考研数学数二满分经验及归纳分享.doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
驻点:导数为0的点,不仅有定义,而且导
数必须存在且为0
极值点:相对点,相对于附近某一小临域,它是最大〔小〕的值,这里强调这个临域存在,临域不是区间;这样的点有一些性质,若可导则导数必为0,但导数为0不全是极值点(x )
但是这不是判断极值点的唯一条件,还要根据定义,这就属于不可导的点了(|x|的0点),所以极值点穿插很多,多重考虑,别忘了必须有定义。
拐点:性质有点类似极值点只是要求不同,它是某一临域左右凸凹性改变,同理既要考虑二阶导数是0还有二阶导不存在的穿插,还要注意最基本,有定义
4.可积,原函数,变限积分
可积指定积分存在〔注意是定积分不包括广义积分〕,按几何意义,曲线与x轴面积〔这里也可以说是负面积〕存在。
原函数是函数,不是一个值,判定是否存在原函数,对它求导后导函数是该函数。
变限积分定积分下限为常数,上限是自变量,集合两者,把x确定为一个值它就是定积分,某种意义上它可以算是某个原函数,但是这是一般情况,总体来说它还是一个函数。
可积不一定有原函数〔一个值存在怎么断定一个趋近有函数呢,〕,有第一类间断点是没有原函数但是可以有定积分,可积。
有原函数不一定可积〔1/x〕,它们之间关系颇为复杂,求一个定积分我们有能力的就是利用奇偶性或者间接利用原函数〔牛顿,来布尼次公式〕,一马归一马,注意区别。
而可积和变限积分联系挺大的,一般区间可积的话变限积分不仅存在而且连续,不深入讨论。
原函数和变限积分是最易混淆的,两者都是函数,求的过程容易觉得变限积分算是原函数的其中一个,一般函数可以这么以为,不过深入讨论,决不这么简单,对于存在原函数的上述结论正确,可是最大的区别就是有第一类间断点没有原函数,但是变限积分存在且连续,图形上理解就是有间断点,不影响面积存在性而且不影响连续性,这点可以证明。
5.一元与二元函数的可微,可导和连续
一元函数和二元函数在连续,可微,可导虽然从书上看性质不太一样但这决不违背定理,两个之间有莫大的关系。
一元函数和二元函数的连续都要求极限存在且等于函数值,不同就是因为不同元函数因为空间的分布不同决定了极限的趋近方式不同,因为一元只有x是一条轴,一根线,那么教材上强调的更多是左右趋近,其实另一角度看,正如概念区别1来说其实方式也有很多,因为别看只是一条轴它却有无穷多个点,极限是要求连续取的,可是为了区别,我们有时候会跳跃取。正如数列极限中2n,2n+1,只有同时取尽才保证极限存在,而二元函数分布于一个平面这就决定了方向的无穷性了,随意一个一元函数都可以决定一个方向y=x,y=x 等等,作为一条曲线可以作为一条方向只要它过所确定的点即可,一元函数其实就是沿着(x,0)
对二元函数的极限,这也就说明二元函数连续,那么在该点确定的一元函数也连续。举个例子f(x,y)在0,0连续,那么f(x,0)肯定在x=0连续,一般到特殊,但是反之却不可以,这也从一定程度说明证明二元函数不连续,可以选取不同y,x关系,极限不同则不连续。
可导,一元函数中有可导必连续,这是因为导数的定义决定了极限只能是0/0型的极限,自变量趋近,函数必然趋近,可导必连续,可是二元函数却没有可导必连续,为什么呢?那是因为二元函数中的可导指的是偏导,偏导就说明是作为一元函数求导的,尽管它是二元的,既然作为一元函数求导,根据一元函数可导必连续概念,我们自然会有连续的概念,不过这里的连续不是说二元函数连续,而是它作为一元函数连续,什么意思呢?还是上面说的f(x,y)在0,0处对x偏导存在,说明f(x,0)在x为0处连续而不是f(x,y)在x,y=0,0连续,因为连续作用的单位不是整个二元函数,而二元函数中的某个小分支是一元函数,连续只作用到一个分支上了。
再说可微,因为一元和二元函数的可微定义是不一样的,一元函数定义可微和导数关系拉的很近,Δx将它们穿在一块,有着可微等价于可导的结论,这也是极限定义。而二元函数定义可微时则是将Δx,Δy同时定义在内,无穷小也与两者都相关,所以单从二元函数可导〔偏导〕不能得到可微,因为偏导只是和某个有关,既然涉及两个那么两个关系没那么大了,可微是更深层次考察函数,单从定义式我们就可以得到两个结论,1连续(x 趋近x0,y趋近y0试试),2可导〔另某个Δ为0再对照定义〕
从分析看,其实一元和二元差别之处就在于定义不同,研
究范围不同,你如果把二元特殊为一元研究一元函数的性质它都有了。
6.定积分与面积
可能大家对它俩关系有了明确的界定,但是我还是想说下,对不太明白的人或许有点用。
从定义看定积分是Δx与f(xi)的乘积和,可能由于定积分是从面积引出来的大家或许有错觉,它就是面积,但从定义来Δx我们规定若为正那么f(x)不一定全部为正,这样也不是面积了,假如我们将面积也矢量话(注意,面积只能是正),那么这里的定积分就是矢量面积和了,这只帮助理解。在研究定积分中会出现积分上下限颠倒,上面小于下边,这就更说明定积分不是面积了,只有积分上限大于下限,f(x) 0,才是真正意义的面积,所以给你一个题目求面积可不是单纯求定积分,需要你自己分段加符号。二重积分也天
5、一维随机变量函数的分布
这个要重点掌握连续性变量的这一块。这里面有个难点,一维随机变量函数这是一个难点,求一元随机变量函数的分布有两种方式,一个是分布函数法,这是最基本要掌握的。另外是公式
法,公式法相对比较便捷,但是应用范围有一定的局限性。
6、随机变量的数字特征
要记住一维随机变量的数字特征都要记熟,数字特征很少单独性考察,往往和前面的一维随机变量函数和多维随机变量函数和第六章的数理统计结合进行考察。特别针对数一的同学来说,考察矩估计和最大似然估计的时候会考察无偏性。
7、参数估计
这一点是咱们经常出大题的地方,这一块对咱们数一,数二,数三的考生来讲,包含两块知识点,一个是矩估计,一个是最大似然估计,这两个集中出大题。