学期中考试数学试题卷

2024年第一学期七年级数学期中考试试题卷一、选择题(3×10=30分)1.的相反数是( )A .2024B .C .D .2.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果支出1000元记作元,那么元表示( )A .支出60元B .收入60元C .支出1060元D .收入1060元3.在,,0,,,中,有理数有( )A .2个B .3个C .4个D .5个4.2024年9月25日8时44分,中国人民解放军火箭军向太平洋相关公海海域,成功发射1发携载训练模拟弹头的洲际弹道导弹,准确落入预定海域,从发射点和导弹落点粗略估算,这次导弹飞行射程大概有12000公里,数据12000用科学记数法表示为( )A .B .C .D .5.精确到百分位是( )A .B .C .D .6.单项式的系数和次数分别是( )A .,4B .,7C .5,7D .5,47.用代数式表示“a 的3倍与b 的差的平方”,正确的是( )A .3a−b 2B .3(a−b)C .(3a−b)2D .3a−b8.已知一个代数式加上x 2−y 2等于x 2+y 2,则这个代数式为()A.−3y 2B.3y 2C.2x 2+y 2D.2y 29.小王利用计算机设计了一个计算程序,输入和输出的数据如下表那么,当输入数据是8时,输出的数据是( )A .B .C .D .输入12345输出2024-2024-1202412024-1000-1060+π6 3.14-23-32-22750.1210⨯51.210⨯41.210⨯31210⨯0.06540.070.060.0650.1345x y -5-5-861865867869⋅⋅⋅⋅⋅⋅⋅⋅⋅1225310417526⋅⋅⋅10.在矩形内,将一张边长为和两张边长为的正方形纸片按图1,图2两种方式放置,矩形中未被这三张正方形纸片覆盖的部分用阴影表示,设图2中阴影部分的周长与图1中阴影部分的周长的差为,若要知道的值,只要测量图中哪条线段的长 A .B .C .D .二、填空题(3×6=18分)11.比较大小:1101 |−1100|12.小华同学写作业时不慎将墨水滴在数轴上,根据图中的数值判断,被墨迹盖住的两部分的整数有 个.13.一个数在数轴上表示的点离原点的距离是5,这个数是.14.比-2大的负整数是 ;比-3.45小的最大负整数是 。

25学年七年级上学期数学期中模拟试卷01(测试范围:有理数、有理数运算、代数式、整式的加减)解析版

25学年七年级上学期数学期中模拟试卷01(测试范围:有理数、有理数运算、代数式、整式的加减)解析版

2024-2025学年七年级上学期数学期中模拟试卷01(人教版2024)满分:120分测试范围:有理数、有理数的运算、代数式、整式的加减一、选择题。

(共10小题,每小题3分,共30分)1.下列各对数中,互为倒数的一对是( )A.4和4-B.2-和12-C.3-和13D.0和0【分析】根据倒数和相反数的定义逐一判断可得.【解答】解:A、4和4-互为相反数,此选项不符合题意;B、2-和12-互为倒数,此选项符合题意;C、3-和13不是互为倒数,此选项不符合题意;D、0没有倒数,此选项不符合题意;故选:B.【点评】本题主要考查倒数,解题的关键是掌握倒数的定义:乘积是1的两数互为倒数.2.一次社会调查中,某小组了解到某种品牌的薯片包装上注明净含量为605g±,则下列同类产品中净含量不符合标准的是( )A.56g B.60g C.64g D.68g【分析】根据净含量为605g±可得该包装薯片的净含量,再逐项判断即可.【解答】解:Q薯片包装上注明净含量为605g±,\薯片的净含量范围为:55…净含量65…,故D不符合标准,故选:D.【点评】本题主要考查了正负数的定义,计算出净含量的范围是解答此题的关键.3.单项式232xy-的系数与次数分别是( )A .3-,3B .12-,3 C .32-,2 D .32-,3【分析】根据单项式系数及次数的定义,即可得出答案.【解答】解: 单项式232xy -的系数是32-,次数是 3 .故选:D .【点评】本题考查了单项式的知识, 解答本题的关键是掌握单项式系数及次数的定义 .4.下面每个选项中的两种量成反比例关系的是( )A .路程一定,速度和时间B .圆柱的高一定,体积和底面积C .被减数一定,减数和差D .圆的半径和它的面积【分析】根据反比例的定义解答即可.【解答】解:A 、汽车的路程一定,行驶的时间和速度成反比关系,符合题意;B 、圆柱的高一定,体积和底面积成正比关系,不符合题意;C 、被减数一定,减数和差不成比例关系,不符合题意;D 、圆的面积和它的半径不成比例,不符合题意,故选:A .【点评】本题考查反比例,熟知反比例指的是两种相关联的变量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,那么他们就叫做成反比例的量,他们的关系叫做反比例关系是解题的关键.5.每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为150000000千米,将150000000千米用科学记数法表示为( )A .90.1510´千米B .81.510´千米C .71510´千米D .71.510´千米【分析】科学记数法的表示形式为10n a ´的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10…时,n 是正整数;当原数的绝对值1<时,n 是负整数.【解答】解:8150000000 1.510=´.故选:B .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ´的形式,其中1||10a <…,n 为整数,表示时关键要确定a 的值以及n 的值.6.下列运算正确的是( )A .55m n mn+=B .43m n -=C .235325n n n +=D .2222m n m n m n-+=【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.【解答】解:A .5m 与n 不是同类项,故本选项不合题意;B .4m 与n -不是同类项,故本选项不合题意;C .23n 与32n 不是同类项,故本选项不合题意;D .2222m n m n m n -+=,故本选项符合题意.故选:D .【点评】本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.7.下列去括号正确的是( )A .3(1)33a b a b --=-+B .2(21)42a b a b +-=--C .(1)1a b a b +-=-+D .(41)41a b a b --=--【分析】根据去括号法则进行解题即可.【解答】解:A .3(1)33a b a b --=-+,正确;B .2(21)42a b a b +-=+-,故本选项错误;C .(1)1a b a b +-=+-,故本选项错误;D .(41)41a b a b --=-+,故本选项错误;故选:A .【点评】本题考查去括号与添括号,熟练掌握去括号法则、注意括号前面的符号是解题的关键.8.若|4||||4|a a -=+-,则a 的值是( )A .任意有理数B .任意一个非负数C .任意一个非正数D .任意一个负数【分析】由于|(4)||||4|a a +-=+-,根据绝对值的意义得到a 与4-同号或0a =,然后对各选项进行判断.【解答】解:|(4)||||4|a a +-=+-Q ,a \与4-同号或0a =,a \为一个非正数.故选:C .【点评】本题考查了绝对值:正数的绝对值等于它本身,0的绝对值为0,负数的绝对值等于它的相反数.9.某同学在解关于x 的方程313x mx -=+时,把m 看错了,结果解得4x =,则该同学把m 看成了( )A .2-B .2C .43D .72【分析】将4x =代入313x mx -=+中解得m 的值即可.【解答】解:将4x =代入313x mx -=+中可得12143m -=+,解得:2m =,故选:B .【点评】本题考查解一元一次方程,熟练掌握解方程的方法是解题的关键.10.某窗户的形状如图所示(图中长度单位:)cm ,其上部是半圆形,下部是由两个相同的长方形和一个正方形构成.已知半圆的半径为a cm ,长方形的长和宽分别为b cm 和c cm .给出下面四个结论:①窗户外围的周长是(32)a b c cm p ++;②窗户的面积是222(2)a bc b cm p ++;③22b c a +=;④3b c =.上述结论中,所有正确结论的序号是( )A .①②B .①③C .②④D .③④【分析】根据正方形的性质,矩形的性质,圆的面积公式,圆的周长公式即可得到结论.【解答】解:①窗户外围的周长1222(32)2b c b a b c a cm p p =+++´=++,故①符合题意;②窗户的面积2221(2)2a bcb cm p =++;故②不符合题意;③根据矩形的性质得22bc a +=,故③符合题意;④无法求得3b c =,故④不符合题意.故选:B .【点评】本题考查了正方形的性质,矩形的性质,圆的面积,正确地识别图形是解题的关键.二、填空题。

人教版七年级数学期中模拟试题(带解析)

人教版七年级数学期中模拟试题(带解析)

人教版七年级数学期中模拟试题(带解析)一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 25D. 272. 一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的周长是?A. 32cmB. 36cmC. 42cmD. 46cm3. 有理数a、b、c满足a < b < c,且a + c = 0,那么b的取值范围是?A. b > 0B. b < 0C. b = 0D. 无法确定4. 若一个等差数列的首项为2,公差为3,那么第10项是多少?A. 29B. 30C. 31D. 325. 一个正方形的对角线长为10cm,那么它的面积是?A. 50cm²B. 100cm²C. 200cm²D. 50√2cm²二、判断题(每题1分,共5分)6. 两个负数相乘,结果一定是正数。

()7. 一组对边平行且相等的四边形一定是矩形。

()8. 0是有理数。

()9. 任何一个等差数列的相邻两项之差都是相同的。

()10. 若a² = b²,则a = b。

()三、填空题(每题1分,共5分)11. 若|a| = 5,则a = _______ 或 _______。

12. 一个正方形的边长为6cm,则它的对角线长为 _______ cm。

13. 若一个等差数列的第3项是7,第7项是19,则它的公差是_______。

14. 若一个等比数列的首项为2,公比为3,那么第4项是_______。

15. 一个圆的半径为5cm,则它的周长是 _______ cm。

四、简答题(每题2分,共10分)16. 简述有理数的定义。

17. 什么是等腰三角形?它有哪些性质?18. 什么是等差数列?给出一个等差数列的例子。

19. 什么是等比数列?给出一个等比数列的例子。

20. 什么是勾股定理?请给出一个应用勾股定理的例子。

五、应用题(每题2分,共10分)21. 小明从家出发去学校,他以每分钟80米的速度走了10分钟,然后以每分钟100米的速度走了5分钟。

七年级数学上册 期中模拟考试卷02【测试范围:第1章~第4章】(人教版2024)

七年级数学上册 期中模拟考试卷02【测试范围:第1章~第4章】(人教版2024)

2024-2025学年七年级数学上学期期中模拟卷02(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版2024七年级上册第一章~第四章。

5.难度系数:0.85。

一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.现实生活中经常用正数和负数来表示具有相反意义的量.如果收入80元记作+80元,那么-20元表示()A .支出80元B .收入80元C .支出20元D .收入20元2.神舟十一号飞船成功飞向浩瀚宇宙,并在距地面约390000米的轨道上与天宫二号交会对接.将390000用科学记数法表示应为()A .3.9×104B .3.9×105C .39×104D .0.39×1063.如果单项式3a x y +与5b xy -是同类项,那么()2023a b +=()A .1B .1-C .0D .无法确定4.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a +b +c 等于()A .-1B .0C .1D .25.有下列四个算式①()()538-++=-;②()326--=;③512663⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭;④1393⎛⎫-÷-= ⎪⎝⎭.其中,正确的有().A .0个B .1个C .2个D .3个6.如图,数轴上点A 、B 分别对应有理数a ,b ,则下列结论正确的是()A .a b >B .a b >C .0a b +>D .0a b ->7.若关于a ,b 的单项式522x a b +与36y a b --的和仍是单项式,则x y +的值是()A .6B .7C .8D .98.如图,小宁同学在求阴影部分的面积时,列出了4个式子,其中错误的是().A .ab +a (c -a )B .bc +ac -a 2C .ab +ac -a 2D .ac +a (b -a )9.下列说法中正确的个数是()(1)﹣a 表示负数;(2)多项式﹣3a 2b +7a 2b2﹣2ab +1的次数是3;(3)单项式229xy -的系数为﹣2;(4)若|x |=﹣x ,则x <0;(5)一个有理数不是整数就是分数.A .0个B .1个C .2个D .3个10.如图所示的运算程序中,若开始输入x 的值是2,第1次输出的结果是1-,第2次输出的结果是1,依次继续下去…,第2023次输出的结果是()A .2-B .1-C .1D .4二、填空题(本大题共5小题,每小题3分,共15分)11.去括号:()23x y -+=.12.如果单项式232m n x y ++与35x y 是同类项,那么m n +=.13.已知x ,y 均为有理数,现规定一种新运算“※”,满足2x y xy x y =+--※,例如1212122=1=⨯+--※.计算()324⎡⎤-=⎣⎦※※.14.已知m 、n 互为相反数,c 、d 互为倒数,则310m n cd ++-的值为.15.如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由个组成的,依此,第n 个图案是由个组成的.三、解答题(本大题共8小题,共75分)16.(8分)计算:(1)(5)(8)6(4)---+-+;(2)()235448⎡⎤⎛⎫⎛⎫-⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦;(3)2(2)3(2)a b a b ---;16−31423×−42.17.(6分)化简:(1)()()2222432a b ab a b ab -+-+;(2)()()22342223a b a b ---+.18.(8分)已知有理数a ,b ,其中数a 在如图所示的数轴上对应点M ,b 是负数,且b 在数轴上对应的点与原点的距离为3(1)a =,b =.(2)写出大于﹣52的所有负整数;(3)在数轴上标出表示﹣52,0,﹣|﹣1|,﹣b 的点,并用“<“连接起来.19.(9分)某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入,下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减(单位:个)5+2-5-15+10-16+9-(1)该厂本周星期一生产工艺品的数量为______个;(2)本周产量最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量;(4)已知该厂实行每日..计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少生产一个扣80元,试求该工艺厂在这一周应付出的工资总额.20.(10分)如图是某种窗户的形状(实线为窗框),其上部是半圆形,下部是边长相同的四个小正方形,已知下部的小正方形的边长为m a .(结果用π表示)(1)求窗户的面积;(2)求窗框的总长;(3)若1a =,窗户上安装的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不计,求制作这种窗户需要的费用.21.(10分)已知,有理数a 、b 、c 在数轴上的位置如图所示,(1)试化简:322a b c a c b +--++;(2)若a ,c 两数的倒数是他们自身,求x a x c -+-的最小值;以及取最小值时x 范围.22.(12分)已知a 为最大的负整数,||1||5b c ==,,且0bc >,0b c +>,请解决下列问题.(1)a =______,b =______,c =______.(2)在数轴上,a ,b ,c 所对应的点分别为点A ,B ,C ,点P 为数轴上点A ,B 之间一点(不包括点A ,B )其对应的数为x ,化简:13125x x x +----.(3)在(2)的条件下,点A ,B ,C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向数轴负方向运动,同时,点B 和点C 分别以每秒2个单位长度和每秒5个单位长度的速度向数轴正方向运动.设运动时间为t 秒,则BC AB -的值是否随时间t 的变化而变化?若变化,请说明理由;若不变,请求出该值.23.(12分)阅读材料:材料一:对实数a ,b ,定义(),F a b 的含义为:当a b ≤时,(),F a b a b =+;当a b >时,(),F a b a b =-.例如:()1,3134F =+=;()()2,1213F -=--=.材料二:关于数学家高斯的故事:2000多年前,高斯的老师提出了下面的问题:123100+++⋅⋅⋅+=?据说,当其他同学忙于把100个数逐项相加时,十岁的高斯却用下面的方法迅速算出了正确答案:()()()11002995051101505050++++⋅⋅⋅++=⨯=.也可以这样理解:令123100S =+++⋅⋅⋅+①,则10099321S =++⋅⋅⋅+++②,①+②得:()()()()211002991001100110010100S =++++⋅⋅⋅++=⨯+=,即()100110050502S ⨯+==.解决问题:(1)()13F -=,;()23 F -=,;(2)已知20x y +=,且x y >,求()()6,10,F x F y -的值;(3)对于正数a ,满足关系式()21,12F a -+=-时,求:()()()()1,992,993,99199,99F a F a F a F a ++++++⋅⋅⋅++值.2024-2025学年七年级数学上学期期中模拟卷02(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

七年级数学期中模拟卷-2024-2025学年初中上学期期中模拟考试【含答案】

七年级数学期中模拟卷-2024-2025学年初中上学期期中模拟考试【含答案】

22.小明的妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具140 个,平均每天
生产 20 个,但由于种种原因,实际每天生产量与计划量相比有出入,下表是小明妈妈某周
的生产情况(超 产记为正、减产记为负):
星期 一 二 三 四 五 六 日
增减产值 +10 -12 -4 +8 -1 +6 0 (1)根据记录的数据求出小明妈妈星期三生产玩具的个数; (2)根据记录的数据求小明妈妈本周实际生产玩具多少个; (3)该厂实行“每周计件工资制”,每生产一个玩具可得工资 5 元,若超额完成任务,则超过部 分每个另奖 3 元;少生产一个则倒扣 3 元,那么小明妈妈这一周的工资总额是多少元? 23.已知有理数 a,b,c 在数轴上对应点的位置如图所示:
2024-2025 学年七年级数学上学期期中模拟卷
注意事项:
(考试时间:120 分钟 试卷满分:120 分)
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.回答选择题时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案 标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上
D. - 2m2n 的系数是 - 2
5
5
6.已知有理数 a,b 在数轴上的位置如图所示,则下列关系不正确的是( )
A. a + b < 0
B. a + b > 0
C. ab < 0
D. a - b < 0
试卷第 1 页,共 7 页
7.下列去括号正确的是( )
A. x - 4 y - 2 = x - 4 y - 2 C. x + y - 3 = x + y - 3

七年级数学上学期期中模拟试题(含答案)

七年级数学上学期期中模拟试题(含答案)

一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合七年级数学上学期期中模拟卷第一部分(选择题共30分)题目要求的)1.2024-的倒数是()A .2024-B .2024C .12024-D .120242.在0,5-,|2|-, 1.5-这四个数中,最小的数是()A .0B .5-C .|2|-D . 1.5-3.下列计算正确的是()A .()253--=-B .21134333--=-C .()()144-⨯-=-D .1362-÷=-4.观看2024巴黎奥运会开幕式转播的美国观众人数为2860万人,是2012伦敦奥运会以来的最高值.数据2860万用科学记数法表示应是()A .410286.0⨯B .41086.2⨯C .71086.2⨯D .7106.28⨯5.如图,数轴的单位长度为1.若点A 表示的数是1-,则点B 表示的数为()A .4-B .0C .2D .36.我们规定:一个整数能表示成22(,a b a b +是整数,且)a b ≠的形式,则称这个数为“完美数”,例如,10是“完美数”,理由:因为221031=+,所以10是“完美数”,下列各数中,“完美数”是()A .18B .48C .85D .287.有理数a ,b 在数轴上的位置如图所示,则下列各式成立的是()A .0b a -<B .0ab >C .a b b a -=-D .a b a b+=-8.如图,现有A 、B 、C 三点,在数轴上分别表示﹣2、0、4,三点在数轴上同时开始运动,点A 向左运动,运动速度是2/s ,点B 、C 都是向右运动,运动速度分别是3/s 、4/s ,甲、乙两名同学提出不同的观点.甲:5AC ﹣6AB 的值不变;乙:5BC ﹣10AB 的值不变.则下列选项中,正确的是()A .甲正确,乙错误B .乙正确,甲错误C .甲乙均正确D .甲乙均错误9.当2x =时,代数式31px qx ++的值等于2024,那么当2x =-时,代数式31px qx ++的值为()A .2024B .-2024C .2022D .-202210.根据图中数字的排列规律,在第⑩个图中,a b c --的值是()A .512-B .514-C .510D .512第二部分(非选择题共90分)二、填空题(本大题共6小题,每小题3分,满分18分)11.若代数式1x -与27x +的值互为相反数,则x 的值为.12.下列式子:①x y ÷;②113a ;③2xy -;④212ba -,其中格式书写正确的个数有个.13.如图所示是计算机程序计算,若开始输入1x =-,则最后输出的结果是.14.个位数字是a ,十位数是b ,百位数字是c 的三位数可表示为.15.在数轴上,点A 、B 表示的数分别是10-和6,点P 表示的数为x ,点P 到B 的距离是点P 到A 距离的3倍,则点P 表示的数为.16.国庆节,广场上要设计一排灯笼增强气氛,其中有一个设计由如图所示图案逐步演变而成,其中圆圈代表灯笼,n 代表第n 次演变过程,s 代表第n 次演变后的灯笼的个数.仔细观察下列演变过程,当=6n 时,s =.三、解答题(本大题共8小题,满分72分.解答应写出文字说明,证明过程或演算步骤)17.(8分)把下列各数填在相应的数集内:1,35-, 3.2+,0,13,-6.5,+108,-4,-6(1)正整数集合{…}(2)负分数集合{…}(3)正数集合{…}(4)整数集合{…}(5)负数集合{…}18.(8分)计算题:(1)()31324864⎛⎫+-⨯- ⎪⎝⎭;(2)202534)1()3(10)2(1-÷----+-;19.(8分)定义一种运算:a c ad bc bd=-,如()()1310230662-=⨯--⨯-=-=--.那么当()()23221135a b c =-=--+=-+,,,1344d =--时,求a c bd的值.20.(8分)某市组织20辆汽车装运药品、医疗器械与生活用品三种物品到疫区.按计划20辆汽车都要装运,每辆汽车只能装运同一种物品且必须装满,根据下表中的信息,解答下列问题.物资种类药品医疗器械生活用品每辆汽车所需运费(元)120160100(1)设装运药品的车辆数为x ,装运医疗器械的车辆数为y ,请列式表示运送该批物资需要的运费.(2)当8x =,10y =时,求运送该批物资需要的总运费.21.(8分)观察下列各式:第1个等式:11111222-⨯=-+=-;第2个等式:1111123236-⨯=-+=-;第3个等式:11111343412-⨯=-+=-;……(1)根据上述规律写出第5个等式:;(2)第n 个等式:;(用含n 的式子表示)(3)计算:111111112233420222023⎛⎫⎛⎫⎛⎫⎛⎫-⨯+-⨯+-⨯+⋅⋅⋅⋅⋅⋅+-⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.22.(10分)如图所示是小江家的住房户型结构图.根据结构图提供的信息,解答下列问题:(1)用含,的代数式表示小江家的住房总面积.(2)小江家准备给房间重新铺设地砖.若卧室所用的地砖价格为每平方米50元;卫生间、厨房和客厅所用的地砖价格为每平方米40元.请用含,的代数式表示铺设地砖的总费用.(3)在(2)的条件下,当=6,=4时,求的值.23.(10分)小明为了计算23103333+++⋯+的值,采用了以下方法:设23103333S =+++⋯+①则23101133333S =++⋯++②②-①得,11233S =-,所以11332S -=所以1123103333332-+++⋯+=请仿照小明的方法解决以下问题:(1)291222+++⋯+=______(只写结果).(2)23115555+++⋯+=______(只写结果).(3)求21n a a a +++⋯+的值(0,a n >是正整数,请写出计算过程,答案用含n 的式子表示).24.(12分)如图,已知数轴上有三点A 、B 、C ,若用AB 表示A 、B 两点的距离,AC 表示A 、C 两点的距离且13AB BC =,点A 、点B 、点C 对应的数是分别是a 、b 、c ,且()230500a c ++-=.(1)线段AB 的长度为________个单位长度,且b =________.(2)现在有一只电子蚂蚁P 从点A 出发,以5个单位/秒的速度向右运动,同时另一只电子蚂蚁Q 恰好从C 点出发,以3个单位/秒的速度向左运动,则运动了多少秒时,电子蚂蚁P 到点B 的距离与电子蚂蚁Q 到点B 的距离相等?(3)若电子蚂蚁P 、Q 仍然以(2)中的速度分别从A 、C 两点同时出发向左运动,2秒后,得到线段AP 与线段CQ ,点M 为线段AP 的中点,点N 为线段CQ 的中点,若线段AP 与线段CQ 从此时的位置上同时出发分别以5个单位长度每秒、3个单位长度每秒的速度都向右运动,此时另一只电子蚂蚁R 以2个单位长度每秒的速度从A 点出发向左运动,在线段AP 追上线段CQ 之前,电子蚂蚁R 运动了_________秒时恰好满足168MN RQ +=.一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合七年级数学上学期期中模拟卷题目要求的)12345678910CBDCCCCADB二、填空题(本大题共6小题,每小题3分,满分18分)11.2-12.213.7714.10010c b a ++15.6-或18-16.94三、解答题(本大题共8小题,满分72分.解答应写出文字说明,证明过程或演算步骤)17.(8分)【解析】(1)解:正整数集合{1,+108,...}(2分)(2)负分数集合{35-,-6.5,...}(4分)(3)正数集合{1, 3.2+,13,+108,...}(5分)(4)整数集合{1,0,+108,-4,-6,...}(7分)(5)负数集合{35-,-6.5,-4,-6,...}(8分)18.(8分)【解析】(1)解:原式()()()31324249418652484=⨯-+⨯--⨯=--+=-;(4分)(2)原式=1|(8)10|(3)(1)-+----÷-1|18|3=-+--=14;(8分)19.(8分)【解析】∵()224a =-=,()3112b =--+=,2354c =-+=-,(3分)1313144442d =--=-=-.(5分)∴()14242862a c ad bc b d ⎛⎫=-=⨯--⨯-=-+= ⎪⎝⎭.(8分)20.(8分)【解析】(1)解∶根据题意,得∶运送该批物资需要的运费为()12016010020x y x y ++--()20602000x y =++元;(4分)(2)解∶当8x =,10y =时,20602000208601020002760x y ++=⨯+⨯+=,∴运送该批物资需要的总运费2760元.(8分)21.(8分)【解析】(1)解:依题意,第5个等式:11111565630-⨯=-+=-;(2)解:第1个等式:11111222-⨯=-+=-;第2个等式:1111123236-⨯=-+=-;第3个等式:11111343412-⨯=-+=-;第4个等式:11111454520-⨯=-+=-;第5个等式:11111565630-⨯=-+=-;……故第n 个等式:()11111111n n n n n n -⨯=-+=-+++;(4分)(3)解:由(2)知第n 个等式:()11111111n n n n n n -⨯=-+=-+++;则111111112233420222023⎛⎫⎛⎫⎛⎫⎛⎫-⨯+-⨯+-⨯+⋅⋅⋅⋅⋅⋅+-⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111111112233420222023⎛⎫⎛⎫⎛⎫⎛⎫=-++-++-++⋅⋅⋅⋅⋅⋅+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111111112233420222023=-+-+-++⋅⋅⋅⋅⋅⋅-+112023=-+20222023=-(8分)22.(10分)【解析】(1)解:小江家的住房总面积:=(8−3p 2·····(2分)(2)解:=3(8−p ×50+8(−3)×40=1200−150+320−960=(320−150+240)元.·····(6分)(3)解:当=6,=4时,=320×6−150×4+240=1920−600+240=1560,即当=6,=4时,的值为1560元.·····(10分)23.(10分)【解析】(1)解:(1)2910122221+++⋯+=-,故答案为:1021-.(3分)(2)1223115555554-+++⋯+=,故答案为:12554-;(6分)(3)设231n S a a a a =++++⋯+①,则21n aS a a a +=++⋯+②,②①-得,()111n a S a +-=-,(8分)所以111n a a S +--=,所以123111n na a a a a a +-++++⋯+=-.(10分)24.(12分)【解析】(1)解: ()230500a c ++-=,()2300a +≥,500c -≥,∴300a +=,500c -=,∴30a =-,50c =,∴()503080AC =--=, 13AB BC =,AB BC AC +=,∴11802044AB AC ==⨯=,又 点A 对应的数30a =-,点B 在点A 的右侧,∴点B 对应的数302010b =-+=-,故答案为:80,10-;(4分)(2)解:设运动时间为t 秒,由(1)知20AB =,80AC =,60BC AC AB =-=,由点P ,Q 的运动方向及速度可知:当2045t ==时,点P 运动到B 点,当60203t ==时,点Q 运动到B 点,可知:当04t ≤≤时,点P 在点B 左侧,点Q 在点B 右侧,205603t t -=-,解得10t =-(舍);当420t <≤时,点P 在点B 右侧,点Q 在点B 右侧,520603t t -=-,解得10t =;当20t >时,点P 在点B 右侧,点Q 在点B 左侧,520360t t -=-,解得20t =-(舍);综上可知,运动了10秒时,电子蚂蚁P 到点B 的距离与电子蚂蚁Q 到点B 的距离相等;(8分)(3)解:2秒后,点P 对应的数为302540--⨯=-,点Q 对应的数为502344-⨯=,点M 为线段AP 的中点,点N 为线段CQ 的中点,∴点M 对应的数为3040352--=-,点N 对应的数为4450472+=,设在线段AP 追上线段CQ 之前,电子蚂蚁R 运动了x 秒,此时点R 对应的数为302x --,点Q 对应的数为473x +,点M 对应的数为355x -+,点N 对应的数为473x +,∴()443302745RQ x x x =+---=+,473MN x =+-()355822x x -+=-, 168MN RQ +=,∴745822168x x ++-=,解得4x =,即电子蚂蚁R 运动了4秒时恰好满足168MN RQ +=,故答案为:4.(12分)。

24-25学年七年级数学上学期期中模拟卷(江苏通用,测试范围:苏科版2024七上第1章-第3章)解析

24-25学年七年级数学上学期期中模拟卷(江苏通用,测试范围:苏科版2024七上第1章-第3章)解析

2024-2025学年七年级数学上学期期中模拟卷(苏科版2024)(考试时间:120分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:苏科版2024七年级上册第1章-第3章。

5.难度系数:0.85。

第Ⅰ卷一、选择题:本题共8小题,每小题2分,共16分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.2024的绝对值是( )A .2024-B .2024C .12024D .12024-2.下列各组整式中,不是同类项的是( )A .ab -与baB .25与52C .20.2a b 与212a b -D .23a b 与32a b -故选:D .3.下列各数中,最小的数是( )A .2B .4-C .p -D .0【答案】B【详解】解:∵402p -<-<<,∴所给的各数中,最小的数是4-.故选:B .4.若m 、n 满足()2|2|30m n -++=,则m n =( )A .9-B .9C .6D .6-5.甲数为x ,乙数为y ,则甲数的3倍与乙数的和除甲数与乙数的3倍的差,可表示为( )A .33x yx y +-B .33x yx y -+C .33x yx y -+D .33x yx y+-6.若224a b -=,则代数式232a b -+的值为( )A .11B .7C .1-D .5-【答案】C【详解】解:∵224a b -=,∴()223232341a b a b -+=--=-=-.故选C .7.如图所示是计算机程序流程图,若开始输入1x =,则最后输出的结果是( )A .11B .11-C .13D .13-【答案】C 【详解】解:当1x =时,()41411310x ---=-´+=-<,∴当3x =-时,()()414311310x ---=-´-+=>,符合要求,∴最后输出的结果是:13.故选:C .8.用大小完全相同的圆点按如图所示的规律拼图案,其中第①个图案中有5个圆点,第②个图案中有9个圆点,第③个图案中有13个圆点,第④个图案中有17个圆点,…,按此规律排列下去,则第⑨个图案中圆点的个数为( )A .29B .33C .37D .40第Ⅱ卷二、填空题:本题共10小题,每小题2分,共20分。

江苏省徐州市贾汪区贾庄中学2024-2025学年上学期期中模拟七年级数学试卷(无答案)

江苏省徐州市贾汪区贾庄中学2024-2025学年上学期期中模拟七年级数学试卷(无答案)

2024~2025学年度第一学期期中模拟考试七年级数学试题(提醒:本卷共4页,满分为140分,考试时间为90分钟;答案全部涂、写在答题卡上,写在本卷上无效.)一、 选择题(本大题共有8小题,每小题3分,共24分)1. 下列各数中,是负数的是(▲)A .1B .0C .-2D.2. 如果收入100元记作元,那么支出150元记作(▲)A .元B .元C .元D .元3. 高铁深受市民喜爱,客流量逐年递增,2023年某地高铁客流量再创新高,日最高客流68 300 000人次,将68 300 000用科学记数法表示为(▲)A .0.683×109B .68.3×107C .68.3×106D .6.83×1074. 一天早晨的气温是,中午的气温比早晨上升了,中午的气温是(▲)A .B .C .D .5. 下列各式中,化简正确的是(▲)A .B .C .D .6. 下列计算正确的是(▲)A .B .C .D .7. 已知实数a ,b 在数轴上对应的点如图所示,则下列式子正确的是(▲)A .B .C .D .8. 铜钱是我国的早期货币,外圆内方的构造彰显了数学之美,铜钱外部的圆半径为a ,正方形边长为b ,下列表示铜钱阴影部分的面积的式子是(▲)A .B .C .D.二、 填空题(本大题共有8小题,每小题4分,共32分)9.-4的相反数是 ▲ .10.单项式的系数是 ▲ .12100+150+150-50+50-7-℃11℃11℃4℃18℃11-℃()66-+=-()77--=-()88+-=()99++=-277a a a +=532y y -=325a b ab +=22232x y yx x y-=0ab >0a b +<a b <0a b ->()2a b π-()22b a π-22a b π-()2b a π-523b a -(第8题图)11.如果和是同类项,那么a 的值为 ▲ .12.在原点右侧,且到原点的距离是4个单位长度的点表示的数是 ▲ .13.若,则的值为 ▲ .14.若,则ab ▲ .15.对于有理数a ,b ,如果a >-2,b >a ,则b ▲ -2.(填“”、“”或“”).16.有如下计算程序,若开始输入-1,则输出的数是 ▲ .三、解答题(本大题共9小题,共84分)17.(本题8分)在数轴上表示下列各数,并用“<”号把它们连接起来.18.(本题8分)计算.19.(本题10分)计算.20.(本题10分)合并同类项.33a x y 32xy-31a b -=621a b -+21202a b ⎛⎫-++= ⎪⎝⎭=><=222.(本题8分)某学校图书馆平均每天借出图书100册.如果某天借出102册,就记作+2;如果某天借出90册,就记作-10.上星期图书馆借出图书记录如下:(1)星期四借出图书 ▲册;(2)星期三比星期五多借出图书多少册?(3)这5天平均每天借出图书多少册?23.(本题8分)用正方形的白色水泥砖和灰色水泥砖按下图的方式铺人行道:(1)(2)(3)(1)图(1)中有灰色水泥砖 ▲块,图(2)中有灰色水泥砖 ▲块,图(3)中有灰色水泥砖 ▲块;莓苗.土地平面图如图所示(单位:米),请根据土地平面图回答下列问题:(1)这片士地的总面积S为多少平方米?(用含a,b的式子表示,需化简)(2)由于草莓品种和各个地块土壤条件存在差异,地块①和②平均每平方米可种植9株草莓苗,剩下地块平均每平方种植11株草莓苗.①则小林总共可种植多少株草莓苗?(用含a、b的式子表示,需化简)株草莓苗吗?请计算说明.②当a=20,b= 15时,小林能种植2000025.(本题12分)操作发现:操作一:如图1,已知点A ,M 所表示的数分别为-2,1,将点A 绕点M 旋转180°得到点B ,此时点B 所表示的数为4,我们称点B 是点A 关于点M 的映射点;记作:Y ( A ,M ) =B 或Y (-2,1)=4;操作二:如图2,已知点M 和线段AB ,将点A ,M 绕同一点旋转180°,使点A 和点B 重合,此时点M 所对应的点用N 表示,我们称点N 是点M 关于线段AB 的映射点;记作:Y [M , ( A ,B )]=N ;如: Y [-1, ( 1,3)]=5;(1) 利用图3,图4,直接填空:Y (2,-1)= ▲ ;Y [3, ( 1,-2)]= ▲ ;(2) 若A ,B 两点所表示的数分别是a +b ,2a -b ,Y (A ,B )=C ,求点C 所表示的数;(用含a ,b 的代数式表示)(3) 点A 表示的数为a ,点B 与点A 的距离为4,点C 是数轴上一动点,且Y (C ,A )=D ,Y [C ,(A ,B )]=E .点A 在运动过程中,D ,E 两点之间的距离是否变化,如果不变,请求出这个值,如果变化,请说明理由.(第25题图)(第24题图)。

七年级数学期中模拟卷【测试范围:七上第1_3章】(冀教版2024)

七年级数学期中模拟卷【测试范围:七上第1_3章】(冀教版2024)

32024-2025学年七年级数学上学期期中模拟卷(冀教版2024)(满分120分,时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:冀教版2024七年级上册第一章~第三章。

5.难度系数:0.65。

第Ⅰ卷一、选择题(本大题共16个小题,共38分,1~6小题每题3分,7~16小题每题2分.每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.下列各数:0.01,10,-6.67,+1,0,-(-3),--2,-(-42),其中属于非负整数的有()A .2个B .3个C .4个D .5个2.“愚公移ft ”是我国著名的寓言故事,它告诉了我们坚持不懈的道理.如图,假设愚公在运输ft石等杂物时(从点A 运输到点B ),有4条路可行,线路1:折线AD -DB .线路2:折线AC -CB .线路3:‸AB .线路4:线段B .如果仅从距离最短考虑,愚公选取的线路应是()A .线路1B .线路2C .线路3D .线路43.下列式子中:①0;②a ;③x +y =2;④x -5;⑤2a ;⑥a 2+1;⑦a ≠1;⑧x ≤3.属于代数式的有()A .4个B .5个C .6个D .7个4.如图,数轴上有A 、B 、C 、D 四个点,其中绝对值最小的数对应的点是()A.点A B.点B C.点C D.点D5.已知线段AB上有一点O,射线OC和射线OD在直线AB的同侧,∠BOC=56︒,∠COD=100︒,则∠BOC 与∠AOD的平分线的夹角为()A.125︒B.130︒C.135︒D.140︒6.在我国古书《易经》中有“上古结绳而治”的记载,它指“结绳记事”或“结绳记数”.如图,一远古牧人在从右到左依次排列的绳子上打结,满6进1,用来记录他所放牧的羊的只数,由图可知,他所放牧的羊的只数是()A.1234B.310C.60D.107.数轴上表示整数的点叫整点,某数轴单位长度为1cm,若在数轴上随意画一条长为100cm线段AB,则线段盖住的整点的个数为()A.100B.99C.99或100D.100或1018.已知a=1,b=2,且a+b=a+b,则a-b的值为()A.-3B.-1C.-3或-1D.-1或39.如图,∠AOB=90︒,∠AOC为∠AOB外的一个锐角,且∠AOC=40︒,射线OM平分∠BOC,ON平分∠AOC,则∠MON的度数为()A.25︒B.45︒C.50︒D.60︒10.按如图所示的运算程序进行计算,则能使输出的y值为1的是()A .m =1,n =0C .m =-1,n =-1B .m =1,n =-1D .m =-1,n =011.如果三个连续整数n 、n +1、n +2的和等于它们的积,那么我们把这三个整数称为“和谐数组”,下列n的值不满足“和谐数组”条件的是()A.-1 B.-3C .1D .312.如图,直线AB 与CD 相交于点O ,∠AOC =60︒,一直角三角尺EOF 的直角顶点与点O 重合,OE 平分∠AOC ,现将三角尺EOF 以每秒3︒的速度绕点O 顺时针旋转,同时直线CD 也以每秒9︒的速度绕点O 顺时针旋转,设运动时间为t 秒(0≤t ≤40),当CD 平分∠EOF 时,t 的值为()A .2.5B .30C .2.5或30D .2.5或32.513.如图,正方体的12条棱上放置相同数目的小球,设每条棱上的小球数为m (m ≥2),甲、乙、丙、丁四人用不同的方式表示出正方体上小球的总数.下列判断正确的是()甲:12(m -1);乙:4m +8(m -2);丙:12(m -2)+8;丁:12m -8⨯2A.甲对,乙错B .乙对,丁对C .甲错,丙错D .乙错,丙对14.下列各图均是由大小相等的正方形按一定规律进行排列的,若按此规律排列,则图n 中正方形的个数是()A.n+3B.2n+2C.3n+1D.n2+n15.有公共端点P的两条线段MP,NP组成一条折线M-P-N,若该折线M-P-N上一点Q把这条折线分成相等的两部分,我们把这个点Q叫做这条折线的“折中点”.已知点D是折线A-C-B的“折中点”,点E为线段AC的中点,CD=3,CE=4,则线段BC的长是()A.2B.4C.2或14D.4或1416.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴的数字-2所对应的点重合,若将圆沿着数轴向右滚动(无滑动),那么数轴上的数2023所对应的点将与圆周上的字母()重合.A.字母A B.字母B C.字母C D.字母D第Ⅱ卷二、填空题(本大题共3个小题,共10分;17小题2分,18~19小题各4分,每空2分,答案写在答题卡上)17.如图所示,由济南始发终点至青岛的某一次列车,运行途中停靠的车站依次是:济南—淄博—潍坊—青岛,那么要为这次列车制作的单程火车票种.18.石家庄市出租车的收费标准是:起步价(3千米以内,包括3千米)8元,路程超过3千米的部分,每千米收费 1.6元.若小华乘坐了2千米,他应付车费元;若他乘坐了a千米(a>3),应付车费元.19.如图,线段AB的长为a,点C为线段AB的中点,D为线段AB上一点,且AD=1BD.图中共有3条线段;若P为直线AB上一点,且PA+PB=11a,则PD的值为.10AB三、解答题(本大题共7个小题,共72分,解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)计算:(1)(-7)-(+5)+(-4)-(-10);(2)3⨯(-5)-12⨯⎛-3⎫-0.75⨯3;4 4⎪⎝⎭(3)⎛13+21-0.75⎫⨯(-24); 83⎪⎝⎭(4)-14-1⨯⎡3-(-3)2⎤.3⎣⎦21.(本小题满分9分)已知x =6,y =1,且xy >0,x +y <0.4(1)求x 、y 的值;(2)求x 2-4y 的值.如图是由边长相同的灰、白方块拼成的图形.(1)请观察图形,并填写下列表格;图形标号第1个第2个第3个…第n个灰色方块的个数51015…白色方块的个数4…(2)第100个图形中的灰色方块和第102个图形中的白色方块共有多少个?(3)第(n+1)个图形中的灰色方块比第(n-1)(n>1)个图形中的白色方块多多少个?(用含n的式子表示)阅读:已知在纸面上有一个数轴(如图),折叠纸面,若数轴上表示数1的点与表示数-1的点重合,则数轴上表示数-2的点与表示数2的点重合.折叠纸面,使数轴上表示数-4的点与表示数0的点重合,解答下列问题:(1)数轴上表示数3的点与表示数的点重合;(2)若点A到原点的距离是5个单位长度,并且A,B两点经折叠后重合,求点B表示的数;(3)若数轴上M,N两点之间的距离为2024,并且M,N两点经折叠后重合,如果点M表示的数比点N表示的数大,直接写出点M,N表示的数.举世瞩目的青藏铁路现已通车,实现了几代中国人梦寐以求的愿望,它是世界上海拔最高,线路最长的高原铁路.青藏铁路线上,在西宁、格尔木到拉萨(如图)之间有一段很长的冻土地段,列车在冻土地段的行驶速度是100千米/小时,在非冻土地段的行驶速度是120千米/小时.(1)列车在冻土地段行驶3小时的路程为千米,行驶a小时的路程为千米(用含a的代数式表示);(2)在西宁到拉萨路段,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍,如果通过冻土地段需要a小时,西宁到拉萨路这段铁路的长为多少千米?(3)在格尔木到拉萨路段,列车通过冻土地段比通过非冻土地段多用0.5小时,如果通过冻土地段需要b 小时,在(2)的条件下,若取a=5,b=4,求西宁到格尔木这段铁路长为多少千米?已知O为直线AB上一点,射线OD、OC、OE位于直线AB上方,OD在OE的左侧,∠AOC=120︒,∠DOE=80︒.(1)如图1,当OD平分∠AOC时,求∠EOB的度数;(2)点F在射线OB上,若射线OF绕点O逆时针旋转n︒(0<n<180且n≠60),∠FOA=3∠AOD.当∠DOE在∠AOC内部(图2)和∠DOE的两边在射线OC的两侧(图3)时,∠FOE和∠EOC的数量关系是否改变,若改变,说明理由,若不变,求出其关系.【感悟体验】如图1,A、B、C三点在同一直线上,点D在线段AC的延长线上,且AB=CD,请仅用一把圆规在图中确定D点的位置.【认识概念】在同一直线上依次有A、B、C、D四点,且AB=CD,那么称AB与CD互为“对称线段”,其中AB为CD的“对称线段”,CD亦为AB的“对称线段”.如图2,下列情形中AB与CD互为“对称线段”的是(直接填序号).①AB=2,CD=3;②AB=1,BC=2,BD=4;③AC=2,BD=2.【运用概念】如图3,AB与CD互为“对称线段”,点M为AC的中点,点N为BD的中点,且AB=2.(1)若AD=12,求AM的长;(2)若AC=12,求MN的长;【拓展提升】如图4,在同一直线上依次有A、B、C、D四点,2AB=CD且AB=a(a为常数),点M 为AC的中点,点N在BD上且ND=mBD.是否存在m的值使得MN的长为定值?若存在,请求出m;若不存在,请说明理由.的值以及这个定值(用含a的代数式表示)13【答案】C【解析】解:10,0,-(-3)=3,-(-42)=16是非负整数;0.01,-6.67,+1是分数;3−−2=−2是负整数.故选C .2024-2025学年七年级数学上学期期中模拟卷(冀教版2024)(满分120分,时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

七年级数学期中模拟卷-2024-2025学年初中上学期期中模拟考试[含答案]

七年级数学期中模拟卷-2024-2025学年初中上学期期中模拟考试[含答案]

2024-2025学年七年级数学上学期期中模拟卷(考试时间:120分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:北京版2024七年级上册第一章-第二章.5.难度系数:0.85.第Ⅰ卷一、选择题:本题共8小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算13--的结果是( )A .-2B .2C .-4D .42.下列方程中是一元一次方程的是( )A .5x =-B .242x x x -=+C .231x x -=-D .10.254x x +=+3.如图,数轴上被墨水遮盖的点表示的数可能是( )A .1-B . 1.5-C .3-D .5-4.在31-.,0,+2,(7)--,15--,π2-,3(2)-中,负有理数有( )A .2个B .3个C .4个D .5个5.若a 、b 互为相反数,则下列等式:①0a b +=;②0a b +=;③0a b -=;④0a b ´=其中一定成立的个数为( )A .1B .2C .3D .46.某工厂计划每天烧煤5吨,实际每天少烧2吨,m 吨煤多烧了20天,则可列方程是( )A .2025m m -=B .2023m m -=C .2057m m -=D .2035m m -=7.如图所示是计算机程序流程图,若开始输入1x =,则最后输出的结果是( )A .11B .11-C .13D .13-8.三个有理数a ,b ,c 在数轴上表示的位置如图所示,则化简b a a c b c --+--的结果是( )A .0B .2bC .2cD .2a-第Ⅱ卷二、填空题:本题共8小题,每小题2分,共16分.9. 2.78- 425-.(填“>”“<”或“=”)10.如果方程1320m x ++=是关于x 的一元一次方程,那么m 的值是 .11.中国古代著作《九章算术》在世界数学史上首次正式引入负数,如果盈利80元记作80+元,那么亏本70元记作 元.12.规定图形表示运算a b c -+,图形表示运算x z y w +--,则+= .(直接写出答案)13.在边长为9cm 的正方形ABCD 中,放置两张大小相同的正方形纸板,边EF 在AB 上,点K ,I 分别在BC ,CD 上,若区域I 的周长比区域Ⅱ与区域Ⅲ的周长之和还大6cm ,则正方形纸板的边长为 cm .14.在解关于y 的方程21132y y a -+=-时,小明在去分母的过程中,右边的“1-”漏乘了公分母6,因而求得方程的解为4y =,则方程正确的解是 .15.若关于x 的一元一次方程3x k +=和123x k x k --=的解互为相反数,则k = .16.已知一个长方形的周长为36cm ,若长方形的长减少1cm ,宽扩大为原来的2倍后成为一个正方形,设原来长方形的长为x cm ,则可列方程 .三、解答题:本题共12小题,共68分.解答应写出文字说明、证明过程或演算步棸.17.一辆出租车从A 站出发,先向东行驶12km ,接着向西行驶8km ,然后又向东行驶4km .(1)画一条数轴,以原点表示A 站,向东为正方向,在数轴上表示出租车每次行驶的终点位置.(2)求各次路程的绝对值的和.这个数据的实际意义是什么?18.解方程:43(2)x x -=-.19.计算:()2311154éù--´--ëû20.一个两位数,个位上的数字与十位上的数字之和是6,若把个位上的数字与十位上的数字调换位置,那么所得的新数比原数的三倍多6,求原来的两位数.21.在给出的数轴上,把下列各数表示出来,并用“>”连接各数.22-, 1.5-,122-,0,()2--,5-22.有甲、乙两个粮仓,已知乙仓原有粮食35 吨.如果从甲仓取出 15 吨粮食放入乙仓,这时乙仓的存粮是甲仓的 25,则甲仓原有粮食多少吨?23.下列数阵是由50个偶数按照5×10排成的,框内有四个数.(1)猜测:图中框内四个数之和与数字4有什么关系?(2)在数阵中任意做一类似于(1)中的框,设左上角的数为x ,那么其他3数怎样表示?(3)任意移动这个框,是否都能得到(1)的结论?你能证明这个结论吗?24.如图,每个图形都由同样大小的小正方形按一定规律组成。

24-25学年七年级数学期中模拟卷01(全解全析)【测试范围:七年级上册第1章-第4章】(人教版)

24-25学年七年级数学期中模拟卷01(全解全析)【测试范围:七年级上册第1章-第4章】(人教版)

2024-2025学年七年级数学上学期期中模拟卷01(人教版2024)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版2024七年级上册第一章~第四章。

5.难度系数:0.85。

一、选择题(本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.规定:(→2)表示向右移动2,记作+2,则(←5)表示向左移动5,记作()A.+5B.-5C.15D.-152.2023年9月23日-10月8日,第19届亚运会在杭州举办,据浙江省统计局基于GDP模型预测,亚运会为杭州带来的GDP拉动量约为4141亿元人民币.请将4141亿用科学记数法表示为()A.4.141×1012B.4.141×1011C.0.4141×1012D.41.41×1010【答案】B【详解】解:4141亿=4141×108=4.141×1011,故选B3.如图,检测5个排球,其中超过标准的克数记为正数,不足的克数记为负数.从轻重的角度看,A、B、C、D哪个球最接近标准( )A .-3.5B .+0.7C .-2.5D .-0.6【答案】D【详解】通过求五个排球的绝对值得:|-0.6|=0.6,|+0.7|=0.7,|-2.5|=2.5,|-3.5|=3.5,|5|=5,-0.6的绝对值最小.所以最后一个球是接近标准的球.故选D .4.在式子5mn 2,x ―1,―3,ab +a 2,―p ,2x 2―x +3中,是单项式的有( )A .1个B .2个C .3个D .4个5.下列能够表示比x 的12倍多5的式子为( )A .12x +5B .12(x +5)C .12x ―5D .12(x ―5)6.单项式﹣2x 2yz 3的系数、次数分别是( )A .2,5B .﹣2,5C .2,6D .﹣2,6【答案】D【详解】单项式﹣2x 2yz 3的系数是﹣2,次数是2+1+3=6.故选:D .7.在一个多项式中,与2ab2为同类项的是( )A.ab B.ab2C.a2b D.a2b2【答案】B【详解】解:与2ab2为同类项的是ab2,故选:B.8.已知|x―5|+(y+4)2=0,则xy的值为( )A.9B.―9C.20D.―20【答案】D【详解】解:∵|x―5|+(y+4)2=0,∴x=5,y=―4∴xy=―20,故选:D.9.飞机无风时的速度是a km/h,风速为15km/h,飞机顺风飞行4小时比无风飞行3小时多飞的航程为( )A.(a+60)km B.60km C.(4a+15)km D.(a+15)km10.下列各式去括号正确的是()A.―(2x+y)=―2x+y B.3x―(2y+z)=3x―2y―zC.x―(―y)=x―y D.2(x―y)=2x―y【答案】B【详解】A、括号前为“-”号,去括号时括号里的第二项没有变号,故错误;B、正确;C、括号前为“-”号,去括号时括号里的项没有变号,故错误;D、括号里的第二项没有乘2,出现了漏乘的现象,故错误.故选:B.11.如图,则下列判断正确()A.a+b>0B.a<-1C.a-b>0D.ab>0【答案】A【详解】解:选项A:a为大于-1小于0的负数,b为大于1的正数,故a+b>0,选项A正确;选项B:a为大于-1小于0的负数,故选项B错误;选项C:a小于b,故a-b<0,选项C错误;选项D:a为负数,b为正数,故ab<0,故选项D错误;故选:A.12.计算机是将信息转化成二进制进行处理的,二进制即“逢二进一”.将二进制数转化成十进制数,例如:(1)2=1×20=1;(10)2=1×21+0×20=2;(101)2=1×22+0×21+1×20=5.则将二进制数(1101)2转化成十进制数的结果为()A.8B.13C.15D.16二、填空题(本题共6小题,每小题2分,共12分.)13.﹣7的相反数是.【答案】7【详解】﹣7的相反数是-(-7)=7.故答案是:7.14.比较大小:―13―23(用“>”“<”或“=”填空).故答案是:>.15.近似数12.336精确到百分位的结果是.【答案】12.34【详解】解:12.336≈12.34(精确到百分位),故答案为:12.34.16.规定符号“⊙”的意义是a⊙b=a2―b,例如2⊙1=22―1=3,则4⊙2=.【答案】14【详解】解:由题意得:4⊙2=42―2=16―2=14,故答案为:14.17.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为个.18.把1~9这9个数填入3×3的方格中,使其任意一行,任意一列及两条对角线上的数之和都等于15,这样便构成了一个“九宫格”,它源于我国古代的“洛书”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则其中m的值为.三、解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:(1)(―8)+10+2+(―1);(2)4+(―2)3×5―(―28)÷4.【详解】(1)(―8)+10+2+(―1)=2+2―1(1)=4―1(2分)=3;(3分)(2)4+(―2)3×5―(―28)÷4=4+(―8)×5―(―28)÷4(4分)=4―40+7(5分)=―29.(6分)20.(6分)计算:(1)m―n2―m―n2;(2)―x+(2x―2)―(3x+5).【详解】(1)解:m―n2―m―n2=―2n2;(3分)(2)解:―x+(2x―2)―(3x+5)=―x+2x―2―3x―5(2分)=―2x―7.(6分)21.(6分)先化简,再求值:3x2―3y―3x2+y―x,其中x=―3,y=2.22.(10分)【知识呈现】我们可把5(x―2y)―3(x―2y)+8(x―2y)―4(x―2y)中的“x―2y”看成一个字母a,使这个代数式简化为5a―3a+8a―4a,“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.在数学中,常常用这样的方法把复杂的问题转化为简单问题.【解决问题】(1)上面【知识呈现】中的问题的化简结果为;(用含x、y的式子表示)(2)若代数式x2+x+1的值为3,求代数式2x2+2x―5的值为;【灵活运用】应用【知识呈现】中的方法解答下列问题:(3)已知a―2b=7,2b―c的值为最大的负整数,求3a+4b―2(3b+c)的值.【详解】解:(1)∵5a―3a+8a―4a=6a,∴5(x―2y)―3(x―2y)+8(x―2y)―4(x―2y)=6(x―2y)=6x―12y,(3分)故答案为:6x―12y;(2)∵x2+x+1=3,∴x2+x=2,(4分)∴2x2+2x―5=2(x2+x)―5=2×2―5=―1,(6分)故答案为:―1;(3)∵2b―c的值为最大的负整数,∴2b―c=―1,(7分)∴3a+4b―2(3b+c)(8分)=3a+4b―6b―2c,=3(a―2b)+2(2b―c),=3×7+2×(―1),=19.(10分)23.(10分)综合与实践【问题情景】七年级(1)班的同学们在劳动课上采摘红薯叶,通过对红薯叶的称重感受“正数与负数”在生活中的应用.【实践探索】同学们一共采摘了10筐红薯叶,以每筐15kg为标准,超过的千克数记作正数,不足的千克数记作负数,称重后记录如下:【问题解决】(1)求这10筐红薯叶的总重量为多少千克?(2)若市场上红薯叶售价为每千克5元,则这10筐红薯叶价值多少元?【详解】(1)―2.5+(―1.5)+(―3)+(―2)+0.5+1+(―2)+2+(―1.5)+2=―7,(4分)15×10―7=143(千克);(6分)答:这10筐红薯叶的总重量为143千克.(7分)(2)143×5=715(元);(9分)答:这10筐红薯叶全部售出可获得715元.(10分)24.(10分)将连续的奇数1,3,5,7,9,…排成如图所示的数表.(1)十字框中的五个数之和与中间数15有什么关系?(2)设中间数为a,如何用代数式表示十字框中五个数之和?(3)若将十字框上下左右移动,可框住另外五个数,这五个数还有上述的规律吗?(4)十字框中的五个数之和能为2018吗?能为2025吗?【详解】(1)解:(5+13+15+17+25)÷15=75÷15=5,(2分)则十字框中的五个数之和与中间数15的5倍;(2)解:设中间数为a,则其余的4个数分别为a―2,a+2,a―10,a+10,(3分)由题意,得a+a―2+a+2+a―10+a+10=5a,(4分)因此十字框中的五个数之和为5a.(3)解:设移动后中间数为b,则其余的4个数分别为b―2,b+2,b―10,b+10,(5分)由题意,得b+b―2+b+2+b―10+b+10=5b,(6分)因此这五个数之和还是中间数的5倍.(4)解:由(3)知,十字框中五个数之和总为中间数的5倍,2018÷5=403.6,(7分)因为403.6是小数,所以十字框中五个数之和不能为2018,(8分)2025÷5=405,(9分)因为405是整数,且405在第三列,所以十字框中五个数之和能为2025.(10分)25.(12分)秋风起,桂花飘香,也就进入了吃螃蟹的最好季节,清代文人李渔把秋天称作“蟹秋”.意为错过了螃蟹,便是错过了整个秋季,小贤去水产市场采购大闸蟹,极品母蟹每只30元,至尊公蟹每只20元.商家在开展促销活动期间,向客户提供以下两种优惠方案:方案①极品母蟹和至尊公蟹都按定价的8折销售;方案②买一只极品母蟹送一只至尊公蟹.现小贤要购买极品母蟹30只,至尊公蟹a(a>30)只.(1)按方案①购买极品母蟹和至尊公蟹共需付款______元(用含a的式子表示);按方案②购买极品母蟹和至尊公蟹共需付款______元(用含a的式子表示).(2)当a=40时,通过计算说明此时按上述哪种方案购买较合算.(3)若两种优惠方案可同时使用,当a=40时,你能通过计算给出一种最为省钱的购买方案吗?【详解】(1)解:由题意得:按方案①购买极品母蟹和至尊公蟹共需付款=0.8×(30×30+20a)=0.8×(900+20a)=(720+16a)元,按方案②购买极品母蟹和至尊公蟹共需付款=30×30+20(a―30)=900+20a―600=(300+20a)元,∴按方案①购买极品母蟹和至尊公蟹共需付款(720+16a)元;按方案②购买极品母蟹和至尊公蟹共需付款(300+20a)元,故答案为:(720+16a),(300+20a);(4分)(2)当a=40时,按方案①购买极品母蟹和至尊公蟹共需付款=720+16×40=720+640=1360(元),(6分)按方案②购买极品母蟹和至尊公蟹共需付款=300+20×40=300+800=1100(元),(8分)∵1100<1360,∴按方案②购买较为合算;(9分)(3)若两种优惠方案可同时使用,则可先按方案②购买30极品母蟹,再送30只至尊公蟹,然后按方案①购买10只至尊公蟹,理由:30×30+(40―30)×20×0.8=900+10×20×0.8=900+160=1060(元),(10分)∵1060<1100<1360,(11分)∴最为省钱的购买方案是:先按方案②购买30极品母蟹,再送30只至尊公蟹,然后按方案①购买10只至尊公蟹.(12分)26.(12分)综合实践【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:如图1,若数轴上点A、点B表示的数分别为a,b(b>a),则线段AB的长(点A到点B的距离)可表示为b―a,请用上面材料中的知识解答下面的问题:【问题情境】如图,一个点从数轴上的原点开始,先向左移动2个单位长度到达点A,再向右移动3个单位长度到达点B,然后再向右移动5个单位长度到达点C.(1)【问题探究】请在图2中表示出A、B、C三点的位置:(2)【问题探究】若点P从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动,同时点M、N从点B、点C分别以每秒23个单位长度速度沿数轴向右匀速运动.设移动时间为t秒(t>0).①A,B两点间的距离AB=______;②用含t的代数式表示:t秒时,点P表示的数为______,点M表示的数为______,点N表示的数为______;③试探究在移动的过程中,3PN―4PM的值是否随着时间t的变化而变化?若变化说明理由:若不变,请求其值.【详解】(1)解:A、B、C三点的位置在数轴上表示如图1所示:(3分)(2)①AB=1―(―2)=3,(4分)②如图2,由题意得:PA=t,BM=2t,CN=3t,∴t秒时,点P表示的数为―t―2,点M表示的数为2t+1,点N表示的数为3t+6,(7分)③在移动的过程中,3PN―4PM的值不随着时间t的变化而变化,理由如下:PN=(3t+6)―(―t―2)=4t+8,PM=(2t+1)―(―t―2)=3t+3,∴3PN―4PM=3(4t+8)―4(3t+3)=12t+24―12t―12=12.(11分)∴在移动的过程中,3PN―4PM的值总等于12,保持不变.(12分)。

2024-2025 学年七年级数学上学期期中模拟卷03

2024-2025 学年七年级数学上学期期中模拟卷03

2024-2025 学年七年级数学上学期期中模拟卷一、选择题(本大题共10小题,每小题3分,满分30分. 在每个小题给出的四个选项中,只有一项符合题目要求的)1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数. 若收入80元记作+80元,则-60元表示( )A. 收入60元B. 收入20元C. 支出60元D. 支出20元2. 下列四个数中,是负数的是( )A. |-1|B. -|-4|C. - (-3)D. (-2)²3. 下列说法正确的是( )A.−2xy5的系数是-2 B.x²+x−1的常数项为1C.2²ab³的次数是6次D.x−5x²+7是二次三项式4.2023年4月26日,成都市统计局、国家统计局成都调查队联合发布2023年第一季度成都市经济运行情况,数据显示,一季度全市实现地区生产总值5266.82亿元,同比增长5.3%. 将数据“5266.82亿”用科学记数法表示为( )A.5266.82×10⁸B.5.26682×10⁹C.5.26682×10¹⁰D.5.26682×10¹¹5. 下列运算中,正确的是( )A. 3a+2b=5abB.2x²+2x³=4x⁵C.3a²b−3ba²=0D.5a²b−4a²b=16. 在数轴上, a所表示的点在b所表示的点的左边,且| a|=3,b²=1,则a-b的值为( )A. -2B. -3C. -4或-2D. -2或47. 下列说法:①平方等于4的数是±2;②若a,b互为相反数,则ba=−1;③若|-a|=a, 则(−a)³<0;④若ab≠0, 则a |a|+b|b|的取值在0,1,2,-2这4个数中,不能得到的是0,其中正确的个数为( )A. 0个B. 1个C. 2个D. 3个8. 如图,把半径为1的圆放到数轴上,圆上一点A与表示-1的点重合,圆沿着数轴滚动2周,此时点A 表示的数是( )A. -1+4πB. -1+2πC. -1+4π或-1-4πD. -1+2π或-1-2π9. 如图,把四张形状大小完全相同的小长方形卡片(如图1),不重叠地放在一个长为 acm、宽为bcm长方形内(如图2),未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分的周长和是( )A. 4bcmB. 4acmC. 2(a+b) cmD. 4(a-b) cm10. 如图是一组有规律的图案,它们是由边长相同的灰白两种颜色的小正方形组成的,按照这样的规律,若组成的图案中有2025个灰色小正方形,则这个图案是( )A. 第505个B. 第506个C. 第507个D. 第508个二、填空题(本大题共5小题,每小题3分,满分15分)11. 若x 与3 互为相反数, 则2x+4等于 .12. 若x, y 为有理数, 且 |x +2|+(y −2)²=0, 则 (x y)2023的值为 .14. 当x=2时, ax³−bx +3 的值为15, 那么当x=-2 时, ax³−bx +3 的值为 .15. 如图是一个运算程序的示意图,若开始输入的x 的值为81,我们看到第一次输出的结果为27,第二次输出的结果为9…第2024次输出的结果为 .三、解答题(本大题共9小题,满分75分. 解答应写出文字说明,证明过程或演算步骤)16. (每小题4分, 共8分) 计算:(1)−4+|5−8|+24÷(−3)×13; (2)−14−(1−0,5)×13×[2−(−3)2].17. (每小题4分, 共8分) 计算:(1)3(4x²−3x +2)−2(1−4x²+x ); (2)4y²−[3y −(3−2y )+2y²].13.定义新运算: a ∗b =a²−b +ab, 例如: 则 4“[2∗(−3)]=.18. (6分) 先化简, 再求值: x²−3(2x²−4y)+2(x²−y),其中x,y满足|x+2|+(y−3)²=0.19.(8分)已知a²=4,|b|=3. (1)已知ba<0,求a+b的值; (2) |a+b|= - (a+b), 求a-b的值.20.(8分)已知M=2x2+ax−5y+b,N=bx2−32x−52y−3,其中a,b为常数.(1) 求整式M-2N:(2)若整式M-2N的值与x的取值无关, 求(a+2M)−(2b+4N)的值.21.(8分)随着网络直播的兴起,凉山州“建档立卡户”刘师傅在帮扶队员的指导下做起了“主播”,把自家的石榴放到网上销售. 他原计划每天卖100千克石榴,但由于种种原因,实际每天的销售量与计划量相比有出入. 如表是某周的销售情况(超额记为正,不足记为负,单位:千克):(1) 根据记录的数据可知前三天共卖出千克.(2) 根据记录的数据可知销售量最多的一天比销售量最少的一天多销售多少千克?(3)若石榴每千克按10元出售,每千克石榴的运费平均3元,那么刘师傅本周出售石榴的纯收入一共多少元?22.(8分) 已知有理数a, b, c在数轴上的位置如图所示且|a|=|b|,(1) 求值: a+b= ;(2)分别判断以下式子的符号(填“>”或“<”或“=”): b+c 0: a-c 0; ac 0;(3) 化简: -|2c|+|-b|+|c-a|+|b-c|.23.(9分) 定义一种新的运算⊗: 已知a, b为有理数, 规定a⊗b= ab-b+1.(1) 计算(-2) ⊗3的值.(2) 已知x²⊗a与3⊗x²的差中不含x²项,求a的值.⊗ (-8) 点B在点A的右侧,距(3)如图,数轴上有三点 A,B,C,点A在数轴上表示的数是(−6)⊗I,点C在数轴上表示的数是18点A两个单位长度.若点 B以每秒3个单位长度的速度向右匀速运动,同时点C以每秒1个单位长度的速度向左匀速运动,问运动多少秒时,BC=4?24.(12分)某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20);(1)若该客户按方案①购买,需付款元(用含x的代数式表示);(答案写在下面)若该客户按方案②购买,需付款元 (用含x的代数式表示);(答案写在下面)(2) 若x=30,通过计算说明此时按哪种方案购买较为合算?(3) 当x=30时,你能给出一种更为省钱的购买方案吗? 试写出你的购买方法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019 学年七年级期中数学考试模拟试题为了方便同学们复习,提高同学们的复习效率,对这一年的学习有一个更好的巩固,下面小编整理2019 学年七年级期中数学考试模拟试题,供大家参考,希望对同学们能有所帮助。

1. 某栋楼每层高度为4.8m,地下室高度为3.5米,如果地面
高度为Om,那么三楼地面高度应记为米。

2. 点A在数轴上距原点5个单位长度,且位于原点的左侧,
若将A向右移动4个单位长度,再向左移动1个单位长度,此时点 A 表示的数是______________ 。

3. _________________ 用、填空:- - 若,则。

4. 如图是某个几何体的展开图,这个几何体是.
5. 废旧电池对环境的危害十分巨大,一粒纽扣电池能污染
6OO 立方米的水(相当于一个人一生的饮水量)。

某班有53 名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学计数法表示为立方米。

6. 按规律填数:__________ 。

7. 绝对值大于3 但不超过5 的整数它们的和为 __________ ,积为_______ 。

8. 如图,是一个简单的数值运算程序当输入x 的值为-1 时,则输出的数值为。

输入x
(-3)
-2
输出
9. 一副三角扳按如图方式摆放,且1的度数比2 的度数大50,则1= 。

10. 图1 表示某地区2019 年12 个月中每个月平均气温,图
2 表示该地区某家庭这年12 个月中每月的用电量。

根据统计图,请你说出该家庭用电量与气温之间的关系( 只要求写出一条信息即可) :。

二、你一定能选对!( 每题3分,共30 分)
11. 下列各数中,是负数的是( ) 。

(A)-(-3) (B)-|-3| (C) (-3)2 (D) |-3|
12. 下列四个运算中,结果最小的是( )
(A) 1+(-2) (B) 1-(-2) (C) l(-2) (D) 1 (-2)
13. 2019 年10 月15 日9时10 分,我国神舟五号载人飞船准确进入预定轨道.16 日5时59 分,返回舱与推进舱分离,返回地面. 其间飞船绕地球共飞行了14 圈,飞行的路程约60 万千米,则神舟五号飞船绕地球平均每圈约飞行( 用科学记数法表示保留三个有效数字) ( )
(A) 4.28104 千米(B) 4.29104 千米(C) 4.28105 千米(D) 4.29105 千米
14、如果是关于的一元一次方程,则的值是( )
(A) 0 (B)3 (C) (D)4
15. 如图,钟表8时30 分时,时针与分针所成的角的度数为( )
(A)30 (B)60 (C)75 (D)90
16. 如图,在一个正方体的两个面上画了两条对角线AB,AC,那么这两条对角线的夹角等于( )
(A) 60 ( B) 75 (C) 90 ( D) 135
17、若| |=- ,则的取值范围是( )
(A)=-1 (B) (C) (D) 0
18. 若| - |+(2 -1) =0 ,则的值是( )
(A) (B) (C)- (D)-
20. 如图是光明超市中丝美洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮助算一算,该洗发水的原价是( )
(A)22 元(B)23 元(C)24 元(D)26 元
三、你来算一算!千万别出错哟!!!( 共18 分) ( 友情提示:请特别注意符号,并要写出必要的演算步骤)
21. 计算:(5 分2=10分) (1) (2)
22. (7 分) 解方程:.
23. (7 分)
李司机5 次载客行程记录如下:(以向东方向行驶记为正,
向西方向记为负,以车站为出发点)
+10,-3 ,-8 ,+7,-9( 单位为公里)
问:
(1) 最后一次载客的目的地离车站有多远?在车站以东还是
车站以西?
(2) 若汽车每公里耗油量0.5 升,那么这5 次载客从开始到目的地共耗油多少升?
25. 如图,已知AOB.
⑴画AOB的角平分线0C;
⑵在0C上任取一点P,画PEOA PFOB垂足分别为E和F 比较PE和PF的大小,再同样取几个点试一试,你发现了什么结论?
五、探索规律(8 分)
26. 如图所示已知,OM平分,ON平分;M O N C B A
(2) ,求o 的度数; 并从你的求解你能看出什么什么规律吗
六、生活离不开统计:(8 分)
27. 一所中学准备搬迁到新校舍,在迁入新校舍之前就该校
300 名学生如何到校问题进行了一次调查,并得到如下数据:上学方式人数步行60 坐公共汽车130 骑自行车100 其他10 根据上面的数据:
(1) 补画残缺的条形统计图;
(2) 填好扇形统计图中的相关信息;
(3)根据你所制作的统计图,你能得出哪些结论?(要求至少写两条)
七、读古诗,做数学(10 分)
28、诗人李白本性嗜酒、豪放、旷达,有斗酒诗百篇的美誉,是唐代饮中八仙之一。

民间流传李白买酒的歌谣:李白街上走,提壶去买酒; 遇店加一倍,见花喝一斗; 三遇店和花,喝完壶中酒; 试问壶中酒,原有多少酒?亲爱的同学,请你用所学的数学知识答出歌谣中的问题。

【总结】查字典数学网为您提供的2019 学年七年级期中数学考试模拟试题,希望给您带来帮助!。

相关文档
最新文档