第八章相关与回归分析统计学

合集下载

统计学 第8章 相关与回归分析

统计学 第8章 相关与回归分析

2
-1 1 0 -1 -2 0 1 -2
4
1 1 0 1 4 0 1 4 20
6 * 20 r 1 2 1 0.8788 2 n(n 1) 10 * (10 1)
6 d 2
8.3
8.3.1 8.3.2 8.3.3 8.3.4 8.3.5
一元线性回归
一元线性回归模型 参数的最小二乘估计 回归直线的拟合优度 显著性检验 利用回归方程进行预测
共计
325
462 77
445 89
707 101
685 137
1043 149
E(Y|X) 65
Y
X=X1时Y 的分布
X=X2时Y 的分布 X=X3时Y 的分布
b0
X=X1时的E(Y)
b0+ b 1X
X=X2时的E(Y) X=X3时的E(Y)
X1=80
X2=100
X3=120
X
总体回归函数
(population regression function)
相关系数的显著性检验
(检验的步骤)
1. 检验两个变量之间是否存在线性相关关系 2. 利用样本的相关系数对总体相关系数进行 检验 3. 采用R.A.Fisher提出的 t 检验 4. 检验的步骤为



提出假设:H0: ;H1: 0
n2 计算检验的统计量: tr ~ t (n 2) 2 1 r 确定显著性水平,并作出决策
2
2
或化简为 r
n x x n y y
2 2 2
n xy x y
2
例 产品产量与单位成本相关系数
产 月 量 份 x 1 2 2 3 3 4 4 3 5 4 6 5 合 21 计 单位 成本 y 73 72 71 73 69 68

《应用统计学》第八章相关和回归分析

《应用统计学》第八章相关和回归分析

《应用统计学》第八章相关和回归分析相关和回归分析是统计学中常用的分析方法,用来研究变量之间的关系以及预测因变量的值。

本章将介绍相关和回归分析的原理和应用。

相关分析是研究两个或多个变量之间关系的统计方法。

通过计算相关系数来衡量变量之间的线性相关程度。

常用的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。

皮尔逊相关系数适用于两个连续变量的相关分析,而斯皮尔曼相关系数适用于两个有序变量的相关分析。

回归分析是研究因变量与自变量之间关系的统计方法。

通过建立回归模型来预测因变量的值。

回归模型可以是线性模型、非线性模型或者多元回归模型。

线性回归模型的表达式为Y=a+bX,其中Y为因变量,X为自变量,a和b为参数。

回归分析有两个主要目的,一是预测因变量的值,二是研究自变量对因变量的影响程度和方向。

常用的回归分析方法有简单线性回归分析、多元线性回归分析和逻辑回归分析等。

相关和回归分析在实际应用中有着广泛的应用。

在社会科学研究中,相关和回归分析可以用来研究变量之间的关系,如收入和教育水平的相关性。

在医学研究中,相关和回归分析可以用来探索疾病与一些特定因素之间的关系,如高血压和体重的相关性。

在商业领域中,相关和回归分析可以用来分析销售量与广告投资的关系,预测未来的销售量。

需要注意的是,相关和回归分析只是描述性分析方法,并不能确定因果关系。

除了变量之间的线性关系,还可能存在其他非线性的关系。

此外,相关和回归分析只能用于连续变量的分析,不能用于分类型变量的分析。

在进行相关和回归分析时,需要注意几个问题。

首先是样本的选择和数据的收集,确保样本具有代表性,并获得准确和可靠的数据。

其次是确保数据满足相关和回归分析的假设前提。

例如,线性回归模型要求因变量与自变量之间呈线性关系,并且误差项满足正态分布和独立性。

最后是正确选择和解释统计指标,如相关系数和回归系数。

总之,相关和回归分析是应用统计学中常用的分析方法,用来研究变量之间的关系和预测因变量的值。

第八章 相关分析与回归分析

第八章 相关分析与回归分析
第8章 回归分析
下一页
返回本节首页
19
③在数据区域中输入B2:C11,选择“系列产 生在—列”,如下图所示,单击“下一步” 按钮。
上一页
第8章 回归分析
下一页
返回本节首页
20
④打开“图例”页面,取消图例,省略标题,如 下图所示。
上一页
第8章 回归分析
下一页
返回本节首页
21
⑤单击“完成”按钮,便得到XY散点图如下图 所示。
n 8, x 36.4, x 207.54 , y 104214 y 880, . xy 4544 6
2 2
r
n xy x y n x2 x 2 n y2 y 2 8 4544 6 36.4 880 .
第8章 回归分析
40
(二)回归分析的种类: 1、按自变量 x 的多少,分为一元回归和多 元回归; 2、按 y 与 x 关系的形式,分为线性回归和 非线性回归。
第8章 回归分析
41
二、一元线性回归分析
x y 62 86 80 110 115 132 135 160
42
(一)一元线性回归方程:
2、非线性相关:当一个变量变动时, 另一个变量也相应发生变动,但这种变 动是不均等的。
第8章 回归分析
9
㈢根据相关关系的方向 1、正相关:两个变量间的变化方向一 致,都是增长趋势或下降趋势。 2、负相关:两个变量变化趋势相反。
上一页
第8章 回归分析
下一页
返回本节首页
10
(四)根据相关关系的程度 1、完全相关:两个变量之间呈函数关系 2、不相关:两个变量彼此互不影响,其 数量的变化各自独立

第8章相关回归分析

第8章相关回归分析

※相关关系和函数关系有区别也有联系: 1、实际现象中,函数关系往往通过相关关系表现 出来。 2、在研究相关关系时,常常使用函数关系的形式 来表现,它是相关分析的工具。
(二)相关关系的种类 1、按相关关系涉及的因素多少划分 (1)一元(单)相关:两个因素之间的相关。 (2)多元(复)相关:三个及三个以上因素之间
2、相关系数的计算: (1)基本计算公式(“积差法”公式)
r
2 xy
xy
式中:r 相关系数
自变量x数列的标准差 x
自变量y数列的标准差 y
2 xy
两个变量数列的协方差

(x x)2
x
n
y
( y y)2 n
2 xy
(x
x )( y
y)
n
相关系数的基本计算公式可变化为:
r
2xy x y
3、回归分析的种类 (1)按自变量的多少分
①简单(一元)回归:自变量只有一个 。 [例] y = a+bx 一元回归方程
②复(多元)回归:自变量为2个或2个以上。 [例] y=0+ 1x1+ 2x2+…+ nxn
(2)按回归方程式的特征分 ①线性回归:因变量为自变量的线性函数。 [例] y = a+bx 一元线性回归方程※ ②非线性回归:因变量为自变量的非线性函数。
3、相关系数的特点及应用
(1)相关系数的取值范围为:r 1 1 r 1 (2)当γ为正值时,两变量呈正相关;当γ为负值 时,两变量呈负相关。 (3)相关系数γ的绝对值愈大,表示两变量之间 相关程度愈密切; γ=﹢1为完全正相关; γ=﹣1为 完全负相关。 (4)相关系数γ的绝对值愈小,愈接近0,表示两 变量之间相关程度愈低,当 γ=0时,两变量完全没 有直线相关。

第八章 相关与回归分析

第八章 相关与回归分析

相关系数的特点:
相关系数的取值在-1与1之间。 相关系数的取值在之间。 =0时 表明X 没有线性相关关系。 当r=0时,表明X与Y没有线性相关关系。 表明X 当 时,表明X与Y存在一定的线性相关关 系; 表明X 为正相关; 若 表明X与Y 为正相关; 表明X 为负相关。 若 表明X与Y 为负相关。 表明X 完全线性相关; 当 时,表明X与Y完全线性相关; r=1, 完全正相关; 若r=1,称X与Y完全正相关; r=完全负相关。 若r=-1,称X与Y完全负相关
25 20 15 10 5 0 0 2 4 6 8 10 12
11.2 11 10.8 10.6 10.4 10.2 10 0 5 10
相关关系的类型
25
● 从变量相关关系变化的方向 方向看 方向 正相关——变量同方向变化 正相关 负相关——变量反方向变化 负相关 ● 从变量相关的程度看 完全相关 不完全相关 不相关
x
最小二乘法 ˆ ˆ (α 和 β 的计算公式)
根据最小二乘法, 根据最小二乘法,可得求解 和 的公式如下
最小二乘估计的性质 ——高斯 马尔可夫定理 高斯—马尔可夫定理 前提: 在基本假定满足时
最小二乘估计是因变量的线性函数 线性函数 最小二乘估计是无偏估计 无偏估计,即 无偏估计 在所有的线性无偏估计中,回归系数的最小二 乘估计的方差最小 方差最小。 方差最小
结论:
回归系数的最小二乘估计是最佳线性无偏估计 最佳线性无偏估计
四、简单线性回归模型的检验
回归模型的检验包括: 回归模型的检验包括: 理论意义检验: 理论意义检验:主要涉及参数估计值的符号和取 值区间,检验它们与实质性科学的理论以及人们 的实践经验是否相符。 一级检验: 一级检验:又称统计学检验,利用统计学的抽样 理论来检验样本回归方程的可靠性,具体分为拟 合优度检验和显著性检验。 二级检验: 二级检验:又称计量经济学检验,它是对标准线 性回归模型的假设条件是否满足进行检验,包括 自相关检验、异方差检验、多重共线性检验等。

相关和回归分析

相关和回归分析

第八章 相关与回归分析第一节 相关关系及其种类一、相关分析的意义相关与回归分析,是统计学中最有适应价值的一个分支,在科学研究、社会经济管理等若干方面,都能够发挥重要的作用。

世界是普遍联系的有机整体,现象之间存在着相关依存、相互制约的关系,每一个现象的运动、变化和发展,与其周围的现象相互联系和相互影响着。

比如,销售规模扩大了,相应地会降低产品的销售成本,价格的上升,将导致供应量的增加,但与此同时,可能会压制消费水平,适当地增加土地耕作深度、施肥量,有利于农作物产出的提高,投入的学习时间与取得的成绩一般呈现出正向关系,数学课学得好则计算机也会学得好一些,身材高的父母,他们的子女的身高也相对较高,降低储蓄的利率,可能会引起存款量的减少,一个人接受教育的程度,与他的劳动效率有着千丝万缕的联系,工作年限长的工人,由于动作熟练和经验丰富,因此比起新手其生产效率将高出一截等等。

通过对现象间的这些关系的研究,可以帮助人们找到现象变化内在与外在的影响因素及其发生机制,进而达到认识规律的目的。

如果能够准确地把握住这些规律,借以估计、预测和控制,就可以对决策活动和科学研究给予帮助与指导。

相关关系又叫统计关系,它是指现象之间客观存在的相互依存关系。

这种关系,只是大致的、从总体上而言的,并不是说某一现象的每一变化,都一定会引起与它有联系的另一现象的同样的变化,换句话,就是一个现象发生了变化,另一现象可能暂时无反应,或者该现象没变,但另一现象却有些变化,可是如果从更大的截面上观察,似乎又存在着某些必然的联系。

比如,生产规模与经济效益有联系,但有可能的情况是,规模小的企业不见得单位产品成本就一定比规模大的低甚至低多少,父母身材高的小孩他的身高不会肯定就比父母身材矮的小孩的身材高。

那么,说规模和效益、高身材与低身材父母的遗传关系的规律,不过是从普遍的事实中概括出来的。

统计学是研究客观现象数量方面的,从数量角度研究现象间的相互依存关系,需要把它们转化为变量的描述和处理。

统计学原理第八章相关与回归分析

统计学原理第八章相关与回归分析
相关分析的内容 1.判断现象之间是否存在相关关系; 2.如果存在相关关系,则要进一步判断相
关关系的种类和关系的紧密程度; 3.对相关系数进行显著性检验。
回归分析的内容
• 1. 建立反映变量间依存关系的数学模型 即回归方程;
• 2.对回归方程进行显著性检验; • 3.用回归过程进行预测。
回归分析和相关分析的主要区别
4.相关系数的绝对值越接近于1,表示相关 程度越强;越接近于0,表示相关程度越 弱。具体标准为:
R 的绝对值:0.3以下 微弱相关;
0.3-0.5 低度相关;
0.5-0.8 显著相关;
0.8以上 高度相关。
以上结论必须建立在对相关系数的显著性 检验基础之上。
三、相关系数的显著性检验
显著性检验的具体步骤:
资料:
销售量 500
(公斤)
价格 10
(元)
相关表

700 9
900 7
600 9
1000 800 89
1200 6
销售量 500
(公斤)
价格 10
(元)
600 9
700 9
800 9
900 7
1000 8
1200 6
相关图(散点图)
完全正线性相关
正线性相关
完全负线性相关
负线性相关
非线性相关
一、一元线性回归方程
❖ 只涉及一个自变量的回归
❖ 因变量y与自变量x之间为线性关系
➢ 被预测或被解释的变量称为因变量,用y表示
➢ 用来预测或用来解释因变量的一个或多个变量称为
自变量,用x表示
❖ 因变量与自变量之间的关系用一个线性方 程来表示
一元线性回归模型
❖ 一元线性回归模型可表示为

生物统计附试验设计第八章直线回归与相关分析ppt课件

生物统计附试验设计第八章直线回归与相关分析ppt课件
全部偏差平方和为:
Q ei2 (y yˆ)2 y (a bx)2
利用最小二乘法,即使偏差平方和最小 的方法求a与b的值。
Q a
2 ( y
a
bx)
0
Q b
2 ( y
a
bx)x
0
na ( x)b y
根据微积分 学中求极值 的原理,将Q 对a与b求偏 导数并令其 等于0:
( x)a ( x)2 b xy
平行关系/相关关系(两个以上变量之间共
同受到另外因素的影响,无自变量与依变
量之分)
X身高
Y体重
X体重
Y身高
在大量测量各种身高人群的体重时会发现,在同样 身高下,体重并不完全一样。在同样体重下,身高 并不完全一样。但在每一身高/体重下,有一确定 的体重/身高。
身高与体重之间存在相关关系。
平行关系/相关关系(两个以上变量之间共 同受到另外因素的影响,无自变量与依变 量之分)
Sr
检验的计算公式为:
Sr (1 r2 ) /(n 2)
Sr—相关系数标准误
F
(1
r2 r2) (n
2)
df1 1, df2 n 2
此外,还可以直接采用查表法对相关系 数r进行显著性检验。先根据自由度n-2查临
界r值(附表8),得r0.05、 r0.01。
若|r|<r0.05 ,P>0.05,则相关系数r不 显著;
椰子树的产果树与树高之间无直线相关关系。
当样本太小时,即使r值达到0.7996,样本也可
能来自总体相关系数ρ=0的总体。
不能直观地由r值判断两变数间的相关密切程度。 试验或抽样时,所取的样本容量n大一些,由此计
算出来的r值才能参考价值。
四、相关与回归的关系

统计学原理第8章相关与回归分析[精]

统计学原理第8章相关与回归分析[精]

估计标准误差就是因变量的估计值yc与实际值y之间差异 公 的平均程度。记为Syx,它的基本公式为:


式中,Syx表示估计标准误差;下标yx表示y依x的回归方程; y是因变量的实际值;yc是因变量的估计值。
例8.4以例8.1的资料计算估计标准误差。
步骤: 1.设计一张计算表,将已知x的值代入回归方程求出对应的yc的值 2.计算离差y-yc并加以平方求和 3.求出估计标准误差Syx。
数关系。
当r=0时,表示x与y完全没有线性相关。
当0<|r|<1时,表示x与y存在着一定的线性相关。一般分四个
等级,判断标准如下:
若0<|r|<0.3,则称x与y为微弱相关;
若0.3<|r|<0.5, 则称x与y为低度相关;
若0.5<|r|<0.8, 则称x与y为显著相关;
若0.8<|r|<1, 则称x与y为高度相关。
8.3.2简单直线回归方程
a, b是待定参数 利用最小二乘法 得到a,b求值,再反解得到方程式
建立回归直线的过程:列计算表,求出∑xy,∑x2,∑y2,x,y; 计算Lxy,Lxx和Lyy的值;求出b和a的值并写出方程
例 8.2某工厂某产品的产量与单位成本资料见表8.2,试 求单位成本依产量的回归直线方程。
★ 填空题 (1) 现象之间的相关关系,从相关因素的个数看,可分为()和();从相关的形式
的两个回归方程。() (9) 估计标准误差指的就是因变量的估计值yc与实际值y之间的平均误差程度。() (10) 在任何相关条件下,都可以用相关系数r说明变量之间相关的密切程度。() (11) 若变量x与y的相关系数r1=-0.8,变量p与q的相关系数r2=-0.92,由于r1>r2,

统计学 第八章 线性回归分析

统计学 第八章 线性回归分析

31
8.1.5 置信与预测区间
第八章 线性回归分析
《统计学》
32
8.1.5 置信与预测区间
第八章 线性回归分析
《统计学》
33
8.1.5 置信与预测区间
第八章 线性回归分析
《统计学》
34
8.1.5 置信与预测区间
例8.4. 利用例8.1中的回归方程,计算车龄为48个月的二手车对数销售价格的 置信水平为0.95的置信区间以及预测区间。 解.
第八章 线性回归分析
《统计学》
38
8.2.2.1 最小二乘估计
第八章 线性回归分析
《统计学》
39
8.2.2.1 最小二乘估计
第八章 线性回归分析
《统计学》
40
8.2.2.1 最小二乘估计
第八章 线性回归分析
《统计学》
41
8.2.2.1 最小二乘估计
第八章 线性回归分析
《统计学》
42
8.2.2 回归系数的统计推断
统计学
第八章 线性回归分析
统计与管理学院
第八章 线性回归分析
8.1 简单线性回归 8.2 多元线性回归 8.3 回归模型的评估 8.4 残差分析 8.5 变量选择
第八章 线性回归分析
《统计学》
2
第八章 线性回归分析
二手车价格预测
美一家大型丰田汽车经销商为打算购买丰田汽车的顾客提供 了回收二手丰田车的选择,作为以旧换新的交易的一部分。
表: 二手丰田卡罗拉销售数据变量说明表
第八章 线性回归分析
《统计学》
18
例8.1.(续)为了便于说明问题,暂时不考虑行驶里程(KM)低于500公里的数据, 最终共1425个观测值。下表展示了部分数据。请根据数据建立销售价格关于车龄 的回归方程,并根据回归方程预测车龄为48个月的二手丰田卡罗拉的销售价格。

统计学原理第八章相关分析与回归分析

统计学原理第八章相关分析与回归分析

21
例1:P354页,第1题
企业 产量 X 单位成 XY
X2
Y2
序号 (4件) 本(元)Y
1
2
52
104
4
2704
2
3
54
162
9
2916
3
4
52
208
16
2704
4
4
48
192
16
2304
5
5
48
240
25
2304
6
6

24
46
276
36
2116
300
1182
106 15048
即:∑X=24,∑Y=300, ∑XY=1182,
• 2) X倚Y的直线方程的确定
• 根据最小平方法的原理:(x xc )2 最小值
• 将xc = c + dy代入上述公式中,分别对c和d 求一阶偏导数,并令偏导数等于0,就可以
得出两个正规方程:
x nc dy yx cy dy2
d
nyx y n y2 (
x
y )2
c x dy
举例:P355,第4题。
• 偏相关:在复相关中,当假定其他变量不 变时,其中两个变量间的相关关系称为偏 相关。例如,在假定人们收入水平不变的 条件下,某种商品的需求与其价格水平的 关系就是一种偏相关。
9
三、相关分析与回归分析
• (一)相关分析 • 是用一个指标(相关系数)来表明现象
之间相互依存的密切程度。 • (二)回归分析 • 是根据相关关系的具体形态,选择一个
• 曲线相关:如果现象之间的相关关系近似 地表现为某种曲线形式时,就称这种相关 关系为曲线相关。

统计学基础-第八章-相关与回归分析

统计学基础-第八章-相关与回归分析

统计学基础第八章相关与回归分析【教学目的】1.掌握相关系数的测定和性质2。

明确相关分析与回归分析的特点3.建立回归直线方程,掌握估计标准误差的计算【教学重点】1。

相关关系、相关分析和回归分析的概念2。

相关系数计算3.回归方程的建立和依此进行估计和预测【教学难点】1.相关分析和回归分析的区别2.相关系数的计算3。

回归系数的计算4。

估计标准误的计算【教学时数】教学学时为8课时【教学内容参考】第一节相关关系一、相关关系的含义宇宙中任何现象都不是孤立地存在的,而是普遍联系和相互制约的。

这种现象间的相互联系、相互制约的关系即为相关关系。

相关关系因其依存程度的不同而表现出相关程度的差别。

有些现象间存在着严格的数据依存关系,比如,在价格不变的条件下销售额量之间的关系,圆的面积与半径之间的关系等等,均具有显著的一一对应关系。

这些关系可由数学中的函数关系来确切的描述,因而也可以认为是一种完全相关关系.有些现象间的依存关系则没有那么严格。

当一种现象的数量发生变化时,另一种现象的数量却在一定的范围内发生变化,比如身高与体重的关系就是如此。

一般来说,身高越高,体重越重,但二者之间的关系并非严格意义上的对应关系,身高1.75米的人,对应的体重会有多个数值,因为影响体重的因素不只身高而已,它还会受遗传、饮食习惯等因素的制约和影响.社会经济现象中大多存在这种非确定的相关关系。

在统计学中,这些在社会经济现象之间普遍存在的数量依存关系,都成为相关关系。

在本章,我们主要介绍那些能用函数关系来描述的具有经济统计意义的相关关系。

二、相关关系的特点1。

现象之间确实存在数量上的依存关系如果一个现象发生数量上的变化,则另一个现象也会发生数量上的变化.在相互依存的两个变量中,可以根据研究目的,把其中的一个变量确定为自变量,把另一个对应变量确定为因变量。

例如,把身高作为自变量,则体重就是因变量.2。

现象之间数量上的关系是不确定的相关关系的全称是统计相关关系,它属于变量之间的一种不完全确定的关系。

统计学原理第8章相关与回归分析

统计学原理第8章相关与回归分析
两个回归方程。() (9) 估计标准误差指的就是因变量的估计值yc与实际值y之间的平均误差程度。() (10) 在任何相关条件下,都可以用相关系数r说明变量之间相关的密切程度。() (11) 若变量x与y的相关系数r1=-0.8,变量p与q的相关系数r2=-0.92,由于r1>r2,因
此x与y间相关的程度比较高。()
27
同步练习
★ 判断题 (1) 根据结果标志对因素标志的不同反映,可以把现象间数量上的依存关系划分为
函数关系和相关关系。() (2) 正相关指的就是因素标志和结果标志的数量变动方向都是上升的。() (3) 相关系数是测定变量间相关密切程度的唯一方法。() (4) 只有当相关系数接近于1时,才能说明两变量之间存在高度相关系数。() (5) 若变量x的值减少,y的值也减少,说明变量x与y之间存在相关关系。() (6) 回归系数b和相关系数r都可以来判断现象之间相关的密切程度。() (7) 若回归直线方程为:yc=160-2.3x,则变量x与y之间存在负的相关关系。() (8) 回归分析中,对于没有明显因果关系的两个变量x与y,可以建立y依x和x依y的
D产量每增加1000件时,单位成本下降78元
E产品的产量随生产用固定资产价值的减少而减少
(4) 测定现象间有无相关关系的方法是()。
A编制相关表 B绘制相关图 C对客观现象作定性分析
D计算估计标准误系数时,()。
A相关的两个变量都是随机的
B相关的两个变量是对等的关系
C相关的两个变量一个是随机的,一个是可以控制的量
特点 在进行回归分析时,必须根据研究目的确定相关的变量中谁为自变 量,谁为因变量。 回归方程的作用在于由自变量的数值来估计因变量的值。一个回 归方程只能作一种推算或估计。 在回归分析中,因变量是随机的,自变量是可以控制的量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 判断真实相关与虚假相关,必须依靠有关的实 质性科学提供的知识做定性分析,而不能靠数 学公式或简单的数学图表来作出判断。
二、相关关系的分析
• 相关分析就是对变量之间相关关系的描述与度量。 • 其基本内容包括: • 1、直观地判断变量之间是否存在相关关系及其相关关
系的具体形式。一般是通过绘制统计图表来实现,这 也是相关分析的出发点。
• 相关表和相关图是研究相关关系的简单、直观 工具。利用它们可对现象之间存在的相关关系 的方向、表现形式和密切程度做出大致的判断。
• 相关表是一种反映变量之间相关关系的统计表, 根据资料是否分组,相关表有简单相关表和分 组相关表两种。
• 简单相关表就是先将自变量的数值按从小到大 的顺序排列出来,然后将因变量数值对应列上 而形成的表格。
式中: sx2y 表示 x,y 两个变量数列的样本协方差(Covariance),
显示 x,y 之间相关程度的大小; sx , sy 分别表示 x,y 变量数列的样 本标准差。
为了简化计算,可由上式推导出下面的计算公式:
r
n xy x y
(8.3)
[n x2 ( x)2 ][n y2 ( y)2 ]
例如上述的圆的周长 L 决定于它的半径 R ,即 L 2 R , 又如,某产品的销售额 y 与销售量 x 之间的关系,即 y px , 其中 p 为价格,这就是说,在销售价格不变的情况下,对于
该商品的某一销售量,总有一个销售额与之对应,即销售额 完全由销售量所决定,二者之间为线性函数关系。再如,企 业的原材料消耗额( y )与产量( x1 )、单位产品原材料消 耗量( x2 )、单位原材料价格( x3 )之间的关系可表示为 y x1x2 x3 ,这也是一种确定的函数关系,但它们不是线性函 数关系。
13786
9997
2008
15781
11243
资料来源:《中国统计摘要——2009》,中国统计出版社,2009 年。
从表中数据可以看出,人均消费支出随着人均可支配收入的增加
有增加的趋势,是一种典型的正相关。
分组相关表具体又分为单变量分组相关表和双变量分组相关表两种。其中
单变量分组相关表只对自变量进行分组,列出每组变量值出现的次数;双变量
(2)现象之间数量上的依存关系是非确定性 的,即其中一个变量取某一值时,另一个变量可能 有多个数值与之对应。
例如身高 170 ㎝的人,其体重会有许多个值与 之对应;收入水平相同的家庭,它们的消费水平往 往并不相同。之所以如此,就在于影响因变量的因 素有许多,除了我们所举的因素外,其它因素也对 因变量有影响。
将表中数据代入式(8.3)即得:
图8.1 收入与消费的相关图
人均消费性支出
12000 10000 8000 6000 4000 2000
0 0
5000
10000
15000
人均可支配收入
20000
(二)相关系数(Coefficient of correlation)
• 1.相关系数的意义 • 在各种相关中,单相关是基本的相关关系,它是复相
• 而当一个变量发生变动时,另一个变量也随之 发生变动(增加或减少),但这种变动不是均 等的,从图形上看,其相应观测点的分布近似 地表现为各种不同的曲线形式,这种相关关系 称为非线性相关。
4.按变量多少划分,相关关系可分为单 相关、复相关和偏相关
• 单相关又称一元相关,是指两个现象之间的相关,即 一个变量对另一个变量之间的相关关系。
55161192 67668804 83345899 102276720 137818642 177425783 623697040
71774784 88774084 110103049 138297600 190053796 249039961 848043274
42393121 51581124 63091249 75637809 99940009 126405049 459048361
业额随着营业员的增加有增加的趋势,也是一种正相关。
表 8-3
双变量分组表
营业额
营业员 x
合计
y(万元) 1—3 3—5 5—7 7—9 9—11
6—7 -
-
-1
6
7
5—6 -
-
24
4 10
4—5 -
2
4
5
-
11
3—4 2
1
4
-
-
7
2—3 1
2
-
-
-
3
1—2 2
-
-
-
-
2
合计
5
5 10 10 10 40
成的单变量分组相关表,分组后各耕作深度对应着一定的次数(即亩数),而
产量为相应亩数上的平均产量。从表中可以看出,平均亩产量随着耕作深度的
增加有增加的趋势,是一种正相关。
表 8-3 则是将 40 家便民店按营业人员数(自变量)和营业额(因变
量)同时进行分组而形成的双变量分组相关表。从表中数据可以看出,营
2.按相关方向划分,相关关系可分为正 相关和负相关。
• 两个相关变量间,当一个变量的数值增加(或 减少)时,另一个变量的数值也随之增加(或 减少),这种相关称为正相关。
• 例如家庭消费与收入、身高与体重。
• 当一个变量的数值增加(或减少)时,另一个 变量的数值反而表现出减少(或增加)的趋势 变化,称这种相关为负相关。
制作双变量分组相关表,须注意将自变量放在纵栏标题处,按变量值从小
到大自左向右排列,将因变量放在横行标题处,按变量值从大到小自上而
下排列。这样做的目的是将相关表与相关图一致起来,便于判断相关关系
的性质。
相关图又称散点图,它是以直角坐标系的横轴代表变量 x,纵轴代表变量 y,将两个变量间对应的变量值用坐标点的 形式描绘出来,用来反映两变量之间相关关系的图形。根据 表 8-1 的资料绘制的相关图如图 8-1 所示,从图 8-1 可以看 出,人均消费性支出与人均可支配收入之间呈现出正的线性 相关关系。
关系数是反映两变量之间线性相关程度的统计指标,表
现为一个常数。
若相关系数是根据样本数据计算的,称为样本相关系数,记为 r 。 样本相关系数的定义式是:
r sx2y sx sy
n
1
1
(x
x
)(
y
y
)
n
1 1
(
x
x )2
1 n 1
(
y
y)2
(8.2)
(x x)( y y) (x x)2 (y y)2
• 2、定量地刻画变量之间相关关系的程度或强度。线性 相关关系一般是通过相关系数来说明,非线性相关关 系可以通过相关指数来说明,这是相关分析的中心内 容。
• 3、相关系数的显著性检验。在实际进行相关分析时, 相关系数都是利用样本数据计算的,因而带有一定的 随机性。因此,也需要进行显著性检验。
(一)相关表和相关图
解:在计算相关系数时,通常要设计一张计算表(见表 8-4),
将有关数据的计算过程放在表格中。
表 8-4
相关系数计算表
年份 收入 x 消费 y
xy
x2
y2
2003 2004 2005 2006 2007 2008 合计
8472 9422 10493 11760 13786 15781 69714
6511 7182 7943 8697 9997 11243 51573
第八章相关与回归分析统计学
当一个或几个变量取一定的值时,另一个变量有确定值 与之相对应,我们称这种确定性的一一对应关系为函数关
系。如圆的周长与其半径之间的关系即为函数关系。 在函数关系中,一般把作为影响因素的变量称为自变
量,把发生对应变化的变量称为因变量,通常用公式记为: y f (x) ,其中 x 称为自变量, y 称为因变量。
• 例如价格与需求量、劳动生产率与单位产品成本等。 或者说,正相关是变量数值之间表现出的同方向变化, 而负相关是变量数值之间的反向变化。
3.按相关形式划分,相关关系可分为线 性相关与非线性相关。
• 当一个变量发生变动,另一个变量随之发生大 致均等的变动(增加或减少),从图形上看, 其相应观测点的分布近似地表现为直线形式, 就是线性关系。
变量之间的函数关系和相关关系,在一定条件 下是可以相互转化的。
本来具有函数关系的变量,当存在观测误差 时,其函数关系往往以相关关系的形式表现出来。 而对于具有相关关系的变量之间的联系,如果我们 对它们有了深刻的规律性认识,并且能把影响因变 量变动的因素全部纳入方程,这时的相关关系也可 能转化为函数关系。客观现象的函数关系可以用数 学分析的方法去研究,而研究客观现象的相关关系 则要借助于统计学中的相关与回归分析方法。
分组相关表则是对两个相关变量都进行分组,交叉排列,并列出两种变量各组
间的共同次数。具体见表 8-2 和表 8-3。
表 8-2
单变量分组相关表
按耕作深度分组 亩数 平均亩产量
(厘米)
(亩) (公斤)
12
4
320
14
6
343Biblioteka 1615353
18
10
378
20
4
400
22
1
420
合计
40
361
表 8-2 是将 40 亩地的耕作深度与亩产量数据按耕作深度进行分组后所形
将式(8.3)的分子、分母同除以 n2 ,还可得到如下的计算公式:
r
xy x y
[x2 (x)2 ][ y2 ( y)2 ]
(8.4)
样本相关系数是根据样本观测值计算的,抽取的样本不同,其具体 的数值便会有所差异。数理统计已经证明,样本相关系数是总体相关系 数的一致估计量。
相关文档
最新文档