三相异步电动机调速及控制电路

合集下载

三相异步电动机的起动与调速实验报告

三相异步电动机的起动与调速实验报告

三相异步电动机的起动与调速实验报告实验报告:三相异步电动机的起动与调速一、实验目的1.学会使用三相异步电动机进行起动和调速实验;2.理解三相异步电动机的工作原理和特性;3.掌握控制电源频率和电压对电动机起动和调速的影响。

二、实验原理1.三相异步电动机的起动三相异步电动机的起动可以分为直接起动、通过降压启动器起动和通过自耦变压器起动等几种方式。

实验中我们采用的是直接起动方式。

直接起动是将三相电源直接接到电动机的定子绕组上,通过电源的三相电流激励定子绕组产生磁场,使得电动机启动转矩产生,从而实现电机的起动。

2.三相异步电动机的调速三、实验装置和仪器1.三相异步电动机:用于实现起动和调速实验。

2.控制电源:用于提供三相交流电源,调整电源频率和电压。

3.电压表和电流表:用于测量电源电压和电流。

4.转速计:用于测量电动机转速。

5.手动控制开关。

四、实验步骤1.连接实验电路:将三相异步电动机与控制电源、电压表和转速计连接起来,根据电路图正确接线。

2.起动实验:将控制电源调至合适的频率和电压,打开电源开关,记录电动机的起动时间,并观察电动机的起动转矩和转速情况。

3.调速实验:保持电动机运行状态,通过改变控制电源的频率和电压,逐渐增大或减小转速,同时记录相应的电源频率和电压。

五、实验结果与分析1.起动实验结果:记录电动机的起动时间,并观察电动机的起动转矩和转速情况。

2.调速实验结果:通过改变控制电源的频率和电压,记录相应的转速和电源频率和电压,并绘制转速和电源频率、电压的关系图。

六、实验结论通过实验我们可以得到以下结论:1.三相异步电动机可以通过改变电源频率和电压来实现起动和调速;2.电源频率和电压对电动机起动和调速有直接的影响;3.控制电源的频率和电压可以调整电动机的转速;七、实验总结通过本次实验,我深入了解了三相异步电动机的起动和调速原理和特性。

在实验中,我掌握了使用三相异步电动机进行起动和调速的操作方法,并学会了通过改变电源频率和电压来调整电动机的转速。

三相异步电动机的变极调速控制

三相异步电动机的变极调速控制

SB3常闭触头 先断开,切断 KM1线圈电路
SB2常开触头 后闭合
KM1自锁触头复位断开
KM1主触 头断开
电动机因惯 性继续旋转
KM1互锁触头复位闭合
KM2、KM3 线圈都得电
●按钮控制的双速电动机变极调速工作过程
2)高速运转
需要高速运转时,也需要先按下低速启动按钮SB2,把定子 绕组接成△,让电动机低速启动。 启动结束,再按下高速启动按钮SB3,把定子绕组换接成YY, 实现电动机高速运行。
KT常开延时闭合
KM1失电 拆除△接线,切除电动机正序电源
定子绕组尾端接反序电源
KM2得电 KM3得电
电动机YY连接, 定子绕组首端 高速运转 短接于一点
变极调速安装接线注意事项: 1)正确识别电动机定子绕组的9个接线端子。 2)交换任意两相电源的相序。
2)按钮控制的双速电动机变极调速
注意控制电路的线号
三、变极调速原理
把定子每相绕组都看成两个完全对称的“半相绕组”。
以U相为例,设相电流从绕组的头部U1流进,尾部U2流出。 当U相两个“半相绕组”头尾相串联时(顺串),根据右手 螺旋法则,可判断出定子绕组产生4极磁场。 若U相两个“半相绕组” 尾尾相串联(反串)或者头尾相并 联(反并),定子绕组产生2极磁场。
●按钮控制的双速电动机变极调速工作过程
1)低速运转
需要低速运转时,按下低速启动按钮SB2,把定子绕组接成 △,让电动机低速启动,并连续运转。
合上QS,M3线圈电路
SB2常开触头后 闭合,KM1线圈
通电
KM1电气互锁触头断开, 对KM2、KM3互锁
KM1主触 头闭合
相关知识——三相异步电动机的电气调速
• 什么叫恒转矩调速?

三相异步电动机的调速控制ppt课件

三相异步电动机的调速控制ppt课件

三角形与双星形联结法(恒功率调速场合使用)
➢ 三角形联结时,p=2 (低速)各相绕组互为240 电角度 ➢ 双星形联结时,p=1 (高速) 各相绕组互为120 O 电角度 为保持变速前后转向不变,变极对数时必须改变电源的相序
O
主电路析
KM3接通 KM2、KM1断开
三角形
双星形
主电路分析
相序 U V W
电磁离合器
电枢 磁极 线圈
电磁调速异步电动机的控制
晶闸管可控 整流电源
测速发电机
一.三相笼型电动机的变极调速
n﹦60pf1 (1﹣S)
多速电动机
双速(一套绕组) √ 三速(两套绕组) 四速(两套绕组)
星形与双星形联结法(恒转矩调速场合使用)
➢ 星形联结时, p=2 (低速)各相绕组互为240 O电角度 ➢ 双星形联结时,p=1 (高速)各相绕组互为120 O电角度 为保持变速前后转向不变,变极对数时必须改变电源的相序
相序 W
U
V 三角形
KM3断开
双星形 KM2、KM1接通
控制电路分析
SC→低速 KM3接通(三角形) SC→高速 KM3接通(三角形)- KM3断 KM2、KM1接通(双星形)
KT延时
二.绕线式电动机转子串电阻的调速
转子串电阻 → n → s
用凸轮控制器进行调速(吊车﹑起重机) (转子电路中串接三相不对称电阻)
SQ1、SQ2:限位开关
凸轮控制器 ➢ 黑点表示该位置触头接通 ➢ 无黑点表示该位置触头不接通
KT10~12: 决定KM通断 KT6~9: 控制电机转向 KT1~5: 短接电阻
三.电磁调速异步电动机的控制
电磁调速的组成: 异步电动机 电磁离合器 控制装置

三相异步电动机调速方法有几种

三相异步电动机调速方法有几种

三相异步电动机调速方法有几种三相异步电动机调速方法有以下几种:1. 变频调速:变频调速是最常见的方法之一,通过控制变频器的输出频率,改变电机的转速。

变频器将电源频率转换为可调的高频交流电,然后供电给电动机,通过改变输出频率,可以使电机的转速达到所需的速度。

2. 电压调节:电压调节是通过改变电机的供电电压来调整其转速。

通过降低或增加电机的供电电压,可以改变电机的转速。

这种调速方法简单、成本低,但是变压器的过载能力有限,不能实现大范围的调速。

3. 电阻调速:电阻调速是通过在电机起动电路中串联电阻器来改变电机的供电电压,进而改变其转速。

通过改变电阻的大小来改变电压降,从而实现调速。

但是这种方法存在能量损耗较大、效率低的问题。

4. 转子电流反馈调速:通过在电机转子绕组上安装传感器,实时测量转子电流,并根据电流大小调整电压信号,控制转速。

这种调速方法适用于小功率电机,具有调速精度高、响应速度快的优点。

5. 励磁调速:励磁调速是通过改变电动机的励磁电流来控制转速。

通过调节励磁电流的大小,可以改变转子感应电动势的大小,从而实现调速。

这种方法适用于大功率电机,但励磁系统较为复杂。

6. 双电源调速:双电源调速是将电机连接到两个不同的电源,通过切换电源来改变电机的供电电压,从而实现调速。

这种调速方法比较灵活,可以实现宽范围的调速,但设计和安装要求较高。

7. 直接耦合调速:直接耦合调速是将电动机与可变载荷直接耦合,在负载端通过改变负载的机械特性来改变电动机的转速。

这种方法在某些特定场合下适用,但对机械系统的设计和操作要求较高。

综上所述,三相异步电动机的调速方法包括:变频调速、电压调节、电阻调速、转子电流反馈调速、励磁调速、双电源调速和直接耦合调速。

每种调速方法都有其适用的场合和优缺点,根据具体的需求和条件选择合适的调速方法。

三相异步电动机连续控制电路

三相异步电动机连续控制电路

三相异步电动机连续控制电路一、引言三相异步电动机是工业生产中最常用的电动机之一。

它具有结构简单、使用可靠、运行平稳等特点,被广泛应用于各种机械设备中。

在实际应用中,为了满足不同的工艺要求和实现自动化控制,需要对三相异步电动机进行连续控制。

本文将介绍三相异步电动机连续控制电路的相关知识。

二、三相异步电动机基础知识1. 三相异步电动机的结构和工作原理三相异步电动机由定子和转子两部分组成。

定子上布置着三个对称排列的同心圆形线圈,称为定子绕组。

转子上也布置着类似的线圈,称为转子绕组。

当通过定子绕组通以交流电时,在定子内形成旋转磁场,磁场旋转速度等于供电频率除以极对数。

由于转子中也存在磁场,因此在磁场作用下,转子会受到一个旋转力矩,并随着旋转磁场而旋转。

2. 三相异步电动机的运行特性三相异步电动机具有以下运行特性:(1)起动特性:三相异步电动机的起动需要通过一定的方法来实现,常用的方法有直接启动、降压启动和星-三角启动等。

(2)空载特性:当三相异步电动机处于空载状态时,其转速会略高于额定转速。

(3)负载特性:当三相异步电动机处于负载状态时,其转速会下降,但不会低于额定转速。

三、三相异步电动机连续控制电路1. 三相异步电动机连续控制原理三相异步电动机连续控制是指通过改变电源对电机的供电方式和供电参数,来实现对电机的运行状态进行调节。

常用的控制方式有调速、正反转和制动等。

其中调速是最常见的一种控制方式。

2. 三相异步电动机调速控制原理调速是通过改变供电频率或改变供电电压来实现对三相异步电动机转速进行调节。

常用的调速方法有变频调速和降压调速两种。

(1)变频调速变频调速是指通过将交流供电源经过整流、滤波、逆变等处理后,得到一个可变频率、可变幅值的交流输出,从而实现对电机转速的调节。

变频调速的优点是调速范围大,控制精度高,但成本较高。

(2)降压调速降压调速是指通过改变电源对电机的供电电压来实现对电机转速的调节。

常用的降压调速方法有自耦降压启动、稳压变压器降压启动和可控硅降压启动等。

电气控制与PLC技术-三相异步电动机的调速运行控制

电气控制与PLC技术-三相异步电动机的调速运行控制

1、继电器-接触器控制电路原理图
2、工作原理
按下起动按钮SB2,KM1线圈得电吸合 ,电动机作Δ联接低速运转,同时中间继电 器KA线圈通电并自锁,保证了KM1的长期 得电和时间继电器KT的线圈得电吸合; KT经延时,其动断触头断开,切断KM1, 其动合触头闭合,KM2、KM3线圈得电吸 合,电动机作双Y联接高速运转。
任务8:三相异步电动机的调速运行控制
三、三相双速异步电动机变极调速运行的PLC控制(续)
(二)课上讲解
1、将三相双速异步电动机变极调速运行的继电器-接触器控制电路改造为用PLC控制 ,其输入/输出是如何分配的?
电气 符号
输入
输入 端子
功能
电气 符号
输出
输出 端子
功能
任务8:三相异步电动机的调速运行控制
三相双速异步电动机变极调速运行的继电器-接触器控制电路原理图
任三相双速异步电动机变极调速运行的继电器-接触器控制(续)
(一)课上问题(续)
1、简述三相双速异步电动机变极调速运行继电器-接触器控制电路工作原理。(续)
a)
b)
三相双速异步电动机联结方式分解示意图
a)分解前 b)分解后
任务8:三相异步电动机的调速运行控制
六、知识拓展
1、三速电动机的控制
三速电动机通过改变绕组的组合 方式而得到不同的磁极对数。按下起 动按钮SB1,KM1和KM2的线圈得电 吸合并自锁,电动机作Δ联接低速运转; 按下SB2,KM1和KM2的线圈失电释 放,低速运转停止,而KM3线圈得电 吸合并自锁,电动机作Y联接中速运转, 时间继电器KT线圈得电;经延时, KM3线圈失电释放,中速运转停止, 而KM4和KM5线圈得电吸合并自锁, 电动机作双Y联接高速运转。

第2章三相异步电动机控制线路模板ppt课件

第2章三相异步电动机控制线路模板ppt课件
在多处位置设置控制按钮,均能对同一电机实行控制。控制回 路需要设置多套起、停按钮,分别安装在设备的多个操作位置
特 点:
起动按钮的常开触点并联;停止按钮的常闭触点串联。
操作
无论操作哪个启动按钮都可以实现电动机的起动; 操作任意一个停止按钮可以打断自锁电路,使电动机停止运行。
SB1乙
SB1甲
SB2甲
KM
2、工作台前进至终点自动停车; 3、工作台在终点时,启动电机只能反转; 4、工作台后退至原位自动停车; 5、工作台在前进或后退途中均可停车,再 启动后既可进也可退。
实现方法:在生产机械行程的终点和原位安装行程开关
运动过程
按下SB2 工作台正向运行 至终点位置撞开SQ2 电机停车
(反向运行同样分析)
SB2乙
K M
甲地
乙地
SB1甲、SB2甲实现就地控制; SB1乙、SB2乙实现远方控制。
(a)
(b)‍
‍多点控制电路‍
2.2.5 自动循环控制
正程:电动机正转; 逆程:电动机反转。
控制要求:
工作台 B
后退 前进
SQ4 SQ1
床身
工作台 A
SQ2 SQ3
机床工作示意图
1、工作台在原位时,启动电机只能正转;
(1)工作台在原位时: 启动后只能前进,不能后退。 (2)A前进到终点时: 立即后退,退回到原位自动停。
(3)A在途中时: 可停车;再启动时,既可前进也可后退。 (4)A在途中时,若暂时停电,复电时,A不会自行运动。 (5)A在途中若受阻,在一定时间内电机应自行断电而停车。
基本电路的结构特点: 1. 自锁——接触器常开触点与按钮常开触点相并联。 2. 互锁——两个接触器的常闭触点串联在对方线圈的电路

三相交流异步电动机的调速控制电路

三相交流异步电动机的调速控制电路

三相交流异步电动机的调速控制电路由三相沟通异步电动机的转速公式可知,要转变异步电动机的转速,可采纳转变电源频率f 1 、转变磁极对数p 以及转变转差率s 等3 种基本方法。

1、变极调速原理转变异步电动机定子绕组的连接方式,可以转变磁极对数,从而得到不同的转速。

常见的沟通变极调速电动机有双速电动机和多速电动机。

双速电动机定子绕组常见的接法有Y/YY 和△ /YY 两种。

下图所示为4/2 极△ /YY 的双速电动机定子绕组接线图。

在制造时每相绕组就分为两个相同的绕组,中间抽头依次为U2 、V2 、W2 ,这两个绕组可以串联或并联。

依据变极调速原理“定子一半绕组中电流方向变化,磁极对数成倍变化”,下图(a) 将绕组的U1 、V1 、W1 三个端子接三相电源,将U2 、V2 、W2 三个端子悬空,三相定子绕组接成三角形(△)。

这时每相的两个绕组串联,电动机以4 极运行,为低速。

下图(b) 将U2 、V2 、W2 三个端子接三相电源,U1 、V1 、W1 连成星点,三相定子绕组连接成双星(YY )形。

这时每相两个绕组并联,电动机以 2 极运行,为高速。

依据变极调速理论,为保证变极前后电动机转动方向不变,要求变极的同时转变电源相序。

(a) 低速△形接法(b) 高速YY 形接法图4/2 极△ /YY 形的双速电动机定子绕组接线图2、变极调速掌握电路4/2 极的双速沟通异步电动机掌握电路如下图所示。

图4/2 极的双速沟通异步电动机掌握电路上图中,合上电源开关QS ,按下SB2 低速起动按钮,接触器KM1 线圈得电并自锁,KM1 的主触点闭合,电动机M 的绕组连接成△形并以低速运转。

由于SB2 的动断触点断开,时间继电器线圈KT 不得电。

按下高速起动按钮SB3 ,接触器KM1 线圈得电并自锁,电动机M 连接成△形低速起动;由于SB3 是复合按钮,时间继电器KT 线圈同时得电吸合,KT 瞬时动合触点闭合自锁,经过肯定时间后,KT 延时动断触点分断,接触器KM1 线圈失电释放,KM1 主触点断开,KT 延时动合触点闭合,接触器KM2 、KM3 线圈得电并自锁,KM2 、KM3 主触点同时闭合,电动机M 的绕组连接成YY 形并以高速运行。

简述三相笼型异步电动机的调速方法

简述三相笼型异步电动机的调速方法

简述三相笼型异步电动机的调速方法一、定子绕组改变法定子绕组改变法是一种简单且常用的调速方法。

通过改变定子绕组的接法,可以改变电动机的极数,从而改变电机的转速。

常见的定子绕组改变法有两种:星形-三角形启动法和多绕组切换法。

1. 星形-三角形启动法星形-三角形启动法是一种常用的调速方法。

在启动时,将电动机的定子绕组由星形接法切换为三角形接法,可以降低电机的转速。

具体操作步骤如下:(1) 将电动机的定子绕组由星形接法切换为三角形接法;(2) 启动电动机,使之达到额定转速;(3) 在电机达到额定转速后,将定子绕组由三角形接法切换回星形接法。

2. 多绕组切换法多绕组切换法是一种更加灵活的调速方法。

通过改变电动机的绕组连接方式,可以实现多种转速选择。

具体操作步骤如下:(1) 将电动机的绕组由串联接法切换为并联接法,可以提高电机的转速;(2) 将电动机的绕组由并联接法切换为串联接法,可以降低电机的转速。

二、转子电阻改变法转子电阻改变法是一种常用的调速方法。

通过改变电动机转子电阻的大小,可以改变电机的转速。

常见的转子电阻改变法有两种:外加电阻法和液体电阻法。

1. 外加电阻法外加电阻法是一种简单且常用的调速方法。

通过在电动机的转子电路中加入外部电阻,可以改变电机的转速。

具体操作步骤如下:(1) 在电动机的转子电路中加入外部电阻;(2) 调节外部电阻的大小,可以改变电机的转速。

2. 液体电阻法液体电阻法是一种较为复杂但可靠的调速方法。

通过在电动机的转子电路中加入液体电阻,可以改变电机的转速。

具体操作步骤如下:(1) 在电动机的转子电路中加入液体电阻;(2) 调节液体电阻的大小,可以改变电机的转速。

三、变频调速法变频调速法是一种高精度、高效率的调速方法。

通过改变电动机供电的频率,可以精确地控制电机的转速。

变频调速法广泛应用于工业领域。

具体操作步骤如下:(1) 使用变频器将电源频率转换为可调的频率;(2) 调节变频器输出的频率,可以改变电机的转速。

三相异步电动机调速方法

三相异步电动机调速方法

三相异步电动机调速方法三相异步电动机是工业生产中常见的一种电动机,它具有结构简单、运行可靠、维护方便等优点,因此在各种机械设备中得到广泛应用。

在实际生产中,为了满足不同工艺要求和工作条件,常常需要对三相异步电动机进行调速。

下面将介绍几种常见的三相异步电动机调速方法。

首先,我们来介绍电压调制调速方法。

这是一种最为简单的调速方法,通过改变电动机的供电电压来实现调速。

当电动机的供电电压降低时,电动机的转速也会相应降低,反之亦然。

这种方法简单易行,成本低廉,但是调速范围有限,且效率不高。

其次,我们来介绍频率调制调速方法。

这种方法是通过改变电动机的供电频率来实现调速。

通常情况下,电动机的供电频率是恒定的,但是通过变频器等设备可以改变供电频率,从而实现调速。

这种方法调速范围广,效率高,但是设备成本较高。

另外,我们还可以采用极对数调速方法。

这是通过改变电动机的极对数来实现调速。

当电动机的极对数增加时,电动机的转速会相应降低,反之亦然。

这种方法调速范围广,效率高,但是需要更换电动机的定子绕组,成本较高。

除了以上几种常见的调速方法外,还有一些其他的调速方法,如机械变速调速方法、液压变速调速方法等。

这些方法各有特点,可以根据具体的工艺要求和工作条件选择合适的调速方法。

总的来说,三相异步电动机的调速方法有多种多样,可以根据具体的需求选择合适的调速方法。

在选择调速方法时,需要考虑调速范围、效率、成本等因素,并结合实际情况进行综合考虑。

希望本文介绍的内容能够为大家在实际生产中选择合适的调速方法提供一些参考,使生产过程更加顺利高效。

三相异步电动机的基本控制电路

三相异步电动机的基本控制电路

正反转控制
总结词
正反转控制是为了实现电动机的正向和反向旋转而采用的一 种控制方式。
详细描述
正反转控制电路中需要使用两个交流接触器,通过改变电动 机的电源相序来实现正反转。为了确保安全,通常需要加入 互锁保护,防止正反转切换时发生短路或意外事故。
调速控制
总结词
调速控制是为了调节电动机的转速而采用的一种控制方式,可以通过改变电源频率或电压来实现调速 。
04
三相异步电动机的保护措施
BIG DATA EMPOWERS TO CREATE A NEW
ERA
过载保护
过载保护的重要性
过载是指电动机的电流超过了其额定 值,这可能导致电动机过热、绝缘损 坏,甚至烧毁。因此,过载保护是确 保电动机安全运行的重要措施。
过载保护的实现方式
通常通过在电动机主电路中串联热继 电器来实现过载保护。当电动机过载 时,热继电器中的双金属片受热弯曲, 推动触点断开,切断电源,从而保护 电动机。
维护和保养
总结词
为了确保三相异步电动机的正常运行和使用寿命,需要 进行定期的维护和保养。
详细描述
定期检查电动机的机械部分和电气部分,如轴承、绕组 等;定期清理电动机内部的灰尘和杂物,保持清洁;定 期检查电动机的运行参数,如电流、电压、温度等是否 正常;根据需要更换磨损的部件,如轴承、密封圈等。
THANKS
星形-三角形启动控制电路
总结词
该电路适用于较大容量的电动机,通过改变电动机定子绕组的接线方式来降低启动电流 和启动转矩。
详细描述
星形-三角形启动控制电路由电源开关、熔断器、接触器、时间继电器和电动机等元件 组成。启动时,先合上电源开关,接触器KM1和KM2的线圈得电,电动机定子绕组接 成星形,降低启动电流和启动转矩。时间继电器KT的延时闭合触点闭合,接触器KM3

三相异步电动机的调速

三相异步电动机的调速

m1 p U1 2 1 ( ) 常数 ' 4 f1 2 ( L1 L2 ) Te max的降低是由定子绕组电阻 r 的影响所致。尤其是当 f1 低到使得 r 由上式可见, 1 1 ( x1 x2 ) 相比较时, Te max下降严重。 可以与 Te max
解决措施: 可以对 U1 / f1的线性关系加以修正,提高低频时的 U1 / f1 ,以补偿 低频时定子绕组电阻压降的影响(见下图)。
TY 9550PY 9550PYY ( ) /( ) 1 TYY n1 2n1
结论:Y/YY接变极调速属于恒转矩调速方式。
第12章 三相异步电动机的调速
b、△/YY接变极调速
假定变极调速前后电机的功率因数 cos1 、效率 均不变,并设每半相绕组中的电 流均为额定值 I 1N ,则 /YY变极前后电动机的输出功率和输出转矩分别满足下列关系:
改变极对数p都是成倍的变化,转速也是成倍的变化,故为有级调速。 改变定子绕组的联结法改变绕组极对数的原理。 见下页图12-1,12-2
第12章 三相异步电动机的调速
三相异步电动机的转子转速可由下式给出:
60 f1 n (1 s) p
由上式可见,三相异步电动机的调速方法大致分为如下几种: 变极调速; 变频调速; 改变转差率调速; 其中,改变转差率的调速方法涉及: 改变定子电压的调压调速; 绕线式异步电动机的转子串电阻调速; 电磁离合器调速; 绕线式异步电动机的双馈调速与串级调速。
由此绘出保持U1 / f1=常数时变频调速的典型机械特性如下图所示。为便于比较,图 中还同时绘出了 Te max 常数时的机械特性,如图中的虚线所示。
三相异步电动机变频调速时 的机械特性( U1 / f1 =常数)

基于PLC实现的三相异步电动机变频调速控制

基于PLC实现的三相异步电动机变频调速控制

基于Plc控制电机调速实验报告电控学院电气0904班李文涛0906060427—、实验名称:基于PLC实现的三相异步电动机变频调速控制二、实验目的:通过综合实验,使学生对所学过的可编程控制器在电动机变频调速控制中的应用有一个系统的认识,并运用自己学过的知识,自己设计变频调速控制系统。

要求用PLC控制变频器,通过光电编码器反馈速度信号达到电动机调速的精确控制,自己设计,自己编程,最后进行硬件、软件联机的综合调试,实现自己的设计思想。

三、实验器材:220V PLC实验台一套、380V变频器实验台一套、万用表一个、导线若干三、实验各部分原理:1.实验主要器件原理1)光电编码器:COM01030002040CH光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。

这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。

光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。

由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。

2)变频器:I原理概述变频调速能够应用在大部分的电机拖动场合,由于它能提供精确的速度控制,因此可以方便地控制机械传动的上升、下降和变速运行。

变频应用可以大大地提高工艺的高效性(变速不依赖于机械部分),同时可以比原来的定速运行电机更加节能,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波石电感。

矢量控制:U/f控制方式建立于电机的静态数学模型,因此,动态性能指标不高。

对于对动态性能要求较高的应用,可以采用矢量控制方式。

矢量控制的基本思想是将异步电动机的定子电流分解为产生磁场的电流分量(励磁电流)和与其相垂直的产生转矩的电流分量(转矩电流),并分别加以控制。

三相异步电动机连续控制电路原理

三相异步电动机连续控制电路原理

一、概述三相异步电动机是工业生产中常用的一种电动机,它具有结构简单、可靠性高、效率高等优点,在很多领域都有广泛的应用。

而对于三相异步电动机的控制,连续控制电路是一种常见的控制方法,它通过对电动机的供电电压进行调节,实现对电动机转速的连续控制,是一种有效的控制手段。

本文将介绍三相异步电动机连续控制电路的原理,包括其基本原理、实现方式和应用。

二、三相异步电动机基本原理1. 三相异步电动机的结构和工作原理三相异步电动机是一种感应电动机,由定子和转子组成。

当通过定子绕组通入三相交流电时,会在定子绕组中产生一个旋转磁场。

转子由感应电动机的工作原理可知,在这旋转磁场的作用下,转子内也会产生感应电动势,从而使转子产生转动运动。

通过控制定子绕组中的电流或转子上的电流,可以实现对三相异步电动机的控制。

2. 三相异步电动机的控制原理三相异步电动机的控制原理主要是通过改变电动机的供电电压和频率来实现。

其中,改变电动机的供电电压可以实现对电动机转矩和转速的控制;而改变电动机的供电频率,则可以实现对电动机转速的控制。

在连续控制电路中,通常采用改变电动机的供电电压来进行控制。

三、三相异步电动机连续控制电路原理1. 连续控制电路的基本结构连续控制电路的基本结构包括电源模块、控制模块和输出模块。

电源模块负责将输入的交流电转换为可供电动机使用的直流电;控制模块负责对输出电压进行调节,实现对电动机的控制;输出模块将调节后的电压提供给电动机使用。

2. 连续控制电路的工作原理连续控制电路通过控制控制模块中的电路来改变输出电压,从而实现对电动机的控制。

一般来说,控制模块中会采用脉宽调制(PWM)或者调压变压器来实现对输出电压的调节。

通过改变控制模块中的控制信号,可以精确地调节输出电压,从而实现对电动机转速的连续控制。

四、三相异步电动机连续控制电路的实现方式1. 脉宽调制(PWM)控制方式脉宽调制是一种常用的连续控制方式,它通过改变输出脉冲的宽度来实现对输出电压的调节。

项目16三相异步电动机变极调速控制电路

项目16三相异步电动机变极调速控制电路

控制电路应具备手动控制和自 动控制两种模式,以满足不同 的控制需求。
控制电路应选择合适的控制元 件,如继电器、定时器和传感 器等,以实现精确的控制效果。
保护电路设计
01
保护电路负责监测控制电路的工作状态,并在出现异常情况时 及时切断主电路,以保护电动机和控制电路的安全。
02
保护电路应具备过载保护、短路保护、欠压保护和过流保护等
机械故障
检查电动机的轴承、转子等机械部件 是否正常,是否有异物卡住。
控制电路故障
检查控制电路的接线是否正确,控制 元件是否正常工作,如继电器、接触 器等。
调速不灵敏
总结词
调速器故障
当调速不灵敏时,可能是由于调速器故障 、电动机故障或控制电路故障等原因。
检查调速器的设定值是否正确,调速范围 是否合适,调速器是否需要调整或更换。
接触器选择
总结词
接触器是控制电路中的重要元件,选择合适的接触器能够确保电动机的正常运行 和保护电路安全。
详细描述
在选择接触器时,需要考虑其额定电流和电压,以确保接触器能够承受电动机的 正常电流和电压。同时,需要考虑接触器的机械寿命和电气寿命,以确保接触器 能够长期稳定地工作。
继电器选择
总结词
继电器是实现自动控制的关键元件,选择合适的继电器能够实现精确的控制逻辑和保护电路安全。
步骤2
调整控制电路板上的变极调速开关,观察电 动机的转速变化,确保调速功能正常。
步骤4
记录调试过程中的各项数据,为后续分析提 供依据。
调试结果分析
分析1
根据电动机的转速变化情况,判断变极调速控制 电路是否正常工作。
分析3
对比实际运行数据与理论值,分析误差产生的原 因,并提出改进措施。

三相异步电动机基本控制电路全

三相异步电动机基本控制电路全

电源
一部分接成星形,
一部分接成三角形
原始状态
起动结束后
换成三角形联结法
投入全电压
3. 三相绕线转子电动机的起动控制
➢ 转子电路中串接电阻 ➢ 转子电路中串接频敏变阻器
转子绕组串接电阻起动
优点:减小起动电流、提高起动转矩 适用:要求起动转矩较大的场合
起动时,电阻被短接的方式: 三相电阻不平衡短接法(用凸轮控制器)
~ SB1
SBF
KMF
FR
KMF
SBR
KMR
KMR
KMR
KMF
互锁
电器联锁(互锁)作用:两个接触器的辅
助常闭触头互相控制。正转时,SBR不起 作用;反转时,SBF不起作用。从而避免 两接触器同时工作造成主回路短路。
1.鼠笼式电机的正反转控制(3)--双重联锁
~ SB1
机械联锁
SBF
KMF
SBR
KMR
可逆运行反接制动
正转:KSF合 反转:KSR合
可逆运行反接制动
正转:KSF合 反转:KSR合
2. 防止电源电压恢复时, 电动机自行起动而造成 设备和人身事故
3. 避免多台电动机同时起 动造成电网电压的严重 下降。
异步机的直接起动----点动+连续运行控制
方法一: 用钮子开关SA
✓ 断开:点动控制 ✓ 合上:长动控制
异步机的直接起动----点动+连续运行控制
方法二:用复合按钮。
QK
~ SB1
而使线圈保持通电的控制方式
自锁触头: 起自锁作用的辅助常开触头
工作原理:
按下按钮(SB1),线圈(KM)通电, 电机起动;同时,辅助触头(KM)闭合, 即使按钮松开,线圈保持通电状态,电机 连续运行。

三相双速异步电动机控制电路

三相双速异步电动机控制电路

一、双速电机控制原理调速原理根据三相异步电动机的转速公式:n1=60f/p三相异步电动机要实现调速有多种方法,如采用变频调速(YVP变频调速电机配合变频器使用),改变励磁电流调速(使用YCT电磁调速电机配合控制器使用,可实现无极调速),也可通过改变电动机变极调速,即是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。

根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的(这也是常见的2极电机同步转速为3000rpm,4极电机同步转速1500rpm,6极电机同步转速1000rpm等)。

这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机,这就是双速电机的调速原理。

下图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。

∴转速比=2/1=2双速电机的变速原理是:电机的变速采用改变绕组的连接方式,也就是说用改变电机旋转磁场的磁极对数来改变它的转速。

如你单位的双速电机(风机),平时转速低,有时风机就高速转,主要是通过外部控制线路的切换来改变电机线圈的绕组连接方式来实现。

1、在定子槽内嵌有两个不同极对数的共有绕组,通过外部控制线路的切换来改变电机定子绕组的接法来实现变更磁极对数;2、在定子槽内嵌有两个不同极对数的独立绕组;3、在定子槽内嵌有两个不同极对数的独立绕组,而且每个绕组又可以有不同的联接。

(一)双速电机定子接线图三相双速异步电动机的定子绕组有两种接法:△接和YY接法,如下图所示。

图(a)△接(低速)图(b)YY接(高速)图25-1 三相双速异步电动机定子绕组接线图图(a)为双速异步电动定子绕组的△接法,三相绕组的接线端子U1、V1、W1与电源线连接,U2、V2、W2三个接线端悬空,三相定子绕组接成△形。

三相交流异步电动机调速方法

三相交流异步电动机调速方法

三相交流异步电动机调速方法一、调频调速法调频调速法是通过改变电源的频率来改变电动机的转速。

传统的调频调速法使用直流电源的伺服电动机,通过改变直流电压的大小来改变电动机的转速。

而对于异步电动机,调频调速法使用的是变频器。

变频器是一种能够改变交流电频率的装置,可以将常规的50Hz或60Hz的交流电源转换为可变频率的交流电源。

当将变频器与异步电动机配对使用时,可以通过改变输出频率来改变电动机的转速。

调频调速法的原理是:变频器将电网电源的交流电压转换为直流电压,并经过变频器内部的变换电路转换为可控的交流电源输出,通过调整变频器的输出频率,可以改变电动机的转速。

调频调速法的优点是:调速范围广,可靠性高。

通过调整变频器的输出频率,可以使电动机在范围内任意转速。

同时,调频调速法可以保持电动机的高效率,提高能源利用效率。

二、电压调制调速法电压调制调速法是通过改变电源的电压来改变电动机的转速。

这种调速方法在控制电动机转速时需要改变电源电压的大小,以达到改变电动机转速的目的。

电压调制调速法的原理是:在控制电动机转速时,通过改变供电电压的大小,从而改变电机的转速。

在供电电压改变的同时,也要保持电动机的机械可靠性和高效率。

电压调制调速法的优点是:控制简单,实时性好。

通过改变供电电压,可以快速实现电动机的转速调节,同时也不会对电动机的机械可靠性和高效率造成影响。

三、频率调制调速法频率调制调速法是通过改变电源的频率来改变电动机的转速。

与调频调速法类似,频率调制调速法使用的是变频器。

频率调制调速法的原理是:通过调整变频器的输出频率,改变电动机的转速。

在频率调制调速法中,可以通过输入指定的频率值,使电动机按照指定的频率运行。

频率调制调速法的优点是:控制精确,稳定性好。

可以通过输入指定的频率值,实现电动机的精确调节,同时也保持电动机的稳定性。

四、极数切换调速法极数切换调速法是通过改变电动机的外部电路来改变电动机的转速。

这种调速方法是通过改变电动机的极数来改变电动机的转速。

列举三相异步电动机的调速方法

列举三相异步电动机的调速方法

列举三相异步电动机的调速方法
三相异步电动机是一种常用的电动机类型,广泛应用于工业领域。

为了满足不同工况的需求,有多种调速方法可以用于控制三相异步电动机的转速。

1. 变频调速方法:变频调速是目前应用最广泛的一种调速方法。

通过改变电源供电频率,可以改变电动机的转速。

这种方法可以实现连续调速,并且具有调速范围广、稳定性好等优点。

变频调速还可以根据不同的负载要求进行自动调节,提高电动机的效率。

2. 极数调速方法:三相异步电动机的极数与转速成反比关系。

通过改变电动机的极数,可以实现转速的调节。

这种方法适用于需要频繁调速的工况,但调速范围相对较小。

3. 转子电阻调速方法:在三相异步电动机的转子电路中串联一个可调电阻,通过改变电阻的值来改变电动机的转速。

这种方法适用于负载波动较大的情况,可以在负载变化时实现转速的调节。

除了以上列举的调速方法外,还有许多其他调速方法,如励磁调速、矢量调速等。

不同的调速方法适用于不同的工况,选择合适的调速方法可以提高电动机的工作效率和使用寿命。

同时,随着科技的不断进步,新的调速方法也在不断涌现,为电动机的调速提供更多选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电工与电子技术模块五电动机基本控制电路
■知识目标
◆了解三相异步电动机调速的原理及实现方法。

◆了解系统对三相异步电动机的调速要求。

◆正确分析双速电机的控制电路。

◆了解变频器及其控制电路。

■技能目标
◆利用变频器,对三相异步电动机实现调速控制。

◆正确连接双速电机的控制电路。

■应用目标
◆正确操作和简单维护三相异步电动机的调速控制电路。

◆熟悉简单变频调速控制电路和双速电动机控制电路。

1.三相异步电动机调速的方法及特点)1(60)1(11S P
f S n n -=-=三相异步电动机有三种调速方法:变极调速、变频调速和改变转差率调速。

(1)变极调速
变极调速是通过改变定子绕组的连接方式,使一半绕组中的电流方向改变,从而改变极对数进行调速的一种方法
采用变极调速的异步电动机称为多速异步电动机。

Δ/ΥΥ连接双速异步电动机定子绕组接线图
(2)改变转差率S调速
改变转差率调速的方法有:变阻调速、改变定子电压调速和变频调速。

变阻调速是改变绕线式异步电动机转子电路的电阻进行调速。

改变定子电压调速是通过电抗器或自耦变压器改变笼型异步电动机定子绕组上的电压进行调速。

变频调速是通过连续地改变电源的频率来平滑调节电动机转速的调速方法,是三相异步电动机理想的调速方法。

2. 三相异步电动机的调速控制电路(1)双速电动机的控制电路
(2)变频调速控制电路
变频器是实现变频调速的关键设备。

(a)西门子变频器(b)操作板(c)变频器的作用原理图
利用MM420对发电厂的风机实现变频调速的控制电路
◆三相异步电动机的调速方法有哪些?各有什么特点?
议一议
◆双速电动机的工作原理是什么?试分析其控制电路。

◆如果低速切换到高速时,电机转向相反,应怎么解决?
想一想
◆正确连接双速电机的控制线路。

◆正确连接三相异步电动机变频调速控制电路。

做一做。

相关文档
最新文档