基于单片机原理的步进电机的正反转程设计报告89397460

合集下载

基于单片机的电动机正反转控制设计.doc

基于单片机的电动机正反转控制设计.doc

基于单片机的电动机正反转控制设计. .基于单片机的电动机正反转控制设计学生:xxx(指导教师:xxx)(xxxxxx电气信息工程学院)摘要:基于单片机的基本理论,本文设计了一种步进电机控制系统。

该系统通过软硬件的设计调试,实现步进电机能根据设定的参数进行开关加减速控制,使控制系统以最短的时间到达控制终点,而又不发生失步的现象;同时它能准确地控制步进电机的正反转,启动和停止。

硬件是以AT89C51单片机为核心的控制电路,主要包括:开关输入电路、液晶显示电路、步进电机的驱动电路等。

软件部分采用C语言编程,主要包括液晶显示程序、步进电机的正反转即快慢程序等。

通过仿真验证了本文设计系统的实用性能。

关键词:步进电机控制系统;调速;单片机The design of motor control system based on SCMStudent:Zhou Tianhang(Supervisor:Liu Yunxia)Electrical and Information Engineering Department of Huainan Normal UniversityAbstract: The basic theory based on SCM. this paper designs a kind of stepping motor control system. The systemgoes through the design of software and hardware. Realize the stepper motor can switch the acceleration and deceleration control according to the given parameters which makes the control system in the shortest time to finish and not out of step. At the same time, it can control the reversing the stepper motor accurately, start and stop. The hardware control circuit AT89C51 microcontroller as the core mainly. Include: switch input circuit, LCD displaying circuit, stepper motor drive circuit. The software is programmed by C language. Include: LCD display program and the stepper motor speed program .The practical performance of the design of the system is validated by simulation.Key words: Stepping motor control system; speed control; Single-xxx(指导教师:xxx)(xxxxxx电气信息工程学院)摘要:基于单片机的基本理论,本文设计了一种步进电机控制系统。

基于单片机的步进电机课程设计报告

基于单片机的步进电机课程设计报告

设计题目:基于单片机的步进电机控制系统设计设计目的:综合运用所学的《单片机原理及应用》的理论知识,通过实践加强对所学知识的理解,具备设计单片机应用设计系统的能力。

以单片机为核心设计一个步进电机控制系统,要求能够通过键盘设置步进电机的正转和反转,加速和减速。

并在LED 数码管显示器上显示步进电机转速。

通过了解系统的软硬件构成及其特点,详细掌握怎样通过单片机控制其输出来控制步进电机的运转,并对应地在数码管上显示出来,更加系统的了解步进电机的组成,工作原理,控制方法。

设计要求:【1】进行方案论证,说明步进电机控制系统的工作原理【2】设计控制系统所需的硬件电路,给出电路原理图和元器件清单。

【3】给出软件流程图并编写程序源代码。

【4】完成系统的调试,给出调试结果并分析。

【5】了解单片机的内部结构,组成,学习单片机的工作原理以及内部工作状态,并熟悉在不同时刻,单片机的输入输出情况【6】了解步进电机的分类和用途,掌握步进电机的内部结构以及工作原理,并学习单片机简单控制步进电机的正转和反转,加速和减速【7】使用keil和proteus等软件进行系统的仿真,并在开发板硬件上实现。

锻炼自己的编程,调试能力。

设计条件:步进电机的工作原理步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件步进电机。

在非超载的情况下,电机的转速,停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号时,它就驱动步进电机按设定的方向转动一个固定的角度。

称为“步距角”。

它的旋转是以固定的角度一步一步运行的,可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的,同时也可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

电机的位置和速度与导电次数(脉冲数)和频率成一一对应关系。

而方向由导电顺序决定(贴图:电机结构)步进电机的控制是通过脉冲信号来控制的,将电脉冲信号转变为角位移或线位移的开环控制元件。

单片机仿真实验报告:步进电机

单片机仿真实验报告:步进电机

学号:姓名:单片机仿真实验报告八:步进电机一、仿真设计要求利用AT89C52单片机,实现步进电机的转向和运行控制:使用一个正向运行按键,每次按下这个键电机正向运转。

一个反向运行按键每次按下这个键电机反向运转。

一个加速运行按键,每次按下这个键电机加速运转。

就这样形成了步进电机的工作原理!二、步进电机电路原理图三、程序设计内容及源程序#include <reg52.h>#define TURN 20#define REVERSE 30#define STOP 40#define uchar unsigned charstatic uchar speedcount=0;sbit p30=P3^0;sbit p31=P3^1;sbit p32=P3^2;uchar Table1[4]={0x0c,0x06,0x03,0x09};uchar Table2[4]={0x0c,0x09,0x03,0x06}; void delay(n){while(n--){int i,j;for(i=0;i<255;i++){for(j=0;j<255;j++);}}}void main(){char temp;int i;P2=0xff;if(p30==0){for(i=0;i<4;i++){temp=Table1[i];P2=temp;delay(1500);}p30=1;}if(p31==0){for(i=0;i<4;i++){temp=Table2[i];P2=temp;delay(1500);}p31=1;}if(p32==0){int i,j=80;while(j>0){if(p30==0){for (i=0;i<4;i++){temp=Table1[i];P2=temp;delay(j);}}if(p31==0){for(i=0;i<4;i++){temp=Table2[i];P2=temp;delay(j);}}}j=j-10;}}四、实验总结利用单片机控制一些外围设备的运转,最重要的掌握程序的编写。

基于单片机原理的步进电机的正反转程89397460

基于单片机原理的步进电机的正反转程89397460

电机控制课程设计报告书题目基于单片机原理的步进电机的正反转目录目录 (1)摘要 (1)1.概述 (2)1.1课程设计的任务和要求 (2)1.2设计思路框架 (3)1.3设计方案的模块解释 (3)2.系统硬件设计 (3)2.1单片机最小系统原理介绍 (3)2.1.1 AT89C51的工作原理 (4)2.1.2复位电路的工作原理 (7)2.1.3晶振电路的工作原理 (8)2.2电机驱动电路原理介绍 (9)3.系统软件设计 (10)3.1系统流程图 (10)3.2系统程序分析 (11)4.调试过程与结果 (19)5.总结与体会 (20)6.参考资料 (21)7.附录 (22)摘要介绍了步进电机正反转控制原理及其接口驱动控制电路,编制了基于MCS-51单片机的步进电机正反转控制的子程序,并应用wave软件进行了仿真。

证明在并行口控制中,可以利用软件实现环行脉冲分配,实现程序较简单,同时还可以节省硬件投资。

结合单片机控制步进电动机的实际工作环境,从提高控制系统运行的可靠性角度,讨论了实际应用的软件抗干扰技术。

关键词单片机;步进电机;正反转控制1.概 述1.1课程设计的任务和要求电机控制课程设计是考察学生利用所学过的电机控制专业知识,进行综合的电机控制系统设计并最终完成实际系统连接,能够使学生对电气与自动化的专业知识进行综合应用,培养学生的创新能力和团队协作能力,提高学生的动手实践能力。

最终形成一篇符合规范的设计说明书,并参加综合实践答辩,为后期的毕业设计做好准备。

本次设计考核的能力主要有:专业知识应用能力,包括电路分析、电子技术、单片机、检测技术、电气控制、电机与拖动、微特电机及其驱动、计算机高级语言、计算机辅助设计、计算机办公软件等课程,还包括本专业的拓展性课程如变频器、组态技术、现场总线技术、伺服电机等课程。

项目设计与运作能力,团队协作能力,技术文档撰写能力,PPT 汇报与口头表达能力。

电气与自动化系统的设计与实际应用能力。

步进电机正反转实验报告

步进电机正反转实验报告

一、实验名称:
步进电机正反转训练
二、控制要求
要求实现电机的正转三圈, 反转三圈, 电机正转和反转的频率可不相同, 然后这样循环3次, 3次后电机停止转动。

三、PLC I/O地址分配表
PLC的I/O地址连接的外部设备
Y0 电机转向输出点控制转速点CP
Y1 电机的转速输出点控制转向点CW
四、程序梯形图
五、程序分析:
M11.M12、M13的波形图M21.M22.M23的波形图
电机正转的频率是20赫兹, 通过MOV指令送到D5中, 在电机正传三圈后, 电机反转, 反转的频率是40赫兹, 通过MOV指令送到D5中。

电机正转3次, 反转2次, 再通过M23得电进入正转, 重复上面的循环, 即电机正转后再反转, M23才得电一次, 所以可以加一个M23控制一个计数器计数, 当计数器计数到3时, 再通过计数器的常闭开关把M10线圈断电, 从而实现电机停止。

单片机步进电机实验报告

单片机步进电机实验报告

单片机步进电机实验报告单片机步进电机实验报告引言:步进电机是一种常见的电机类型,具有精准控制和高效能的特点,广泛应用于各种领域。

本实验旨在通过单片机控制步进电机的转动,探索步进电机的原理和应用。

一、实验目的本实验的目的是通过单片机控制步进电机的转动,深入了解步进电机的工作原理和控制方法。

二、实验原理步进电机是一种按照一定的步进角度进行转动的电机。

它通过电磁场的变化来驱动转子转动,具有高精度和高可靠性。

步进电机的原理主要包括两种类型:磁场定向型和磁场消除型。

在本实验中,我们将重点研究磁场定向型步进电机。

三、实验器材本实验所需的器材包括:步进电机、单片机开发板、电源、电路连接线等。

四、实验步骤1. 连接电路:将步进电机的相线分别连接到单片机开发板的输出引脚上,同时将电源连接到步进电机的电源输入端。

2. 编写程序:使用C语言编写单片机控制步进电机的程序,通过控制输出引脚的电平变化来实现步进电机的转动。

3. 烧录程序:将编写好的程序烧录到单片机开发板上。

4. 调试程序:通过调试程序,观察步进电机的转动情况,并进行必要的调整和优化。

5. 实验记录:记录步进电机的转动角度、转速、电流等相关数据,并进行分析和总结。

五、实验结果与分析通过实验,我们成功地实现了单片机对步进电机的控制。

通过调整程序中输出引脚的电平变化,我们可以控制步进电机的转动方向和速度。

在实验过程中,我们观察到步进电机的转动角度与输入信号的脉冲数目成正比,这与步进电机的工作原理相符。

六、实验总结本实验通过单片机控制步进电机的转动,加深了对步进电机的理解和应用。

步进电机作为一种精密控制设备,具有广泛的应用前景。

通过学习和实践,我们不仅掌握了步进电机的原理和控制方法,还培养了动手实践和解决问题的能力。

七、实验心得通过本次实验,我深刻认识到步进电机在自动化控制领域的重要性。

步进电机具有精确控制和高效能的特点,广泛应用于机械、电子、仪器仪表等领域。

在实验过程中,我不仅学到了理论知识,还通过实践掌握了步进电机的控制方法和调试技巧。

基于单片机控制的步进电机控制器单片机实习报告

基于单片机控制的步进电机控制器单片机实习报告

单片机原理与应用技术课程设计报告题目:基于单片机控制的步进电机控制器完成日期:2008年12月12日基于单片机控制的步进电机控制器课程设计任务书一.设计要求(一)基本功能1.实现步进电机的正反转控制。

2.实现步进电机的加速控制。

3.实现步进电机的减速控制。

如过载保护、欠压保护、短路保护和防飞车等功能。

(二)扩展功能任意设定一点为圆心,实现一个直径为10cm的圆形轨迹运动。

二.设计内容(1)画出电路原理图,正确使用逻辑关系;(2)确定元器件及元件参数;(3)进行电路模拟仿真;(4)SCH文件生成与打印输出;三.编写设计报告写出设计的全过程,附上有关资料和图纸,有心得体会。

四.答辩在规定时间内,完成叙述并回答问题。

五.计划完成时间三周1.第一周完成软件和硬件的整体设计,同时按要求上交设计报告一份。

2.第二周完成软件的具体设计和硬件的制作。

3.第三周完成软件和硬件的联合调试。

目录1引言 (1)2总体设计方案 (1)2.1设计思路 (1)2.1.1 硬件设计 (1)2.1.2软件设计 (1)2.2总体设计方框图 (2)3 设计原理分析 (2)3.1 控制按钮分析 (2)3.2 复位电路和晶振电路分析 (3)3.3 保护电路分析 (3)3.4 输出驱动电路 (4)4 总结与体会 (5)参考文献 (6)附录(一) (7)附录(二) (8)基于单片机控制的步进电机控制器班级:应教054 姓名;宋里旗摘要:本设计为电子工程专业学生在校期间的单片机课程设计实习。

是基于单片机控制的步进电机控制器。

在科学技术迅速发展的今天,自动化控制技术日益完善和成熟,对步进电机的要求也越来越高,社会上所需这方面的人才也越来越多,通过本次实习,可以提高学生的动手动脑,全面综合的运用所学专业知识的能力,增强学习专业知识和技能的兴趣,掌握单片机的运用方法和技巧,深入了解步进电机的工作原理。

学会用科学技术来解决生活,生产中遇到的实际问题,真正做到学以致用,造福社会。

课程设计(论文)-基于AT89C51单片机的步进电机控制系统设计模板

课程设计(论文)-基于AT89C51单片机的步进电机控制系统设计模板

摘要近年来随着科技的飞速发展,单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新。

本次课程设计是用单片机来控制步进电机的定位和正反旋转。

步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。

整个系统有89C51单片机控制系统,L298驱动电路,4*4的键盘控制电路,LED显示电路。

用89C51单片机控制两相四线步进电机,在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。

通过控制脉冲个数即可以控制角位移量,从而达到准确定位的目的;同时通过控制脉冲的相序来改变步进电机的转动方向,从而达到的控制正反转的目的。

本系统采用单片机AT89C51为中心器件来控制步进电机,系统实用性强。

关键字:单片机;步进电机;脉冲;步距角目录1 前言 (3)2 步进电机工作原理 (4)2.1两相步进电机结构 (4)2.2两相步进电机的原理 (4)2.3两相步进电机的供电方式 (5)3 硬件系统设计 (6)3.1系统总体设计框图 (6)3.2单片机系统 (6)3.3时钟信号控制电路 (7)3.4电源电路 (8)3.5驱动电路 (8)3.6显示电路 (9)3.7 4*4键盘电路 (9)4 软件系统设计 (10)4.1主程序流程图及源代码 (10)4.2扫描键盘流程图及源代码............... . (11)4.3 LED显示流程图及源代码 (12)5 开发系统简介.............................. . (14)5.1 W A VE6000编译器简介 (14)5.2 protues仿真平台简介 (14)6 仿真结果及分析 (16)7 课程设计总结 (19)附录 (20)1 前言本次课程设计是以步进电机控制和驱动为要求,用单片机来控制步进电机的定位和正反旋转圈数的显示。

步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。

基于单片机的步进电机的控制课程设计报告

基于单片机的步进电机的控制课程设计报告

单片机课程设计报告步进电机控制学院:电气学院班级:电气0904:王浩学号:3090501097一.设计任务了解步进电机的原理,设计一套以51单片机为核心的步进电机控制器,步进电机采用四相四拍或四相八拍工作方式,键盘和显示器采用实验室试验箱。

了解十六只键组成的键盘(用于输入)及六只LED构成的显示器(用于显示)的原理,分别设计他们的程序,在电脑上进行仿真。

具体要求1、从键盘上输入正、反转命令,转速参数(16级)和转动步数显示在LED显示器上。

2、显示器上显示:第一位为0表示正转,为1表示反转;第二位0~F为转速等级,第三到第六位设定步数。

3、单片机依显示器上显示的正、反转命令,转速级数和转动步数进行相应动作,转动步数减为零时停止转动。

二.工作原理1、步进电机基本原理如图,当有一相绕组被通电激励时,磁通从正相齿,经过软铁芯的转子,并以最短路径流向负相齿,为使磁通路径最短,在磁场力的作用下,转子被迫移动,使最近的一对齿与被激励的一相对准。

那么,通过对它每相线圈中电流的顺序切换可使电机作步进式旋转。

相数:产生不同对极N、S磁场的激磁线圈对数。

拍数:指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB或A-B-C-D-A,四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A.步距角:对应一个脉冲信号电机转子转过的角位移. 步距角=360/(转子齿数*拍数)2、LED显示器原理LED显示器由七条发光二极管组成显示字段,有的还带有一个小数点。

将七段发光二极管阴极连在一起,称为共阴极接法,当某个字段的阳极为高电平时,对应的字段就点亮。

共阳极接法是将LED的所有阳极并联后接到+5v上,当某一字段的阴极为0时,对应的字段就点亮。

3、键盘接口原理键盘实际上是又排列成矩阵形式的一系列按键开关组成,用户通过键盘可以向CPU输入数据、地址和命令。

本设计采用8155接口芯片构成的4*8键盘的接口电路,其中A口为输出,作为列线;C口为输入,作为行线。

《2024年基于单片机的步进电机控制系统研究》范文

《2024年基于单片机的步进电机控制系统研究》范文

《基于单片机的步进电机控制系统研究》篇一一、引言随着科技的发展,步进电机因其高精度、低噪音、易于控制等优点,在各个领域得到了广泛的应用。

然而,传统的步进电机控制方式存在控制精度低、响应速度慢等问题。

因此,基于单片机的步进电机控制系统应运而生,其具有体积小、控制精度高、响应速度快等优点。

本文旨在研究基于单片机的步进电机控制系统的设计原理、实现方法以及应用前景。

二、步进电机控制系统的基本原理步进电机是一种将电信号转换为机械运动的设备,其运动过程是通过一系列的步进动作实现的。

步进电机的控制原理主要是通过改变电机的电流和电压,使电机按照设定的方向和速度进行旋转。

三、基于单片机的步进电机控制系统设计基于单片机的步进电机控制系统主要由单片机、步进电机驱动器、步进电机等部分组成。

其中,单片机是控制系统的核心,负责接收上位机的指令,并输出相应的控制信号给步进电机驱动器。

步进电机驱动器则负责将单片机的控制信号转换为适合步进电机工作的电流和电压。

在硬件设计方面,我们选择了一款性能稳定、价格适中的单片机作为主控制器,同时设计了相应的电路和接口,以实现与上位机和步进电机驱动器的通信。

在软件设计方面,我们采用了模块化设计思想,将系统分为初始化模块、控制模块、通信模块等部分,以便于后续的维护和升级。

四、基于单片机的步进电机控制系统的实现在实现过程中,我们首先对单片机进行了初始化设置,包括时钟设置、I/O口配置等。

然后,通过编程实现了对步进电机的控制,包括步进电机的启动、停止、正反转以及速度调节等功能。

此外,我们还实现了与上位机的通信功能,以便于实现对步进电机的远程控制和监控。

五、实验结果与分析我们通过实验验证了基于单片机的步进电机控制系统的性能。

实验结果表明,该系统具有较高的控制精度和响应速度,能够实现对步进电机的精确控制。

同时,该系统还具有较好的稳定性和可靠性,能够在各种复杂环境下正常工作。

此外,我们还对系统的抗干扰能力进行了测试,结果表明该系统具有较强的抗干扰能力。

单片机控制步进电机课程设计报告

单片机控制步进电机课程设计报告

郑州科技学院《单片机》课程设计题目单片机控制步进电机学生姓名专业班级电气工程及其自动化班学号院(系)电气工程学院指导教师完成时间 2015年11月13日目录1 前言 (1)2 总体设计方案与论证 (1)2.1 步进电机原理及控制技术 (1)2.2 方案论证 (3)2.3 系统总体硬件框图 (3)3 单元电路设计 (4)3.1 最小控制系统 (4)3.2 驱动电路 (5)3.3 按键电路 (6)3.4 显示电路 (6)4 程序设计 (7)5 软件仿真 (8)6 硬件的制作与调试 (10)7 总结 (11)参考文献 (13)附录1:总体电路原理图 (14)附录2:实物图 (15)附录3:元器件清单 (16)附录4:源程序 (17)1 前言步进电动机是一种将电脉冲信号转换成角位移或线位移的机电元件。

步进电动机的输入量是脉冲序列,输出量则为相应的增量位移或步进运动。

正常运动情况下,它每转一周具有固定的步数;做连续步进运动时,其旋转转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。

由于步进电动机能直接接受数字量的控制,所以特别适宜采用微机进行控制。

能够实现步进电机控制的方式有多种,可以采用前期的模拟电路、数字电路或模拟与数字电路相结合的方式,也可以采用单片机控制方式。

本文介绍一种用STC89C52作为核心部件进行逻辑控制及信号产生的单片机技术和C语言编程设计的步进电机控制系统,步进电机背景与现状、硬件设计、软件设计及其仿真都做了详细的介绍,使我们不仅对步进电机的原理有了深入的了解,也对单片机的设计研发过程有了更加深刻的体会。

本控制系统采用单片机控制,通过人为按动开关实现步进电机的正反转,复位。

具有灵活方便、适用范围广的特点,基本能够满足实践需求。

2 总体设计方案与论证2.1步进电机原理及控制技术由于步进电机是一种将电脉冲信号转换成直线或角位移的执行元件,它不能直接接到交直流电源上,而必须使用专业设备,步进电机控制驱动器,典型步进电机控制系统如图2-1所示:图2-1 步进电机运行过程中频率变化曲线控制器可以发出脉冲频率从几赫兹到几千赫兹可以连续变化的脉冲信号,它为环形分配器提供脉冲序列,环形分配器的主要功能是把来自控制环节的脉冲序列按一定的规律分配后,经过功率放大器的放大加到步进电机驱动电源的各项输入端,以驱动步进电机的转动,环形分配器主要有两大类:一类是用计算机软件设计的方法实现环形分配器要求的功能,通常称软环形分配器。

基于单片机步进电机控制系统设计报告

基于单片机步进电机控制系统设计报告

1、设计目的与要求1.1、设计目的(1)了解步进电机的结构和工作原理。

(2)进一步掌握步进电机的控制方法。

(3)进一步掌握单片机硬件和软件的综合设计方法。

(4)能够使用电路仿真软件进行电路调试。

1.2、设计要求实现功能(1)电机工作方式为四相八拍;(2)实现电机的启、停功能;(3)实现电机的正、反转功能;(4)实现电机的加、减速功能.2、、整体设计方案2.1 、系统总体方案此次系统设计是采用单片机实现对步进电机的手动控制。

由单片机产生的脉冲信号通过单片机传送到驱动电路,脉冲信号经过放大后输出到步进电机,功率放大后驱动步进电机的转动。

步进电机是纯粹的数字控制电机,能够将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度[4]。

此次设计以单片机为核心,通过软件和硬件的结合实现步进电机的启停、正转、反转、加速、减速功能,并且步进电机所处的状态用相应的发光二极管来显示,可以显示速度以及方向。

用数码管显示速度和驱动方式。

电路主要通过三大块来设计,包括驱动模块设计、显示模块设计和按键控制模块设计。

此次设计预期实现的功能简述如下几点:(1)、用按键来控制步机电机的工作状态;(2)、能够切换三种工作模式;(3)、在不同的工作模式下能通过按键控制其正转、反转、加速、减速并且在工作过程中能够切换驱动模式;(4)、显示器要实现在驱动选择时能显示电机在哪一种模式下工作,而且在速度加减时能显示其1-7个档位的速度,并在状态显示中可以见证速度的快慢;(5)、利用显示器显示电机的正反转情况。

具体操作方案:首先,先在查阅资料的基础上,进行总体的理论分析与设计;其次,根据预期达到期望功能的要求设计系统方框图;然后,结合系统框图设计画出一个硬件电路图,能实现工作模式选择、正反转、加减速等功能;最后,根据硬件电路设计,编写程序并运用KEIL软件编译调试,之后结合程序对所设计的控制电路在Proteus中选择好元器件连接好,检查无误之后进行仿真。

单片机课设步进电机控制正反转

单片机课设步进电机控制正反转

单片机课程设计报告设计题目:步进电机控制系统学院自动化与信息工程学院专业电气工程及其自动化班级姓名学号指导教师王水鱼2010 年秋季学期平时(10%)任务完成(30%)答辩(30%)课设报告(30%)总评成绩目录1.设计目的 (2)2.设计的主要内容和要求 (2)3.题目及要求功能分析 (2)4.设计方案 (5)4.1 整体方案 (5)4.2 具体方案 (5)5.硬件电路的设计 (6)5.1 硬件线路 (6)5.2 工作原理 (7)5.3 操作时序 (8)6. 软件设计 (8)6.1 软件结构 (8)6.2 程序流程 (9)6.3 源程序清单 (9)7. 系统仿真 (9)8. 使用说明 (10)9. 设计总结 (10)参考文献 (11)附录 (12)步进电机的控制1.设计目的(1)熟悉单片机编程原理。

(2)熟练掌握51单片机的控制电路和最小系统。

(3)单片机基本应用系统的设计方法。

2.设计的主要内容和要求(1)查阅资料,了解步进电机的工作原理。

(2)通过单片机给参数控制电机的转动。

(3)通过按钮控制启停及反转。

(4)其他功能。

3.题目及要求功能分析步进电机:步进电机是一种将电脉冲转化为角位移的执行机构。

当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。

可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

步进电机可以作为一种控制用的特种电机,利用其精度高等特点,广泛应用于各种工业控制系统中。

三相单、双六拍步进电机的结构和工作原理:三相单、双六拍步进电机通电方式:这种方式的通电顺序是:U-U V-V-VW-W-WU-U或为U-UW-W-WV-V-VU-U。

按前一种顺序通电,即先接通U相定子绕组;接着是U、V两相定子绕组同时通电;断开U相,使V相绕组单独通电;再使V、W两相定子绕组同时通电;W 相单独通电;W、U两相同时通电,并依次循环。

单片机电机正反转程序的设计与实现

单片机电机正反转程序的设计与实现

单片机电机正反转程序的设计与实现下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言随着工业自动化的发展,电机在各类机械设备中扮演着越来越重要的角色。

单片机课程设计报告 电机正反转

单片机课程设计报告  电机正反转

C51课程设计报告设计课题:正反转可控的直流电动机设计要求:按下K1时可使直流电动机正转,按下K2时可使直流电动机反转,按下K3按钮时停止,在进行相应的操作时,对应LED 将被点亮。

设计目的:通过这次课程设计,进一步巩固我们对单片机编程的掌握,自己学会调试;同时向老师反映我们学习中不足的地方经过调试,最终得到如下程序:#include<reg51.h>sbit K1=P3^0; //正转开关sbit K2=P3^1; //反转开关sbit K3=P3^2; //停止开关sbit P1_0=P1^0;sbit P1_1=P1^1;sbit D1=P0^0;sbit D2=P0^1;sbit D3=P0^2; //端口位定义void main(){P1_0=0; P1_1=0; D3=0;while(1){if(K1==0) //按下正转按钮K1{while(K1==0); //等待K1按下结束,即断开K1P1_1=0; P1_0=1; //禁止反转,启动正转D2=1;D3=1; D1=0; //关闭反转指示灯D2与停止指示灯D3,点亮正转指示灯D1}else if(K2==0) //按下反转按钮K2{while(K2==0); //等待K2按下结束,即断开K2P1_0=0;P1_1=1; //禁止正转,开始反转D1=1;D3=1;D2=0; //关闭穤正转指示灯D1与停止指示灯D3,点亮反转指示灯D2}else if(K3==0) //按下停止按钮K3{while(K3==0); //等待K3按下结束,即断开K3P1_0=0; P1_1=0; //停止正转与反转D1=1; D2=1; //关闭正转与反转指示灯D1与D2D3=0; //点亮停止指示灯D3}}附图学习心得与体会:这次课程设计让我们进一步掌握了单片机编程,并且对以前所学的知识再进行熟识与整理。

这个程序的编写还很顺利,关键在于直流电动机控制电路的搭建,(如上图所示);当A点为低电平时,Q3,Q2截止,Q7,Q1导通,电机左端呈现高电平;当B点为高电平时,Q8,Q4截止,Q6,Q5导通,电机右端呈现低电平,因此当A为0,B为1时,电机正转。

基于单片机原理的步进电机的正反转程设计报告

基于单片机原理的步进电机的正反转程设计报告

基于单片机原理的步进电机的正反转程设计报告步进电机是一种电动机,能够精确地控制旋转角度和位置,广泛应用于工业和自动化控制系统中。

本篇报告将介绍基于单片机原理的步进电机的正反转程设计。

步进电机是一种特殊的电动机,每次输入一个脉冲信号,电机就会转动一个固定的角度,称为步距角。

步进电机的控制原理是通过改变相序对电机进行控制,根据不同的相序,电机可以实现正转或反转。

步进电机的正反转程设计涉及到两个方面,一是电机的控制电路,二是单片机的编程控制。

首先,电机的控制电路是步进电机正反转程设计的关键。

常见的控制电路有两种:全桥驱动电路和双H桥驱动电路。

全桥驱动电路由四个开关管组成,通过对不同开关管的开关控制,可以激活不同的相序,实现电机的正反转。

双H桥驱动电路由两个H桥组成,通过对H桥的开关控制,可以激活不同的相序,实现电机的正反转。

根据实际需求和控制方式选择适合的电机控制电路。

其次,单片机的编程控制是步进电机正反转程设计的关键。

单片机可以通过输出脉冲信号控制电机的正反转和转动速度。

编程时需要设置好脉冲信号的频率和方向,可以通过调节脉冲信号的频率来控制电机的转动速度,通过改变脉冲信号的方向来控制电机的正反转。

在步进电机的正反转程设计中,还可以考虑加入其他功能,如限位检测、位置控制等。

限位检测可以通过加入限位开关来实现,当电机转动到限位位置时,限位开关会触发信号,单片机可以根据信号做出相应的处理。

位置控制可以通过加入编码器等位置传感器来实现,单片机可以根据传感器反馈的信号准确控制电机的位置。

最后,步进电机的正反转程设计需要进行实际的调试和测试。

在实际调试和测试中,需要根据预设的参数和要求,进行电机的正反转程测试和性能评估。

根据实际测试结果,可以对设计进行优化和改进,以达到更好的性能和可靠性。

总之,基于单片机原理的步进电机的正反转程设计是一个复杂而关键的任务,需要综合考虑电机控制电路和单片机编程控制两个方面。

在设计过程中,需要理解步进电机的工作原理和控制原理,结合实际需求和要求进行设计和调试,最终实现电机的可靠正反转程控制。

基于单片机ATS控制步进电机正反转

基于单片机ATS控制步进电机正反转

基于单片机A T S控制步进电机正反转The latest revision on November 22, 2020目录步进电机 (7)附件A 源程序 .......................................... (12)附件B 仿真结果 (15)致谢 (18)摘要能够实现步进电机控制的方式有多种,可以采用前期的模拟电路、数字电路或模拟与数字电路相结合的方式。

近年来随着科技的飞速发展,单片机的应用正在不断深入,同时带动传统控制检测日新月异更新。

本文介绍一种用AT89S52作为核心部件进行逻辑控制及信号产生的单片机技术和汇编语言编程设计的步进电机控制系统,步进电机背景与现状、硬件设计、软件设计及其仿真都做了详细的介绍,使我们不仅对步进电机的原理有了深入的了解,也对单片机的设计研发过程有了更加深刻的体会。

本控制系统采用单片机控制,通过人为按动开关实现步进电机的开关,复位。

该系统还增加了步进电机的加速及减速功能。

具有灵活方便、适用范围广的特点,基本能够满足实践需求。

关键词: AT89S52 步进电机 ULN2003第一章系统分析框图设计根据系统要求画出基于AT89S52单片机的控制步进电机的控制框图如图2-1所示。

图2-1基于AT89C52单片机的控制步进电机的控制框图系统主要包括单片机、复位电路、晶振电路、按键电路、步进电机及驱动电路几部分。

晶振电路AT89C52单片机有一个用于构成内部振荡器的反相放大器,XTAL1 和XTAL2 分别是放大器的输入、输出端。

石英晶体和陶瓷谐振器都可以用来一起构成自激振荡器。

晶振模块自带振荡器、提供低阻方波输出,并且能够在一定条件下保证运行。

最常用的两种类型是晶振模块和集成RC振荡器(硅振荡器)。

晶振模块提供与分立晶振相同的精度。

硅振荡器的精度要比分立RC振荡器高,多数情况下能够提供与陶瓷谐振槽路相当的精度。

图2-2为晶振电路。

图2-2 晶振电路第二章系统设计硬件连接图根据图2-1,可以设计出单片机控制步进电机的硬件电路图,如图3-1所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电机控制课程设计报告书题目基于单片机原理的步进电机的正反转目录目录 (1)摘要 (2)1.概述 (3)1.1课程设计的任务和要求 (3)1.2设计思路框架 (3)1.3设计方案的模块解释 (3)2.系统硬件设计 (5)2.1单片机最小系统原理介绍 (5)2.1.1 AT89C51的工作原理 (6)2.1.2复位电路的工作原理 (8)2.1.3晶振电路的工作原理 (9)2.2电机驱动电路原理介绍 (9)3.系统软件设计 (11)3.1系统流程图 (11)3.2系统程序分析 (11)4.调试过程与结果 (20)5.总结与体会 (21)6.参考资料 (21)7.附录 (23)摘要介绍了步进电机正反转控制原理及其接口驱动控制电路,编制了基于MCS-51单片机的步进电机正反转控制的子程序,并应用wave软件进行了仿真。

证明在并行口控制中,可以利用软件实现环行脉冲分配,实现程序较简单,同时还可以节省硬件投资。

结合单片机控制步进电动机的实际工作环境,从提高控制系统运行的可靠性角度,讨论了实际应用的软件抗干扰技术。

关键词单片机;步进电机;正反转控制1.概述1.1课程设计的任务和要求电机控制课程设计是考察学生利用所学过的电机控制专业知识,进行综合的电机控制系统设计并最终完成实际系统连接,能够使学生对电气与自动化的专业知识进行综合应用,培养学生的创新能力和团队协作能力,提高学生的动手实践能力。

最终形成一篇符合规范的设计说明书,并参加综合实践答辩,为后期的毕业设计做好准备。

本次设计考核的能力主要有:专业知识应用能力,包括电路分析、电子技术、单片机、检测技术、电气控制、电机与拖动、微特电机及其驱动、计算机高级语言、计算机辅助设计、计算机办公软件等课程,还包括本专业的拓展性课程如变频器、组态技术、现场总线技术、伺服电机等课程。

项目设计与运作能力,团队协作能力,技术文档撰写能力,PPT汇报与口头表达能力。

电气与自动化系统的设计与实际应用能力。

要求完成的工作量包括:制作实际成品,并现场演示效果。

学生结合课题进行PPT演讲与答辩。

学生上交课题要求的各类设计技术文档。

1.2设计思路框架1.3设计方案的模块解释本系统主要由电源模块、控制模块、电机驱动模块、按键中断模块等四个模块组成。

电源模块的功能是将交流220V电源经过整流转化为直流+5V电源,以供给控制、显示、驱动等模块供电。

控制模块是系统的主导作用,即51单片机的最小系统,用来发送信号以控制电机及显示。

电机驱动模块使用的是ULN2003芯片。

ULN2003的每一对达林顿都串联一个2.7K的基极电阻,在5V的直流工作电压下它能与TTL和CMOS电路直接相连,可以直接处理原先需要标准逻辑缓冲器来处理的数据。

按键模块则分为启动按键和中断按键,启动按键使用的是单片机普通的I/O 口。

用来控制系统启动。

中断按键则是使用的外部中断口(P3.2,P3.3)。

在系统运行时则可以随时控制电机的加减速。

2.系统硬件设计2.1单片机最小系统原理介绍该电路工作原理:本项目中选用了最基础的C51单片机做为其控制核心,单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的系统,本设计采用AT89C51单片机,最小系统一般应该包括:单片机、晶振电路、复位电路、电源电路。

单片机最小系统复位电路的极性电容C3的大小直接影响单片机的复位时间,一般采用10~30uF,51单片机最小系统容值越大需要的复位时间越短。

51单片机最小系统晶振X1也可以采用6MHz或者12MHz,在正常工作的情况下可以采用更高频率的晶振,51单片机最小系统晶振的振荡频率直接影响单片机的处理速度,频率越大处理速度越快。

单片机最小系统起振电容C2、C3一般采用15~33pF,并且电容离晶振越近越好。

P0口为开漏输出,作为输出口时需加上拉电阻RP1,阻值一般为10k。

设置为定时器模式时,加1计数器是对内部机器周期计数(1个机器周期等于12个振荡周期,即计数频率为晶振频率的1/12)。

计数值N乘以机器周期Tcy就是定时时间t.设置为计数器模式时,外部事件计数脉冲由T0或T1引脚输入到计数器。

在每个机器周期的S5P2期间采样T0、T1引脚电平。

当某周期采样到一高电平输入,而下一周期又采样到一低电平时,则计数器加1,更新的计数值在下一个机器周期的S3P1期间装入计数器。

由于检测一个从1到0的下降沿需要2个机器周期,因此要求被采样的电平至少要维持一个机器周期。

当晶振频率为12MHz时,最高计数频率不超过1/2MHz,即计数脉冲的周期要大于2ms。

图2-1最小系统电路图2.1.1 AT89C51的工作原理AT89C51是一个低电压,高性能CMOS8位单片机带有4K字节的可反复擦写的程序存储器(PENROM)。

和128字节的存取数据存储器(RAM),这种器件采用ATMEL公司的高密度、不容易丢失存储技术生产,并且能够与MCS-51系列的单片机兼容。

片内含有8位中央处理器和闪烁存储单元,有较强的功能的AT89C51单片机能够被应用到控制领域中。

本设计采用AT89C51,它提供以下的功能标准:4K字节闪烁存储器,128字节随机存取数据存储器,32个I/O口,2个16位定时/计数器,1个5向量两级中断结构,1个串行通信口,片内震荡器和时钟电路。

另外,AT89C51还可以进行0HZ的静态逻辑操作,并支持两种软件的节电模式。

闲散方式停止中央处理器的工作,能够允许随机存取数据存储器、定时/计数器、串行通信口及中断系统继续工作。

掉电方式保存随机存取数据存储器中的内容,但震荡器停止工作并禁止其它所有部件的工作直到下一个复位。

VCC:电源电压GND:地P0口:P0口是一组8位漏极开路双向I/O口,即地址/数据总线复用口。

作为输出口时,每一个管脚都能够驱动8个TTL电路。

当“1”被写入P0口时,每个管脚都能够作为高阻抗输入端。

P0口还能够在访问外部数据存储器或程序存储器时,转换地址和数据总线复用,并在这时激活内部的上拉电阻。

P0口在闪烁编程时,P0口接收指令,在程序校验时,输出指令,需要接电阻。

P1口:P1口一个带内部上拉电阻的8位双向I/O口,P1的输出缓冲级可驱动4个TTL电路。

对端口写“1”,通过内部的电阻把端口拉到高电平,此时可作为输入口。

因为内部有电阻,某个引脚被外部信号拉低时输出一个电流。

闪烁编程时和程序校验时,P1口接收低8位地址。

P2口:P2口是一个内部带有上拉电阻的8位双向I/O口,P2的输出缓冲级可驱动4个TTL电路。

对端口写“1”,通过内部的电阻把端口拉到高电平,此时,可作为输入口。

因为内部有电阻,某个引脚被外部信号拉低时会输出一个电流。

在访问外部程序存储器或16位地址的外部数据存储器时,P2口送出高8位地址数据。

在访问8位地址的外部数据存储器时,P2口线上的内容在整个运行期间不变。

闪烁编程或校验时,P2口接收高位地址和其它控制信号。

P3口:P3口是一组带有内部电阻的8位双向I/O口,P3口输出缓冲故可驱动4个TTL电路。

对P3口写如“1”时,它们被内部电阻拉到高电平并可作为输入端时,被外部拉低的P3口将用电阻输出电流。

P3口除了作为一般的I/O口外,更重要的用途是它的第二功能,如下表2-1所示:表2-1P3口还接收一些用于闪烁存储器编程和程序校验的控制信号。

RST:复位输入。

当震荡器工作时,RET引脚出现两个机器周期以上的高电平将使单片机复位。

ALE/ :当访问外部程序存储器或数据存储器时,ALE输出脉冲用于锁存地址的低8位字节。

即使不访问外部存储器,ALE以时钟震荡频率的1/16输出固定的正脉冲信号,因此它可对输出时钟或用于定时目的。

要注意的是:每当访问外部数据存储器时将跳过一个ALE脉冲时,闪烁存储器编程时,这个引脚还用于输入编程脉冲。

如果必要,可对特殊寄存器区中的8EH单元的D0位置禁止ALE 操作。

这个位置后只有一条MOVX和MOVC指令ALE才会被应用。

此外,这个引脚会微弱拉高,单片机执行外部程序时,应设置ALE无效。

PSEN:程序储存允许输出是外部程序存储器的读选通信号,当AT89C51由外部程序存储器读取指令时,每个机器周期两次PSEN 有效,即输出两个脉冲。

在此期间,当访问外部数据存储器时,这两次有效的PSEN 信号不出现。

EA/VPP:外部访问允许。

欲使中央处理器仅访问外部程序存储器,EA端必须保持低电平。

需要注意的是:如果加密位LBI被编程,复位时内部会锁存EA 端状态。

如EA端为高电平,CPU则执行内部程序存储器中的指令。

闪烁存储器编程时,该引脚加上+12V的编程允许电压VPP,当然这必须是该器件是使用12V 编程电压VPP。

XTAL1:片内振荡器反相放大器和时钟发生线路的输入端。

使用片内振荡器时,连接外部石英晶体和微调电容。

XTAL2:片内振荡器反相放大器的输出端。

当使用片内振荡器时,外接石英晶体和微调电容。

2-2 AT89C51引脚2.1.2复位电路的工作原理单片机在启动运行时需要复位,使CPU以及其他功能部件处于一个确定的初始状态,并从这个状态开始工作,另外,在单片机工作过程中,如果出现死机时,也必须对单片机进行复位,使其重新开始工作。

电路中C1(电解电容)、R2组成复位电路,它的作用是将单片机内部特殊功能寄存器和端口寄存器恢复到初始状态,从内部FLASH存储器的初始状态开始执行。

如图所示,当要对晶片重置时,只要按此开关就能完成LED和开关的重置。

复位是单片机的初始化操作,其主要功能是把PC初始化为0000H,使单片机从0000H单元开始执行程序。

单片机的RST管脚为主机提供了一个外部复位信号输入口。

复位信号是高电平有效,高电平有效的持续时间为2个机器周期以上。

单片机的复位方式可由手动复位方式完成。

RST引脚是复位信号输入端,复位信号为高电平有效,其有效时间应持续24个振荡周期以上才能完成复位操作,若使用6MHz晶振,则需持续4μS以上才能完成复位操作。

在通电瞬间,由于RC的充电过程,在RST端出现一定宽度的正脉冲,只要该正脉冲保持10ms以上,就能使单片机自动复位。

CPU在第二个机器周期内执行内部复位操作,以后每个机器周期重复一次,直至RST端电平变低。

在单片机复位期间,AlE和信号都不产生。

复位操作将对部分专用寄存器产生影响。

上电瞬间由于电容C上无储能,其端电压近似为零,RST获得高电平,随着电容器C的充电,RST引脚上的高电平将逐渐下降,当RST引脚上的电压小于某一数值后,单片机就脱离复位状态,进入正常工作模式。

只要高电平能保持复位所需要的时间(约两个机器周期),单片机就能实现复位。

图2-3复位电路2.1.3晶振电路的工作原理晶振分为有源晶振和无源晶振两种,其作用是在电路产生震荡电流,发出时钟信号。

相关文档
最新文档