数学三角函数公式大全
三角函数公式大全
三角函数公式大全三角函数是数学中非常重要的概念,它们在几何、三角学、物理学等领域都有着广泛的应用。
在学习三角函数的过程中,掌握三角函数的基本公式是非常重要的。
本文将为大家详细介绍三角函数的公式大全,帮助大家更好地理解和掌握三角函数的知识。
1. 正弦函数的公式。
正弦函数是最基本的三角函数之一,其公式为,sinθ = 对边/斜边。
其中,θ为角度,对边为与角度θ相对的直角三角形的斜边,斜边为直角三角形的斜边。
正弦函数的图像是一条连续的曲线,其周期为2π,在0到2π之间有一个完整的周期。
2. 余弦函数的公式。
余弦函数也是常见的三角函数,其公式为,cosθ = 邻边/斜边。
其中,θ为角度,邻边为与角度θ相邻的直角三角形的斜边,斜边为直角三角形的斜边。
余弦函数的图像也是一条连续的曲线,其周期也为2π,与正弦函数的图像相似。
3. 正切函数的公式。
正切函数是另外一个常见的三角函数,其公式为,tanθ = 对边/邻边。
其中,θ为角度,对边为与角度θ相对的直角三角形的斜边,邻边为与角度θ相邻的直角三角形的斜边。
正切函数的图像在一些特定的角度上会出现无穷大的情况,因此在使用时需要注意。
4. 余切函数的公式。
余切函数是正切函数的倒数,其公式为,cotθ= 邻边/对边。
其中,θ为角度,邻边为与角度θ相邻的直角三角形的斜边,对边为与角度θ相对的直角三角形的斜边。
余切函数的图像也会在一些特定的角度上出现无穷大的情况。
5. 正割函数的公式。
正割函数是余弦函数的倒数,其公式为,secθ= 斜边/邻边。
其中,θ为角度,邻边为与角度θ相邻的直角三角形的斜边,斜边为直角三角形的斜边。
正割函数的图像是一条连续的曲线,其周期也为2π。
6. 余割函数的公式。
余割函数是正弦函数的倒数,其公式为,cscθ= 斜边/对边。
其中,θ为角度,对边为与角度θ相对的直角三角形的斜边,斜边为直角三角形的斜边。
余割函数的图像也是一条连续的曲线,其周期也为2π。
三角函数公式大全
三角函数公式大全三角函数是数学中非常重要的一个分支,广泛应用于物理学、工程学、计算机科学等多个领域。
下面为大家带来一份三角函数公式大全。
一、基本三角函数1、正弦函数(sin):在直角三角形中,一个锐角的正弦是它的对边与斜边的比值。
即 sinA = a / c (其中 A 为锐角,a 为 A 的对边,c 为斜边)。
2、余弦函数(cos):一个锐角的余弦是它的邻边与斜边的比值。
即 cosA = b / c (其中 b 为 A 的邻边)。
3、正切函数(tan):一个锐角的正切是它的对边与邻边的比值。
即 tanA = a / b 。
二、同角三角函数基本关系1、平方关系:sin²A + cos²A = 1 。
2、商数关系:tanA = sinA / cosA 。
三、诱导公式1、终边相同的角的三角函数值相等:sin(2kπ + A) = sinA ,cos(2kπ + A) = cosA ,tan(2kπ + A) = tanA (k ∈ Z)。
2、关于 x 轴对称:sin(A) = sinA ,cos(A) = cosA ,tan(A) =tanA 。
3、关于 y 轴对称:sin(π A) = sinA ,cos(π A) = cosA ,tan(π A) = tanA 。
4、关于原点对称:sin(π + A) = sinA ,cos(π + A) = cosA ,tan(π + A) = tanA 。
5、 90°相关:sin(π/2 A) = cosA ,cos(π/2 A) = sinA 。
四、两角和与差的三角函数公式1、两角和的正弦:sin(A + B) = sinAcosB + cosAsinB 。
2、两角差的正弦:sin(A B) = sinAcosB cosAsinB 。
3、两角和的余弦:cos(A + B) = cosAcosB sinAsinB 。
4、两角差的余弦:cos(A B) = cosAcosB + sinAsinB 。
三角函数公式大全关系
三角函数公式大全关系三角函数是数学中常用的一类函数,与圆的周长、弧长、面积等有关,广泛应用于物理、工程、图像处理等领域。
以下是三角函数的一些基本公式和关系。
1.基本公式:- 正弦函数(sin):给定一个角θ,其正弦值由对边与斜边的比例给出,即sinθ=opposite/hypotenuse。
- 余弦函数(cos):给定一个角θ,其余弦值由邻边与斜边的比例给出,即cosθ=adjacent/hypotenuse。
- 正切函数(tan):给定一个角θ,其正切值由对边与邻边的比例给出,即tanθ=opposite/adjacent。
2.基本关系:- 三角函数之间的关系:sinθ=1/cscθ,cosθ=1/secθ,tanθ=1/cotθ。
-倍角公式:- sin(2θ) = 2sinθcosθ- cos(2θ) = cos²θ - sin²θ- tan(2θ) = 2tanθ / (1 - tan²θ)-半角公式:- sin(θ/2) = ±√[(1 - cosθ)/2]- cos(θ/2) = ±√[(1 + cosθ)/2]- tan(θ/2) = ±√[(1 - cosθ)/(1 + cosθ)]-和差公式:- sin(α ± β) = sinαcosβ ± cosαsinβ- cos(α ± β) = cosαcosβ ∓ sinαsinβ- tan(α ± β) = (tanα ± tanβ) / (1 ∓ tanαtanβ)-三角恒等式:- sin²θ + cos²θ = 1- 1 + tan²θ = sec²θ- 1 + cot²θ = csc²θ3.三角函数的周期性:- 正弦函数和余弦函数的周期均为2π,即sin(θ+2π) = sinθ,cos(θ+2π) = cosθ。
三角函数转换公式大全总结
三角函数转换公式大全总结三角函数是数学中常见的一类函数,由于其定义在一个单位圆上,可以用来描述很多自然现象和物理现象。
在数学中,经常会使用一些三角函数的转换公式来简化计算和推导。
下面是常见的一些三角函数转换公式总结。
1.正、余函数的关系:sin(x) = cos(x - π/2)cos(x) = sin(x + π/2)这两个公式很容易理解,就是将正弦函数和余弦函数互换角度就可以得到。
2.平方和差公式:sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)cos(x ± y) = cos(x)cos(y) ∓ sin(x)sin(y)这两个公式可以用来计算两个三角函数之间的和差关系。
通过平方和差公式,可以将两个三角函数之和或之差转化为两个三角函数之积。
3.和差化积公式:sin(x) + sin(y) = 2sin((x + y)/2)cos((x - y)/2)sin(x) - sin(y) = 2cos((x + y)/2)sin((x - y)/2)cos(x) + cos(y) = 2cos((x + y)/2)cos((x - y)/2)cos(x) - cos(y) = -2sin((x + y)/2)sin((x - y)/2)这四个公式可以用来将两个三角函数的和或差表示为两个三角函数的积。
4.倍角公式:sin(2x) = 2sin(x)cos(x)cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x) tan(2x) = 2tan(x)/(1 - tan^2(x))这些公式可以用来计算两倍角度的三角函数值,可以用于简化计算和推导。
5.半角公式:sin(x/2) = ±√((1 - cos(x))/2)cos(x/2) = ±√((1 + cos(x))/2)tan(x/2) = ±√((1 - cos(x))/(1 + cos(x)))这些公式可以用来计算半角的三角函数值,同样可以用于简化计算和推导。
三角函数公式大全及图解
三角函数公式大全及图解三角函数是数学中属于初等函数中的超越函数的一类函数。
它们的本质是任何角的集合与一个比值的集合的变量之间的映射。
三角函数看似很多、很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。
为了方便同学们的记忆和理解。
下面是21世纪教育网为大家整理提供的三角函数公式大全图解:1:三角函数的平方关系图2:正弦二倍角公式图解sin2θ=2sinθcosθ说明:S△ACB=1/2×1×1×sin2θ=1/2×(2sinθ)cosθ,从而得出二倍角正弦公式3:图解余弦二倍角公式和正切半角公式说明:BH⊥AD,AD为单位圆直径,O为圆心。
很容易看出来,OH=cos2θ。
另一方面,OH=AH-AO=ABcosθ-1=(2cosθ)cosθ-1=2cos2θ-1,而且OH=DO-DH 就可以得出另一个公式。
tanθ=BH/AH=sin2θ/(1+cos2θ)4:图解和角公式说明:也是一单位圆,要用到一点向量,AC⊥OC,所以AC=sinα,OC=cos α。
为了方便,下面的黑体就表示向量sin(α+β)=AB=AE+EB=AE+CD=ACcosβ+OCsinβ=sinαcosβ+cosαsinβ同理,相信上面右边的图可以解释差角公式,就交给各位自己了5:图解正弦二倍角三倍角公式说明:sin2θ=BF=ABsinθ=2AEsinθ=2cosθsinθcos2θ=OF=AF-AO=ABcosθ-1=2AEcosθ-1=2cosθcosθ-1=2cos2θ-1 sin3θ=CD=ADsinθ=(AO+2OF)sinθ=(1+2cos2θ)sinθ,化简即可cos3θ=BC=AC-AB=ADcosθ-2AE,按照前面的带入相应的数值即可。
高中数学_三角函数公式大全
高中数学_三角函数公式大全一、基本公式1.正弦函数的基本公式:sin(A±B) = sinAcosB ± cosAsinBsin2A = 2sinAcosAsin(A+B) + sin(A-B) = 2sinAcosB2.余弦函数的基本公式:cos(A±B) = cosAcosB ∓ sinAsinBcos2A = cos^2(A) - sin^2(A)cos(A+B) + cos(A-B) = 2cosAcosB3.正切函数的基本公式:tan(A±B) = (tanA ± tanB) / (1 ∓ tanAtanB)tan2A = (2tanA) / (1 - tan^2(A))tan(A+B) = (tanA + tanB) / (1 - tanAtanB)tan(A-B) = (tanA - tanB) / (1 + tanAtanB)二、和差化积公式1.正弦函数的和差化积公式:sin(A+B) = sinAcosB + cosAsinBsin(A-B) = sinAcosB - cosAsinB2.余弦函数的和差化积公式:cos(A+B) = cosAcosB - sinAsinBcos(A-B) = cosAcosB + sinAsinB三、倍角公式1.正弦函数的倍角公式:sin2A = 2sinAcosA2.余弦函数的倍角公式:cos2A = cos^2(A) - sin^2(A)3.正切函数的倍角公式:tan2A = (2tanA) / (1 - tan^2(A))四、半角公式1.正弦函数的半角公式:sin(A/2) = ±√[(1 - cosA) / 2]2.余弦函数的半角公式:cos(A/2) = ±√[(1 + cosA) / 2]3.正切函数的半角公式:tan(A/2) = ±√[(1 - cosA) / (1 + cosA)]五、和差化积公式1.正弦函数的和差化积公式:sin(A±B) = sinAcosB ± cosAsinB2.余弦函数的和差化积公式:cos(A±B) = cosAcosB ∓ sinAsinB六、和差化积公式的应用1. sinA + sinB = 2sin((A+B)/2)cos((A-B)/2)sinA - sinB = 2sin((A-B)/2)cos((A+B)/2)2. cosA + cosB = 2cos((A+B)/2)cos((A-B)/2)cosA - cosB = -2sin((A+B)/2)sin((A-B)/2)3. tanA + tanB = sin(A+B) / cosAcosBtanA - tanB = sin(A-B) / cosAcosB以上是一些常用的三角函数公式,其中涉及到的角度均为弧度制。
高中数学 三角函数公式大全
高中数学三角函数公式大全高中数学三角函数公式大全三角函数这一章公式很多,尤其是归纳公式有20多个,很难全部记住。
基础薄弱的同学要把这些公式记好,掌握这些公式就抓住了本章的重点。
复习事半功倍。
两角和sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)2倍角tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanA tanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角sin4A=-4*(cosA*sinA*(2*sinA^2-1)) cos4A=1+(-8*cosA^2+8*cosA^4) tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2)) cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍角sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)八倍角sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1)) cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2) tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)九倍角sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3)) cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)十倍(sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)万能公式sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB。
三角函数与反三角函数公式大全
三角函数与反三角函数公式大全三角函数和反三角函数是高中数学中的重要内容,也是数学和物理学中广泛应用的数学工具。
下面我们将介绍一些常用的三角函数和反三角函数的公式。
1. 正弦函数(sin)和余弦函数(cos)的关系:sin^2x + cos^2x = 12. 正切函数(tan)与正弦函数(sin)和余弦函数(cos)的关系:tanx = sinx / cosx3. 余切函数(cot)和正弦函数(sin)和余弦函数(cos)的关系:cotx = cosx / sinx4. 正弦函数(sin)和余弦函数(cos)的周期性:sin(x + 2π) = sinxcos(x + 2π) = cosx5. 正弦函数(sin)和余弦函数(cos)的奇偶性:sin(-x) = -sinxcos(-x) = cosx6. 正切函数(tan)和余切函数(cot)的奇偶性:tan(-x) = -tanxcot(-x) = -cotx7. 正弦函数(sin)和余弦函数(cos)的对称性:sin(π - x) = sinxcos(π - x) = -cosx8. 正切函数(tan)和余切函数(cot)的对称性:tan(π - x) = -tanxcot(π - x) = -cotx9. 正弦函数(sin)和余弦函数(cos)的双角和差公式:sin(x ± y) = sinxcosy ± cosxsinycos(x ± y) = cosxcosy ∓ sinxsiny10. 正切函数(tan)和余切函数(cot)的双角和差公式:tan(x ± y) = (tanx ± tany) / (1 ∓ tanxtany)cot(x ± y) = (cotxcoty ∓1) / (coty ± cotx)11. 正弦函数(sin)和余弦函数(cos)的和差化积公式:sinx + siny = 2sin[(x + y) / 2]cos[(x - y) / 2]sinx - siny = 2sin[(x - y) / 2]cos[(x + y) / 2]cosx + cosy = 2cos[(x + y) / 2]cos[(x - y) / 2]cosx - cosy = -2sin[(x + y) / 2]sin[(x - y) / 2] 12. 正切函数(tan)和余切函数(cot)的和差化积公式:tanx + tany = (tanx + tany) / (1 - tanxtany)tanx - tany = (tanx - tany) / (1 + tanxtany)cotx + coty = (cotx + coty) / (cotxcoty - 1)cotx - coty = (cotx - coty) / (cotxcoty + 1)13. 正弦函数(sin)和余弦函数(cos)的倍角公式:sin2x = 2sinxcosxcos2x = cos^2x - sin^2x = 2cos^2x - 1 = 1 - 2sin^2x14. 正弦函数(sin)和余弦函数(cos)的半角公式:sin(x/2) = ±√[(1 - cosx) / 2]cos(x/2) = ±√[(1 + cosx) / 2]15. 反正弦函数(arcsin)和反余弦函数(arccos)的范围:-π/2 ≤ arcsinx ≤ π/20 ≤ arccosx ≤ π16. 反正弦函数(arcsin)和反余弦函数(arccos)的负值关系:arcsin(-x) = -arcsinxarccos(-x) = π - arccosx17. 反正弦函数(arcsin)和反余弦函数(arccos)的和、差关系:arcsin(x) ± arccos(x) = π/2这些公式是三角函数和反三角函数的基本关系,掌握它们对于理解和解决三角函数相关的问题非常重要。
三角函数公式大全
Trigonometric1.诱导公式sin(-a) = - sin(a)cos(-a) = cos(a)sin(π/2 - a) = cos(a)cos(π/2 - a) = sin(a)sin(π/2 + a) = cos(a)cos(π/2 + a) = - sin(a)sin(π - a) = sin(a)cos(π - a) = - cos(a)sin(π + a) = - sin(a)cos(π + a) = - cos(a)2.两角和与差的三角函数sin(a + b) = sin(a)cos(b) + cos(α)sin(b)cos(a + b) = cos(a)cos(b) - sin(a)sin(b)sin(a - b) = sin(a)cos(b) - cos(a)sin(b)cos(a - b) = cos(a)cos(b) + sin(a)sin(b)tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)]tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)]3.和差化积公式sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2]sin(a) sin(b) = 2cos[(a + b)/2]sin[(a - b)/2]cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2]cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2]4.积化和差公式sin(a)sin(b) = - 1/2[cos(a + b) - cos(a - b)]cos(a)cos(b) = 1/2[cos(a + b) + cos(a -b)]sin(a)cos(b) = 1/2[sin(a + b) + sin(a - b)]5.二倍角公式sin(2a) = 2sin(a)cos(b)cos(2a) = cos2(a) - sin2(a) = 2cos2(a) -1=1 - 2sin2(a)6.半角公式sin2(a/2) = [1 - cos(a)] / 2cos2(a/2) = [1 + cos(a)] / 2tan(a/2) = [1 - cos(a)] /sin(a) = sina / [1 + cos(a)]7.万能公式sin(a) = 2tan(a/2) / [1+tan2(a/2)]cos(a) = [1-tan2(a/2)] / [1+tan2(a/2)]tan(a) = 2tan(a/2) / [1-tan2(a/2)]三角函数公式求助编辑百科名片三角函数是数学中属于初等函数中的超越函数的一类函数。
三角函数公式大全表格高中
三角函数公式大全表格高中
三角函数是高中数学中非常重要的内容,这里为大家提供了三角函数的公式大全表格,方便大家参考。
一、正弦函数sin(x)
正弦函数的定义:对于任意角x,它对应的正弦值为x所对的直角边与斜边的比值。
正弦函数的公式为:sin(x) = y/r
二、余弦函数cos(x)
余弦函数的定义:对于任意角x,它对应的余弦值为x所对的邻边与斜边的比值。
余弦函数的公式为:cos(x) = x/r
三、正切函数tan(x)
正切函数的定义:对于任意角x,它对应的正切值为x所对的直角边与邻边的比值。
正切函数的公式为:tan(x) = y/x
四、反正弦函数arcsin(x)
反正弦函数的定义:如果y/r = x,则arcsin(x) = y。
五、反余弦函数arccos(x)
反余弦函数的定义:如果x/r = y,则arccos(x) = y。
六、反正切函数arctan(x)
反正切函数的定义:如果y/x = x,则arctan(x) = y。
三角函数的公式大全表格就介绍到这里,希望对大家学习三角函数有所帮助。
三角函数公式大全表格倍角公式
三角函数公式大全表格倍角公式一、三角函数公式大全表格一、倍角公式1、Sin2A=2SinA*CosA2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-13、tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A) )二、降幂公式1、sin^2(α)=(1-cos(2α))/2=versin(2α)/22、2cos^2(α)=(1+cos(2α))/2=covers(2α)/23、tan^2(α)=(1-cos(2α))/(1+cos(2α))三、推导公式1、1tanα+cotα=2/sin2α2、tanα-cotα=-2cot2α3、1+cos2α=2cos^2α4、、4-cos2α=2sin^2α5、1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina四、两角和差1、1cos(α+β)=cosα·cosβ-sinα·sinβ2、cos(α-β)=cosα·cosβ+sinα·sinβ3、sin(α±β)=sinα·cosβ±cosα·sinβ4、4tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)5、tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)五、和差化积1、sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]2、sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]3、cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]4、cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]5、tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)六、积化和差1、sinαsinβ = [cos(α-β)-cos(α+β)] /22、sinαcosβ = [sin(α+β)+sin(α-β)]/23、cosαsinβ = [sin(α+β)-sin(α-β)]/2七、诱导公式1、(-α) = -sinα、cos(-α) = cosα2、tan (—a)=-tanα、sin(π/2-α) =cosα、cos(π/2-α) = sinα、sin(π/2+α) = cosα3、3cos(π/2+α) = -sinα4、(π-α) = sinα、cos(π-α) = -cosα5、5tanA= sinA/cosA、tan(π/2+α)=-cotα、tan(π/2-α)=cotα6、tan(π-α)=-tanα、tan(π+α)=tanα八、锐角三角函数公式1、sin α=∠α的对边/ 斜边2、α=∠α的邻边/ 斜边3、tan α=∠α的对边/ ∠α的邻边4、cot α=∠α的邻边/ ∠α的对边二、高中数学最全公式1.几何与常用逻辑用语2.复数3.平面向量4.算法、推理与证明5.不等式、线性规划6.排列组合与二项式定理7.函数、基本初等函数的图像与性质8.函数与方程,函数模型及其应用。
三角函数公式大全
倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)平常针对不同条件的常用的两个公式sin^2(α)+cos^2(α)=1tan α *cot α=1一个特殊公式(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2]=sin(a+θ)*sin(a-θ)坡度公式我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即i=h / l, 坡度的一般形式写成l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那么i=h/l=tan a.锐角三角函数公式正弦:sin α=∠α的对边/∠α的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA余弦1.Cos2a=Cos^2(a)-Sin^2(a)2.Cos2a=1-2Sin^2(a)3.Cos2a=2Cos^2(a)-1即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a) 正切tan2A=(2tanA)/(1-tan^2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin(3a)=sin(a+2a)=sin2acosa+cos2asina=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin^3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-cos^a)cosa=4cos^3a-3cosasin3a=3sina-4sin^3a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos^3a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)^2]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)现列出公式如下: sin2α=2sinαcosα tan2α=2tanα/(1-tan^2(α))cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 可别轻视这些字符,它们在数学学习中会起到重要作用。
三角函数推导万能公式大全
三角函数推导万能公式大全三角函数推导万能公式大全1、三角函数推导公式——万能公式推导sin2α=2sinαcosα=2sinαcosα/[cos2(α)+sin2(α)],(因为cos2(α)+sin2(α)=1)再把分式上下同除cos^2(α),可得sin2α=2tanα/[1+tan2(α)]然后用α/2代替α即可。
同理可推导余弦的万能公式。
正切的万能公式可通过正弦比余弦得到。
2、三角函数推导公式——三倍角公式推导tan3α=sin3α/cos3α=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)=[2sinαcos2(α)+cos2(α)sinα-sin3(α)]/[cos3(α)-cosαsin2(α)-2sin2(α)cosα]上下同除以cos3(α),得:tan3α=[3tanα-tan3(α)]/[1-3tan2(α)]sin3α=sin(2α+α)=sin2αcosα+cos2αsinα=2sinαcos2(α)+[1-2sin2(α)]sinα=2sinα-2sin3(α)+sinα-2sin3(α)=3sinα-4sin3(α)cos3α=cos(2α+α)=cos2αcosα-sin2αsinα=[2cos2(α)-1]cosα-2cosαsin2(α)=2cos3(α)-cosα+[2cosα-2cos3(α)]=4cos3(α)-3cosα即sin3α=3sinα-4sin3(α)cos3α=4cos3(α)-3cosα3、三角函数推导公式——和差化积公式推导首先,我们知道sin(a+b)=sinacosb+cosasinb,sin(a-b)=sinacosb-cosasinb我们把两式相加就得到sin(a+b)+sin(a-b)=2sinacosb同理,若把两式相减,就得到cosasinb=[sin(a+b)-sin(a-b)]/2同样的,我们还知道cos(a+b)=cosacosb-sinasinb,cos(a-b)=cosacosb+sinasinb所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosacosb 同理,两式相减我们就得到sinasinb=-[cos(a+b)-cos(a-b)]/2这样,我们就得到了积化和差的公式:cosasinb=[sin(a+b)-sin(a-b)]/2sinasinb=-[cos(a+b)-cos(a-b)]/2好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2 把a,b分别用x,y表示就可以得到和差化积的四个公式:sinx+siny=2sin[(x+y)/2]cos[(x-y)/2]sinx-siny=2cos[(x+y)/2]sin[(x-y)/2]cosx+cosy=2cos[(x+y)/2]cos[(x-y)/2]cosx-cosy=-2sin[(x+y)/2]sin[(x-y)/ 2]4、同角三角函数的基本关系式倒数关系tanα·cotα=1sinα·cscα=1cosα·secα=1商的关系sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系sin2(α)+cos2(α)=11+tan2(α)=sec2(α)1+cot2(α)=csc2(α)同角三角函数关系六角形记忆法构造以“上弦、中切、下割;左正、右余、中间1”的正六边形为模型。
三角函数变换公式大全
三角函数变换公式大全三角函数是数学中的重要工具,在数学、物理、工程等领域中都有广泛的应用。
三角函数的变换公式是指将一个三角函数表示成其他三角函数的形式,或根据已知函数的性质得到新的函数性质的公式。
下面是一些常用的三角函数变换公式:1.余弦函数的变换公式:a) 余弦函数的偶性:cos(-x) = cos(x)b) 余弦函数的周期性:cos(x + 2πn) = cos(x),其中n为整数c)余弦函数的和差公式:i) cos(x + y) = cos(x)cos(y) - sin(x)sin(y)ii) cos(x - y) = cos(x)cos(y) + sin(x)sin(y)d)余弦函数的倍角公式:i) cos(2x) = cos²(x) - sin²(x) = 2cos²(x) - 1 = 1 - 2sin²(x)2.正弦函数的变换公式:a) 正弦函数的奇性:sin(-x) = -sin(x)b) 正弦函数的周期性:sin(x + 2πn) = sin(x),其中n为整数c)正弦函数的和差公式:i) sin(x + y) = sin(x)cos(y) + cos(x)sin(y)ii) sin(x - y) = sin(x)cos(y) - cos(x)sin(y)d)正弦函数的倍角公式:i) sin(2x) = 2sin(x)cos(x)3.正切函数的变换公式:a) 正切函数的奇性:tan(-x) = -tan(x)b) 正切函数的周期性:tan(x + π) = tan(x)c)正切函数与余弦、正弦函数的关系:i) tan(x) = sin(x) / cos(x)ii) tan(x) = 1 / cot(x)d)正切函数的和差公式:i) tan(x + y) = (tan(x) + tan(y)) / (1 - tan(x)tan(y))ii) tan(x - y) = (tan(x) - tan(y)) / (1 + tan(x)tan(y))4.反三角函数的变换公式(以正弦、余弦、正切函数为例):a) 正弦函数的反函数反正弦函数asinx的定义域为[-π/2, π/2],值域为[-π/2, π/2]b) 余弦函数的反函数反余弦函数acosx的定义域为[0, π],值域为[0, π]c) 正切函数的反函数反正切函数atanx的定义域为(-π/2, π/2),值域为(-π/2, π/2)这些是三角函数的一些常用的变换公式。
三角函数公式大全
倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)平常针对不同条件的常用的两个公式sin^2(α)+cos^2(α)=1tan α *cot α=1一个特殊公式(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina-sinθ)=2 sin*(θ+a)/2+ cos*(a-θ)/2+ *2 cos*(θ+a)/2+ sin*(a-θ)/2+ =sin(a+θ)*sin(a-θ)坡度公式我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即i=h / l, 坡度的一般形式写成l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那么i=h/l=tan a.锐角三角函数公式正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA余弦1.Cos2a=Cos^2(a)-Sin^2(a)2.Cos2a=1-2Sin^2(a)3.Cos2a=2Cos^2(a)-1即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)正切tan2A=(2tanA)/(1-tan^2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin(3a)=sin(a+2a)=sin2acosa+cos2asina=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin^3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-cos^a)cosa=4cos^3a-3cosasin3a=3sina-4sin^3a=4sina(3/4-sin²a)=4sina*(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos^3a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)^2+=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)现列出公式如下: sin2α=2sinαcosα tan2α=2tanα/(1-tan^2(α)) cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 可别轻视这些字符,它们在数学学习中会起到重要作用。
三角函数定理公式大全
三角函数定理1.诱导公式sin(-a) = - sin(a)cos(-a) = cos(a)sin(π/2 - a) = cos(a)cos(π/2 - a) = sin(a)sin(π/2 + a) = cos(a)cos(π/2 + a) = - sin(a)sin(π - a) = sin(a)cos(π - a) = - cos(a)sin(π + a) = - sin(a)cos(π + a) = - cos(a)2.两角和与差的三角函数sin(a + b) = sin(a)cos(b) + cos(α)sin(b) cos(a + b) = cos(a)cos(b) - sin(a)sin(b)sin(a - b) = sin(a)cos(b) - cos(a)sin(b)cos(a - b) = cos(a)cos(b) + sin(a)sin(b)tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)] tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)] 3.和差化积公式sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2]sin(a) - sin(b) = 2sin[(a - b)/2]cos[(a + b)/2]cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2]cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2]4.积化和差公式sin(a)sin(b) = - 1/2[cos(a + b) - cos(a - b)]cos(a)cos(b) = 1/2[cos(a + b) + cos(a -b)]sin(a)cos(b) = 1/2[sin(a + b) + sin(a - b)]5.二倍角公式sin(2a) = 2sin(a)cos(a)cos 2a = cos2a - sin2a = 2cos2a - 1= 1 - 2sin2a6.半角公式sin2a = (1 – cos 2a)/ 2cos2a = (1 + cos 2a)/ 2tan a = [1 – cos 2a] /sin 2a = sin 2a / [1 + cos 2a ] 7.万能公式sin(a) = 2tan(a/2) / [1+tan2(a/2)]cos(a) = [1-tan2(a/2)] / [1+tan2(a/2)]tan(a) = 2tan(a/2) / [1-tan2(a/2)]三角函数公式三角函数是数学中属于初等函数中的超越函数的一类函数。
三角函数公式大全
三角函数公式大全三角函数是数学中的重要概念,它们描述了角度与三角形各边之间的关系。
在数学和物理领域中,三角函数公式被广泛应用。
本文将为您提供一个三角函数公式的大全,包括正弦、余弦、正切、余切、正割和余割的常见公式及其推导。
一、正弦函数公式:1. 正弦函数的定义:在直角三角形中,正弦函数定义为对边与斜边的比值。
记作sinθ = a/c,其中θ为角度,a为对边长,c为斜边长。
2. 基本正弦函数公式:正弦函数的值在一个周期内的变化可用以下公式表示:sin(θ + 2πn) = sinθ,其中n为任意整数。
sin(π - θ) = sinθ。
sin(π + θ) = -sinθ。
3. 正弦函数的和差公式:sin(A + B) = sinAcosB + cosAsinB。
sin(A - B) = sinAcosB - cosAsinB。
4. 正弦函数的倍角公式:sin2θ = 2sinθcosθ。
sin2θ = 1 - 2cos²θ。
sin3θ = 3sinθ - 4sin³θ。
二、余弦函数公式:1. 余弦函数的定义:在直角三角形中,余弦函数定义为邻边与斜边的比值。
记作cosθ = b/c,其中θ为角度,b为邻边长,c为斜边长。
2. 基本余弦函数公式:余弦函数的值在一个周期内的变化可用以下公式表示:cos(θ + 2πn) = cosθ,其中n为任意整数。
cos(π - θ) = -cosθ。
cos(π + θ) = -cosθ。
3. 余弦函数的和差公式:cos(A + B) = cosAcosB - sinAsinB。
cos(A - B) = cosAcosB + sinAsinB。
4. 余弦函数的倍角公式:cos2θ = cos²θ - sin²θ。
cos2θ = 2cos²θ - 1。
cos3θ = 4cos³θ - 3cosθ。
三、正切函数公式:1. 正切函数的定义:在直角三角形中,正切函数定义为对边与邻边的比值。
三角函数运算公式大全
三角函数运算公式大全1. 正弦函数的运算公式。
正弦函数是三角函数中的一种,其运算公式包括:正弦函数的基本关系式,sin(α) = 对边/斜边。
正弦函数的和差化积公式,sin(α±β) = sinαcosβ± cosαsinβ。
正弦函数的倍角公式,sin2α = 2sinαcosα。
正弦函数的半角公式,sin(α/2) = ±√[(1 cosα)/2]2. 余弦函数的运算公式。
余弦函数也是三角函数中的一种,其运算公式包括:余弦函数的基本关系式,cos(α) = 邻边/斜边。
余弦函数的和差化积公式,cos(α±β) = cosαcosβ∓ sinαsinβ。
余弦函数的倍角公式,cos2α = cos^2α sin^2α。
余弦函数的半角公式,cos(α/2) = ±√[(1 + cosα)/2]3. 正切函数的运算公式。
正切函数是另一种三角函数,其运算公式包括:正切函数的基本关系式,tan(α) = 对边/邻边。
正切函数的和差化积公式,tan(α±β) = (tanα± tanβ)/(1 ∓ tanαtanβ)。
正切函数的倍角公式,tan2α = (2tanα)/(1 tan^2α)。
正切函数的半角公式,tan(α/2) = ±√[(1 cosα)/(1 + cosα)]4. 三角函数的诱导公式。
三角函数的诱导公式是指通过已知角的三角函数值来求另一个角的三角函数值的公式,包括:sin(-α) = -sin(α)。
cos(-α) = cos(α)。
tan(-α) = -tan(α)。
sin(πα) = sinα。
cos(πα) = -cosα。
tan(πα) = -tanα。
sin(π + α) = -sinα。
cos(π + α) = -cosα。
tan(π + α) = tanα。
sin(2πα) = -sinα。
cos(2πα) = cosα。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学三角函数公式大全三角函数1. ①与α(0°≤α<360°)α与角β的终边重合):{}Zk k ∈+⨯=,360|αββ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|ββ ③终边在y 轴上的角的集合:{}Zk k ∈+⨯=,90180|ββ④终边在坐标轴上的角的集合:}Z k k ∈⨯=,90| ββ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ⑥终边在x y -=轴上的角的集合:{}Zk k ∈-⨯=,45180|ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k360⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=180360k⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k180⑩角α与角β的终边互相垂直,则角α与角β的关系:90360±+=βαk2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =π180°≈57.30°yx▲SIN \COS sinxcosx 1、2、3、4表示第一、二、三、四象限一半所在区域12341234sinxsinx sinx cosx cosxcosx=57°18ˊ. 1°=180π≈0.01745(rad )3、弧长公式:r l ⋅=||α. 扇形面积公式:211||22s lr r α==⋅扇形4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则 r y =αsin ; rx =αcos ; x y =αtan ;yx=αcot ; x r =αsec ;. yr =αcsc .5、三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割-----+++++-+正弦、余割o o o x yx yxy6、三角函数线正弦线:MP; 余弦线:OM; 正切线: AT.7. 三角函数的定义域:三角函数定义域=)(x f sin x {}R x x ∈| =)(x f cos x{}R x x ∈|roxya 的终边P (x,y TMA O Pxy=)(x f tan x ⎭⎬⎫⎩⎨⎧∈+≠∈Z k k x R x x ,21|ππ且 =)(x f cot x {}Z k k x R x x ∈≠∈,|π且=)(x f sec x ⎭⎬⎫⎩⎨⎧∈+≠∈Z k k x R x x ,21|ππ且=)(x f csc x{}Z k k x R x x ∈≠∈,|π且8、同角三角函数的基本关系式:αααtan cos sin =αααcot sin cos =1cot tan =⋅αα1sin csc =α⋅α1cos sec =α⋅α1cos sin 22=+αα1tan sec 22=-αα1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为:“奇变偶不变,符号看象限”三角函数的公式:(一)基本关系公式组一sin x ·csc x =1tan x =xx cos sin sin 2x +cos 2x =1cos x ·sec x x =xxsin cos 1+tan 2x =sec 2xtan x ·cot x =1 1+cot 2x =csc 2x=1(3) 若 o<x<2,则sinx<x<tanx(2)(1)|sinx|>|cosx||cosx|>|sinx||cosx|>|sinx||sinx|>|cosx|sinx>cosxcosx>sinx16. 几个重要结论:OOxyxy公式组二xx k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ公式组三xx x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=-公式组四xx x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ公式组五xx x x x x x x cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ公式组六xx x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ(二)角与角之间的互换公式组一 公式组二βαβαβαsin sin cos cos )cos(-=+αααcos sin 22sin =βαβαβαsin sin cos cos )cos(+=-ααααα2222sin 211cos 2sin cos 2cos -=-=-=βαβαβαsin cos cos sin )sin(+=+ ααα2tan1tan 22tan -= βαβαβαsin cos cos sin )sin(-=-2cos 12sinαα-±=βαβαβαtan tan 1tan tan )tan(-+=+2cos 12cosαα+±=βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan 12tan2sin 2ααα+=2tan12tan 1cos 22ααα+-=2tan 12tan2tan 2ααα-=42675cos 15sin -== , ,3275cot 15tan -==,.3215cot 75tan +==42615cos 75sin +==()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=cos cos 21sin sin cos cos 21cos cos sin sin 21sin cos sin sin 21cos sin 2cos2sin 2sin sin βαβαβα-+=+2sin2cos 2sin sin βαβαβα-+=-2cos2cos 2cos cos βαβαβα-+=+2sin2sin 2cos cos βαβαβα-+-=-αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=ααπsin )21cos(-=+ααπcos )21sin(=+ααπcot )21tan(-=+ααπsin )21cos(=-ααπcos )21sin(=-ααπcot )21tan(=-10. 正弦、余弦、正切、余切函数的图象的性质:()ϕω+=x A y sin(A 、ω>0)定义域 R RR值域 ]1,1[+-]1,1[+- RR[]A A ,-周期性 π2π2ππωπ2奇奇偶奇奇当,0≠ϕ非奇⎭⎬⎫⎩⎨⎧∈+≠∈Z k k x R x x ,21|ππ且{}Z k k x R x x ∈≠∈,|π且xy cot =xy tan =xy cos =xy sin =偶性 函数 函数 函数 函数 非偶 当,0=ϕ奇函数单调性]22,22[ππππk k ++-上为增函数;]223,22[ππππk k ++上为减函数(Z k ∈)()]2,12[ππk k -;上为增函数()]12,2[ππ+k k上为减函数 (Zk ∈)⎪⎭⎫⎝⎛++-ππππk k 2,2上为增函数(Z k ∈) ()()ππ1,+k k 上为减函数(Z k ∈) ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--+--)(212),(22A k A k ωϕππωϕππ上为增函数;⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--+-+)(232),(22A k A k ωϕππωϕππ上为减函数(Z k ∈)注意:①x y sin -=与x y sin =的单调性正好相反;x y cos -=与xy cos =的单调性也同样相反.一般地,若)(x f y =在],[b a 上递增(减),则)(x f y -=在],[b a 上递减(增). ②xy sin =与x y cos =的周期是π.③)sin(ϕω+=x y 或)cos(ϕω+=x y (0≠ω)的周期ωπ2=T .▲Oyx2tanx y =的周期为2π(πωπ2=⇒=T T ,如图,翻折无效).④)sin(ϕω+=x y 的对称轴方程是2ππ+=k x (Z k ∈),对称中心(0,πk );)cos(ϕω+=x y 的对称轴方程是πk x =(Z k ∈),对称中心(0,21ππ+k );)tan(ϕω+=x y 的对称中心(0,2πk ). x x y x y 2cos )2cos(2cos -=--=−−−→−=原点对称⑤当αtan ·,1tan =β)(2Z k k ∈+=+ππβα;αtan ·,1tan -=β)(2Z k k ∈+=-ππβα. ⑥x y cos =与⎪⎭⎫ ⎝⎛++=ππk x y 22sin 是同一函数,而)(ϕω+=x y 是偶函数,则)cos()21sin()(x k x x y ωππωϕω±=++=+=.⑦函数x y tan =在R 上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,x y tan =为增函数,同样也是错误的].⑧定义域关于原点对称是)(x f 具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-) 奇偶性的单调性:奇同偶反. 例如:x y tan =是奇函数,)31tan(π+=x y 是非奇非偶.(定义域不关于原点对称)奇函数特有性质:若x ∈0的定义域,则)(x f 一定有)0(=f .(x ∉0的定义域,则无此性质)⑨x y sin =不是周期函数;x y sin =为周期函数(π=T );x y cos =是周期函数(如图);x y cos =为周期函数(π=T ); 212cos +=x y 的周期为π(如图),并非所有周期函数都有最小正周期,例如:Rk k x f x f y ∈+===),(5)(.⑩abb a b a y =+++=+=ϕϕαβαcos )sin(sin cos 22 有yb a ≥+22.▲yx▲1/2yxy=|cos2x +1/2|图象三角函数的图象变换有振幅变换、周期变换和相位变换等.函数y =Asin (ωx +φ)的振幅|A|,周期2||T πω=,频率1||2f Tωπ==,相位;x ωϕ+初相ϕ(即当x =0时的相位).(当A >0,ω>0 时以上公式可去绝对值符号),由y =sinx 的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y =Asinx 的图象,叫做振幅变换或叫沿y 轴的伸缩变换.(用y/A 替换y )由y =sinx 的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的1||ω倍,得到y =sin ω x 的图象,叫做周期变换或叫做沿x 轴的伸缩变换.(用ωx 替换x)由y =sinx 的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y =sin (x +φ)的图象,叫做相位变换或叫做沿x 轴方向的平移.(用x +φ替换x)由y=sinx的图象上所有的点向上(当b>0)或向下(当b<0)平行移动|b|个单位,得到y=sinx+b的图象叫做沿y轴方向的平移.(用y+(-b)替换y)由y=sinx的图象利用图象变换作函数y=Asin(ωx+φ)(A>0,ω>0)(x∈R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x轴量伸缩量的区别。