三年级上册数学试题-奥数.几何.一笔画与多笔画(C级)
(完整word版)三年级奥数.几何.一笔画与多笔画
![(完整word版)三年级奥数.几何.一笔画与多笔画](https://img.taocdn.com/s3/m/6f9ef75cc1c708a1294a4481.png)
一笔画与多笔画知识框架一、一笔画的认识所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从上图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法。
什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.所谓一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 二、一笔画问题(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点;(3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作为终点;(4)奇点个数超过两个的图形,一定不能一笔画.三、多笔画问题我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n个奇点(n为自然数),那么这个图一定可以用n笔画成.重难点(1)知道什么样的的是奇点?什么样的点是偶点。
(2)知道什么样的图形可以一笔画出。
(3)不能一笔画出的图形叫做多笔画图形,多笔画图形的笔画数与什么有关呢?例题精讲【例 1】我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?【巩固】 下图中,哪些点是奇点,哪些点是偶点?【例 2】 观察下面的图形,说明哪些图可以一笔画完,哪些不能,为什么?对于可以一笔画的图形,指明画法.【巩固】 下面的图形,哪些能一笔画出?哪些不能一笔画出?J O I H G FED CBA GF E D CBA【例 3】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.【例 4】 右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?【巩固】 右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?【例 5】 下图中的线段表示小路,请你仔细观察,认真思考,能够不重复的爬遍小路的是甲蚂蚁还是乙蚂蚁?该怎样爬?E CDB A 乙甲【例 6】 邮递员叔叔向11个地点送信一次信,不走重复路,怎样走最合适?【例 7】 (2010年第8届走美杯3年级初赛第6题)有16个点排成的44 方阵。
小学奥数习题版三年级几何一笔画学生版
![小学奥数习题版三年级几何一笔画学生版](https://img.taocdn.com/s3/m/136bda74fad6195f302ba603.png)
知识要点一笔画一笔画【例1】 判断下列各图能否一笔画出,并说明理由。
【例2】 判断下列各图能否一笔画出,并说明理由。
(6)(4)(3)(2)(1)多笔画【例3】 下面各图至少需要几笔才能画成?(3)(2)(1)【例4】判断图中的三个图形各需要几笔才能画出?请把能一笔画的图形的画法用字母和箭头表示出来。
【例5】观察下面的图形,判断其需要几笔才能画出?多笔画改一笔画【例6】下图中的两个图形均不能一笔画出,你能将原图形中的某一线段取消使之能够一笔画成吗?【例7】下图能一笔画成吗?如果不能,请你添上或减去一根线段使它能一笔画出来。
【例8】 判断下列图形能否一笔画.若能,请给出一种画法,若不能,请说明需要几笔才能画出,并请加一条线或去一条线,将其改成可一笔画的图形.FI H EBA G图aD C 图 bJ I H GDCLKF E BA 图 c【例9】 将下图改为一笔画.生活中的一笔画【例10】 (第十二届“华罗庚金杯”少年数学邀请赛初赛试题(小学组))同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻的旗帜色彩不同,则贝贝至少需要___种颜色的旗子。
如果贝贝从某营地出发,不走重复的路就______(填“能”或“不能”)完成这项任务。
【例11】 下图是一个公园的道路平面图,要使游客走遍每条路且不重复,问出、入口应设在哪里?HI FED CBA【例12】下图中每个小正方形的边长都是100米。
小明沿线段从A点到B点,不许走重复路,他最多能走多少米?【例13】小明假日去看画展,展览分四个展区,展览馆内外一共有六扇门,平面图如下,请问小明能否不重复地穿过每一扇门?如果不能,请说明理由。
如果能,应从哪开始走?【例14】下图是某博物馆的平面图,共有五个主题展馆,相邻两馆之间有门相通,并且设有入口.博物馆的入口以及展馆门口挂了颜色各异的彩旗,请问你能否从入口进入一次不重复地穿过所有的门采集到所有颜色的彩旗吗?如果可以,请指明穿行路线,如果不能,应关闭哪个门就可以办到?【例15】在一条河的中间有两个小岛,周围有六座桥与两岸相通.问能否找到一条路线,从一岸出发,不重复走遍所有的桥,然后到达对岸?【例16】如下图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸.问:一个散步者能否一次不重复地走遍这七座桥?两条支流在城市中心汇合,汇合处有一座小岛A和一座半岛D,人们在这里建了一座公园,公园中有七座桥把河两岸和两个岛连接起来(如下图所示).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?这个有趣的问题引起了著名数学家欧拉的注意,他证明了七桥问题中提到的走法根本不存在.下面,我们考虑如下两个问题:⑴若再架一座桥,游人能否走遍所有这八座桥?若能,这座桥应架在何处?若不能,请说明理由.⑵架设几座桥可以使游人走遍所有的桥回到出发地?【例18】下图是某博物馆的平面图,相邻两个展厅之间有一扇门相通,每一个展厅都有一门通往馆外.问参观者能否不重复地一次穿过每一扇门?若能,请找出一条可行路径,若不能,请说明理由.如果允许关闭某一扇门,问参观者能否不重复地穿过每一扇开着的门?【例19】(2008年中国台湾小学数学竞赛选拔赛复赛)有一个城市的街道图是由一些矩形所构成,如下图。
精品三年级奥数a第四章 一笔画
![精品三年级奥数a第四章 一笔画](https://img.taocdn.com/s3/m/0dbba44cbcd126fff7050ba7.png)
分析:图①中的A、B、C、D四个点中,A和C是奇点,B和D是偶点,所
以,可以一笔画成。 图②中的A、C、E、F四个奇点,所以不能一笔画成。 图③中的十个点中,全部都是偶点,所以可以一笔画成。 在画图①时,可以选择A点为起点,C点为终点;也可以选择C点为起点, A点为终点;画图③时,可以选择任意一个点为起点和终点。
除以上两种情况外,其它的图,都不能一笔画成;
第四章 一笔画
【技巧感悟 】
例1:下面的图形可以用一笔画成吗?
分析: 图①中有两个奇点,其余都是偶点,可以一笔画成。 图2中有4个单点,所以不能一笔画成。
第四章 一笔画
【热身演练 】
(1) 根据下面图形的箭头所指路线,一笔将图画完。
第四章 一笔画
【技巧感悟 】
第四章 一笔画
【热身演练 】
(4) 下面是一个儿童乐园的平面图。如果要在乐园里不重复地走 一遍,请你给儿童乐园安排一个出口和一个入口的位置。
第四章 一笔画
【技巧感悟 】
例5:请把下面的点用线连起来,使其中一 幅图可以一笔画成,另一幅却不能一笔画成。
分析解答:先把图①用线连起来,根据一笔画 的规律,在把图①进行调整,变成与它结果相 反的图②。
分析:这道题是与生活实际联 系比较紧密的题,看似比较复杂, 其实并不难。因为题目中并不要考 虑行走的路程的长短问题,只要能 进入活动楼后能不重复路线绕一周 即可。所以,可以把这张平面图的 每间教室和活动楼外面都看成一个 点,用线段将它们有序地连接起来, 然后再看怎样一笔画完。
第四下图是聪聪家住的小区平面图。每一条线段代表的是一条路。 一天,聪聪和他的一个同学两人分别从A点和B点出发,绕小区一 周,最后从C点出去,请问他们谁走的路应该长一些?
三年级奥数.几何.一笔画与多笔画(可编辑修改word版)
![三年级奥数.几何.一笔画与多笔画(可编辑修改word版)](https://img.taocdn.com/s3/m/cc181ea27e21af45b207a82c.png)
一笔画与多笔画知识框架一、一笔画的认识所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从上图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法。
什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.所谓一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 二、一笔画问题(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点;(3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作为终点;(4)奇点个数超过两个的图形,一定不能一笔画.三、多笔画问题我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有 2n 个奇点(n 为自然数),那么这个图一定可以用 n 笔画成.重难点(1)知道什么样的的是奇点?什么样的点是偶点。
(2)知道什么样的图形可以一笔画出。
(3)不能一笔画出的图形叫做多笔画图形,多笔画图形的笔画数与什么有关呢?例题精讲【例 1】我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪O JIE FG 些点是偶点?哪些点是奇点?A H DE GBFC 【巩固】下图中,哪些点是奇点,哪些点是偶点?B【例 2】观察下面的图形,说明哪些图可以一笔画完,哪些不能,为什么?对于可以一笔画的图形,指明画法.【巩固】下面的图形,哪些能一笔画出?哪些不能一笔画出?【例3】同学们野营时建了9 个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要种颜色的旗子,如果贝贝从某营地出发,不走重复路线就(填“能”或“不能”)完成任务.【例 4】右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?【巩固】右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?EA BD C【例 5】下图中的线段表示小路,请你仔细观察,认真思考,能够不重复的爬遍小路的是甲蚂蚁还是乙蚂蚁?该怎样爬?乙【例 6】 邮递员叔叔向 11 个地点送信一次信,不走重复路,怎样走最合适?【例 7】 (2010 年第 8 届走美杯 3 年级初赛第 6 题)有16 个点排成的4 4 方阵。
一笔画(三年级奥数题及答案)
![一笔画(三年级奥数题及答案)](https://img.taocdn.com/s3/m/2ea2c821443610661ed9ad51f01dc281e53a56de.png)
⼀笔画:
在六⾯体的顶点B和E处各有⼀只蚂蚁(见下图),它们⽐赛看谁能爬过所有的棱线,最终到达终点D。
已知它们的爬速相同,哪只蚂蚁能获胜?
解:利⽤⼀笔画的知识,能⾮常巧妙地解答这道题。
这道题只要求爬过所有的棱,没要求不能重复。
可是两只蚂蚁爬速相同,如果⼀只不重复地爬遍所有的棱,⽽另⼀只必须重复爬某些棱,那么前⼀只蚂蚁爬的路程短,⾃然先到达D点,因⽽获胜。
问题变为从B到D与从E到D哪个是⼀笔画问题。
图中只有E,D两个奇点,所以从E到D可以⼀笔画出,⽽从B到D却不能,因此E点的蚂蚁获胜。
2018最新三年级奥数.几何.一笔画与多笔画(C级)学生版
![2018最新三年级奥数.几何.一笔画与多笔画(C级)学生版](https://img.taocdn.com/s3/m/21966223de80d4d8d15a4fed.png)
21
2
2 2
3 1
教学反馈
学生对本次课的评价
○特别满意
○满意
家长意见及建议
○一般 家长签字:
例题精讲
【例 1】 下图是某地区所有街道的平面图.甲、乙二人同时分别从 A、B 出发,以相同的速度走遍所有的 街道,最后到达 C.如果允许两人在遵守规则的条件下可以选择最短路径的话,问两人谁能最先 到达 C?余老师薇芯:69039270
【例 2】 右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一 个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?
【作业 5】 在六面体的顶点 B 和 E 处各有一只蚂蚁(见右图),它们比赛看谁能爬过所有的棱线,最终到 达终点 D.已知它们的爬速相同,哪只蚂蚁能获胜?
【作业 6】 下图是一个街区街道的平面图.邮递员从邮局出发,跑遍所有街道投送信件.请你为他安排一 条最短的路线,并按图中标出的千米数算出这条路线的长度(单位:千米).
我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.
二、一笔画问题
(1) 能一笔画出的图形必须是连通的图形; (2) 凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这
点; (3) 凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作
【例 5】 在 3×3 的方阵中每个小正方形的边长都是 100 米.小明沿线段从 A 点到 B 点,不许走重复路, 他最多能走多少米?欢迎关注:“奥数轻松学”
【例 6】 如图是某餐厅的平面图,共有五个小厅,相邻两厅之间有门相通,并且设有入口.请问你能否 从入口进入一次不重复地穿过所有的门.如果可以,请指明穿行路线, 如果不能,应关闭哪个 门就可以办到?
(完整版)小学三年级奥数题练习及解析
![(完整版)小学三年级奥数题练习及解析](https://img.taocdn.com/s3/m/57a097d6b307e87100f69611.png)
小学三年级奥数题练习及解析1.工程问题绿化队4天种树200棵,还要种400棵,照如此旳工作效率,完成任务共需多少天?解答:200÷4=50〔棵〕〔200+400〕÷50=12〔天〕【小结】归一思想、先求出一天种多少棵树,再求共需几天完成任务、单一数:200÷4=50〔棵〕,总共旳天数是:〔200+400〕÷50=12〔天〕、2.还原问题3个笼子里共养了78只鹦鹉,假如从第1个笼子里取出8只放到第2个笼子里,再从第2个笼子里取出6只放到第3个笼子里,那么3个笼子里旳鹦鹉一样多、求3个笼子里原来各养了多少只鹦鹉?解答:78÷3=26〔只〕第1个笼子:26+8=34〔只〕第2个笼子:26-8+6=24〔只〕第3个笼子:26-6=20〔只〕小学三年级奥数题及【答案】:楼梯问题1上楼梯问题某人要到一座高层楼旳第8层办事,不巧停电,电梯停开,如从1层走到4层需要48秒,请问以同样旳速度走到八层,还需要多少秒?解答:上一层楼梯需要:48÷〔4-1〕=16〔秒〕从4楼走到8楼共走:8-4=4〔层〕楼梯还需要旳时刻:16×4=64〔秒〕答:还需要64秒才能到达8层。
2.楼梯问题晶晶上楼,从1楼走到3楼需要走36级台阶,假如各层楼之间旳台阶数相同,那么晶晶从第1层走到第6层需要走多少级台阶?解:每一层楼梯有:36÷〔3-1〕=18〔级台阶〕晶晶从1层走到6层需要走:18×〔6-1〕=90〔级〕台阶。
答:晶晶从第1层走到第6层需要走90级台阶。
小学三年级奥数题及【答案】:页码问题1.黑白棋子有黑白两种棋子共300枚,按每堆3枚分成100堆。
其中只有1枚白子旳共27堆,有2枚或3枚黑子旳共42堆,有3枚白子旳与有3枚黑子旳堆数相等。
那么在全部棋子中,白子共有多少枚?解答:只有1枚白子旳共27堆,说明了在分成3枚一份中一白二黑旳有27堆;有2枚或3枚黑子旳共42堆,确实是说有三枚黑子旳有42-27=15堆;因此三枚白子旳是15堆:还剩一黑二白旳是100-27-15-15=43堆:白子共有:43×2+15×3=158〔枚〕。
小学三年级奥数专题(二十八)一笔画(1)
![小学三年级奥数专题(二十八)一笔画(1)](https://img.taocdn.com/s3/m/97155b1b227916888486d7ca.png)
小学三年级奥数专题(二十八)一笔画(1)关键词:欧拉笔画复地斯堡画成奥数图形年级这个小学摘要:《小学三年级奥数专题(二十八)一笔画(1)》...现了一笔画原理。
欧拉是怎样解决七桥问题的呢?因为岛的大小,桥的长短都与问题无关,所以欧拉把A,B两岛以及陆地C,D用点表示,桥用线表示,那么七桥问题就变为右图是否可以一笔画的问题了。
我们把一个图形上...如果一个图形可以用笔在纸上连续不断而且不重复地一笔画成,那么这个图形就叫一笔画。
显然,在下面的图形中,(1)(2)不能一笔画成,故不是一笔画,(3)(4)可以一笔画成,是一笔画。
同学们可能会问:为什么有的图形能一笔画成,有的图形却不能一笔画成呢?一笔画图形有哪些特点?关于这个问题有一个著名的数学故事——哥尼斯堡七桥问题。
哥尼斯堡是立陶宛共和国的一座城市,布勒格尔河从城中穿过,河中有两个岛,18世纪时河上共有七座桥连接A,B两个岛以及河的两岸C,D(如下图)。
所谓七桥问题就是:一个散步者要一次走遍这七座桥,每座桥只走一次,怎样走才能成功?当时的许多人都热衷于解决七桥问题,但是都没成功。
后来,这个问题引起了大数学家欧拉(1707-1783)的兴趣,许多人的不成功促使欧拉从反面来思考问题:是否根本就不存在这样一条路线呢?经过认真研究,欧拉终于在1736年圆满地解决了七桥问题,并发现了一笔画原理。
欧拉是怎样解决七桥问题的呢?因为岛的大小,桥的长短都与问题无关,所以欧拉把A,B两岛以及陆地C,D用点表示,桥用线表示,那么七桥问题就变为右图是否可以一笔画的问题了。
我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点。
如下图中,A,B,C,E,F,G,I是偶点,D,H,J,O是奇点。
欧拉的一笔画原理是:(1)一笔画必须是连通的(图形的各部分之间连接在一起);(2)没有奇点的连通图形是一笔画,画时可以以任一偶点为起点,最后仍回到这点;(3)只有两个奇点的连通图形是一笔画,画时必须以一个奇点为起点,以另一个奇点为终点;(4)奇点个数超过两个的图形不是一笔画。
三年级上册数学试题-奥数.几何.一笔画与多笔画(C级)沪教版(含答案)
![三年级上册数学试题-奥数.几何.一笔画与多笔画(C级)沪教版(含答案)](https://img.taocdn.com/s3/m/9fe64ab16529647d2628522c.png)
一、一笔画的认识所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从上图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.所谓一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 二、 一笔画问题(1) 能一笔画出的图形必须是连通的图形;(2) 凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3) 凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作为终点;(4) 奇点个数超过两个的图形,一定不能一笔画.三、多笔画问题我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.(1) 知道什么样的的是奇点?什么样的点是偶点.重难点知识框架一笔画与多笔画C(2)知道什么样的图形可以一笔画出.(3)不能一笔画出的图形叫做多笔画图形,多笔画图形的笔画数与什么有关呢?例题精讲【例 1】下图是某地区所有街道的平面图.甲、乙二人同时分别从A、B出发,以相同的速度走遍所有的街道,最后到达C.如果允许两人在遵守规则的条件下可以选择最短路径的话,问两人谁能最先到达C?【解析】本题要求二人都必须走遍所有的街道最后到达C,而且两人的速度相同.因此,谁走的路程少,谁便可以先到达C.容易知道,在题目的要求下,每个人所走路程都至少是所有街道路程的总和.仔细观察上图,可以发现图中有两个奇点:A和C.这就是说,此图可以以A、C两点分别作为起点和终点而一笔画成.也就是说,甲可以从A出发,不重复地走遍所有的街道,最后到达C;而从B出发的乙则不行.因此,甲所走的路程正好等于所有街道路程的总和,而乙所走的路程则必定大于这个总和,这样甲先到达C.【答案】甲先到达C.【例 2】右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?【考点】一笔画问题【难度】2星【题型】解答【解析】将图形中的6个区域看成6个点,每个门看成连结他们的线段,显然6个点都是偶点,所以有人能一次不重复的走过所有的门.【答案】能【巩固】 右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?【考点】一笔画问题 【难度】2星【题型】解答【解析】 不能【例 3】 下图中的每条线都表示一条街道,线上的数字表示这条街道的里数.邮递员从邮局出发,要走遍各条街道,最后回到邮局.问:邮递员怎样走,路线最合理?【解析】 邮递员走的路程最短时,路线最合理.利用一笔画的知识分析可得:因为邮递员从邮局作为起点和终点,所以没有奇点是最理想的,但实际上图中却有8个奇点,邮递员必须重复走某些路线.根据多笔画改为一笔画的方法得知:重复走的路线的两个端点应为奇点.重复的总路程应该尽可能短.我们把需重复走的路线,用虚线添在图中,通过分析与计算可知;当邮递员所走的路线如右图时,重复的路程最短,全程共走了56+4=60(里).其中56为所有街道的总长,4为所重复走的路程.小结:本题属于最短邮递路线问题.解决这样的题目时,有两点值得注意:①在所给图中,每条边都有具体的长度,这与前面其他问题中不考虑长度是不同的;②邮递路线中,邮递员必须以邮局作为起点和终点,即在最后能一笔画出的图中,所有的点都必须是偶点.这也与前面游人可以选择进出口的问题不同.E CDBA【例 4】右图是某地区街道的平面图,图上的数字表示那条街道的长度.清晨,洒水车从A出发,要洒遍所有的街道,最后再回到A.问:如何设计洒水路线最合理?【解析】这又是一个最短路线的问题.通过分析可以知道:在洒水路线中,K是中间点,因此必须成为偶点,这样洒水车必须重复走KC这条边(如下左图).至此,奇点的个数并未减少,仍是6个,但问题却转化为例6的类型.类似于例6,容易得出,洒水车必须重复走的路线有:GF、IJ、BC.即洒水路线如下右图.全程45+3+6=54(里).【例 5】在3×3的方阵中每个小正方形的边长都是100 米.小明沿线段从A点到B 点,不许走重复路,他最多能走多少米?【考点】一笔画问题【难度】3星【题型】解答【解析】这道题大多数同学都采用试画的方法,实际上可以用一笔画原理求解.首先,图中有8 个奇点,在8 个奇点之间至少要去掉4 条线段,才能使这8 个奇点变成偶点;其次,从A点出发到B 点,A,B 两点必须是奇点,现在A,B 都是偶点,必须在与A,B 连接的线段中各去掉1 条线段,使A,B 成为奇点.所以至少要去掉6 条线段,也就是最多能走1800 米,走法如图【答案】【例 6】如图是某餐厅的平面图,共有五个小厅,相邻两厅之间有门相通,并且设有入口.请问你能否从入口进入一次不重复地穿过所有的门.如果可以,请指明穿行路线,如果不能,应关闭哪个门就可以办到?【考点】一笔画问题【难度】4星【题型】解答【解析】可以将图中的五个小厅以及厅外的部分都抽象成点,为方便解题,给它们分别编号.这时,连通厅与厅之间的门就相当于各点之间的连线.于是题目中餐厅平面图就抽象成为一个连通的图形,如下:求穿形路线的问题就转化成一笔画的问题.在抽象出的图形中,我们可以找到四个奇点,即②、③、④和厅外,所以图形不能一笔画出也就是说,从入口进入不可能一次不重复的穿过所有的门.但根据一笔画问题的知识,只要关闭门,把③、④变为偶点,就可以办到,关闭B门,可行路线如上图.【答案】关闭B门.【例 7】(2009“数学解题能力展示"读者评选活动五年级初赛6题)某城市的交通系统由若干个路口(右图中线段的交点)和街道(右图中的线段)组成,每条街道都连接着两个路口.所有街道都是双向通行的,且每条街道都有一个长度值(标在图中相应的线段处).一名邮递员传送报纸和信件,要从邮局出发经过他所管辖的每一条街道最后返回邮局(每条街道可以经过不止一次).他合理安排路线,可以使得自己走过最短的总长度是.【考点】一笔画问题 【难度】4星 【题型】填空【解析】 根据一笔画的有关概念,道路图中有6个奇点,邮递员不可能不重复地走遍所有街道并返回邮局.但可以对道路图作一些处理,相当于邮递员通过走重复的道路,完成一笔画,如下图:总路程为3102846⨯+⨯=.【答案】46【例 8】 18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A 和一座半岛D ,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来(如图a ).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?【考点】一笔画问题 【难度】4星 【题型】解答【解析】 欧拉解决这个问题的方法非常巧妙.他认为:人们关心的只是一次不重复地走遍这七座桥,而并不关心桥的长短和岛的大小,因此,岛和岸都可以看作一个点,而桥则可以看成是连接这些点的一条线.这样,一个实际问题就转化为一个几何图形(如下图)能否一笔画出的问题了.而图B 中有4个奇点显然不能一笔画出.【答案】不能【巩固】 如下图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸.问:一个散步者能否一次不重复地走遍这七座桥?【考点】一笔画问题 【难度】4星 【题型】解答 【答案】能.【例 9】 一个邮递员投递信件要走的街道如右图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局.怎样走才能使所走的行程最短?全程多少千米?【考点】一笔画问题 【难度】5星 【题型】解答【解析】 图中共有8 个奇点,必须在8 个奇点间添加4 条线,才能消除所有奇点,成为能从邮局出发最后返回邮局的一笔画.在距离最近的两个奇点间添加一条连线,如左下图中虚线所示,共添加4 条连线,这4 条连线表示要重复走的路,显然,这样重复走的路程最短,全程30千米.走法参考右下图(走法不唯一).【答案】30千米【随练1】 一辆清洁车清扫街道,每段街道长1公里,清洁车由A 出发,走遍所有的街道再回到A.怎样走路程最短,全程多少公里?例题精讲【考点】一笔画问题【难度】2星【题型】解答【解析】【答案】如图,27;【随练2】 右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?【解析】 我们将每个展室看成一个点,室外看成点E ,将每扇门看成一条线段,两个展室间有门相通表示两个点间有线段相连,于是得到右图.能否不重复地穿过每扇门的问题,变为右图是否一笔画问题.上图中只有A ,D 两个奇点,是一笔画,所以答案是肯定的,应该从A 或D 展室开始走.【答案】能,应该从A 或D 展室开始走.EDCBA【作业1】 下列图形分别是几笔画?怎样画?【答案】(1)1笔 (2)2笔 (3)1笔【作业2】 从A 点出发,走遍右上图中所有的线段,再回到A 点,怎样走才能使重复走的路程最短?【答案】【作业3】 邮递员要从邮局出发,走遍左下图(单位:千米)中所有街道,最后回到邮局,怎样走路程最短?全程多少千米?A例题精讲【答案】【作业4】 有一个邮局,负责21个村庄的投递工作,下图中的点表示村庄,线段表示道路.邮递员从邮局出发,怎样才能不重复地经过每一个村庄,最后回到邮局?【答案】邮局213332邮局33322111 / 11【作业5】 一只木箱的长、宽、高分别为5,4,3厘米(见右图),有一只甲虫从A 点出发,沿棱爬行,每条棱不允许重复,则甲虫回到A 点时,最多能爬行多少厘米?【答案】34厘米.【作业6】 在六面体的顶点B 和E 处各有一只蚂蚁(见右图),它们比赛看谁能爬过所有的棱线,最终到达终点D.已知它们的爬速相同,哪只蚂蚁能获胜?【解析】 许多同学看不出这是一笔画问题,但利用一笔画的知识,能非常巧妙地解答这道题.这道题只要求爬过所有的棱,没要求不能重复.可是两只蚂蚁爬速相同,如果一只不重复地爬遍所有的棱,而另一只必须重复爬某些棱,那么前一只蚂蚁爬的路程短,自然先到达D 点,因而获胜.问题变为从B 到D 与从E 到D 哪个是一笔画问题.图中只有E ,D 两个奇点,所以从E 到D 可以一笔画出,而从B 到D 却不能,因此E 点的蚂蚁获胜.【答案】E 点的蚂蚁获胜.【作业7】 下图是一个街区街道的平面图.邮递员从邮局出发,跑遍所有街道投送信件.请你为他安排一条最短的路线,并按图中标出的千米数算出这条路线的长度(单位:千米).△ 邮局3。
三年级一笔画试题及答案
![三年级一笔画试题及答案](https://img.taocdn.com/s3/m/0289dec6b1717fd5360cba1aa8114431b90d8e8e.png)
三年级一笔画试题及答案一、选择题(每题2分,共10分)1. 一笔画问题中,奇数个奇点的图形不能一笔画成,那么偶数个奇点的图形可以一笔画成吗?A. 可以B. 不可以C. 不确定答案:A2. 一笔画问题中,如果一个图形有0个奇点,那么这个图形可以一笔画成吗?A. 可以B. 不可以C. 不确定答案:A3. 一笔画问题中,从一个奇点出发,最后必须回到哪个点?A. 起点B. 另一个奇点C. 任意点答案:A4. 一笔画问题中,如果一个图形有两个奇点,那么这个图形可以一笔画成吗?A. 可以B. 不可以C. 不确定答案:B5. 一笔画问题中,如果一个图形有四个奇点,那么这个图形可以一笔画成吗?A. 可以B. 不可以C. 不确定答案:A二、填空题(每题2分,共20分)1. 一笔画问题中,如果一个图形有__个奇点,那么这个图形可以一笔画成。
答案:0或22. 一笔画问题中,从一个奇点出发,最后必须回到__点。
答案:起点3. 一笔画问题中,如果一个图形有__个奇点,那么这个图形不能一笔画成。
答案:奇数4. 一笔画问题中,如果一个图形有__个奇点,那么这个图形可以一笔画成。
答案:偶数5. 一笔画问题中,从一个奇点出发,最后必须回到__点。
答案:起点三、判断题(每题2分,共20分)1. 一笔画问题中,如果一个图形有3个奇点,那么这个图形可以一笔画成。
()答案:×2. 一笔画问题中,如果一个图形有0个奇点,那么这个图形可以一笔画成。
()答案:√3. 一笔画问题中,从一个奇点出发,最后必须回到另一个奇点。
()答案:×4. 一笔画问题中,如果一个图形有2个奇点,那么这个图形可以一笔画成。
()答案:√5. 一笔画问题中,如果一个图形有4个奇点,那么这个图形不能一笔画成。
()答案:×四、解答题(每题10分,共50分)1. 请画出一个一笔画成的图形,并说明为什么可以一笔画成。
答案:图形:一个正方形,四个顶点分别连接对角线。
三年级奥数一笔画
![三年级奥数一笔画](https://img.taocdn.com/s3/m/3099b762376baf1ffc4fadb5.png)
作业
1.如图每个小正方形边长为1,从A点出发,走遍右上图中所有的线段,再回到A点,怎样走才能使重复走的路程最短?最短是多少?(在图上添上需要重复走的线段)
2.图中是一辆越野车爬过两个山峰的路一线图,试这辆车该从那个点上山,经过全部路段,且不重复.最后终点落在哪个结点上?
笑笑去公园游玩,下图为公园简易地图,菱形四角为公园四个出入口,笑笑要从一个门进公园,从另一个门出来,要走遍各条小路,怎样走才能使所走的行程最短?
例5:一个邮递员投递信件要走的街道如下页左上图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局。怎样走才能使所走的行程最短?全程多少千米?
练一练:图中是一个社区公园的平面图,要使社区群众走遍公园每一条路,且不重复,出人口应设在哪个交点上?请你在这个位置标上字母A和B.
例2:六面体的顶点B和E处各有一只蚂蚁(见右图),它们比赛看谁能爬过所有的棱线,最终到达终点D。已知它们的爬速相同,哪只蚂蚁能获胜?
再回头看看七桥问题,能否转换成一笔画问题呢
你学会了吗
1.下列图形分别是几笔画?怎样画?
2.能否用剪刀从左下图中一次连续剪下三个正方形和两个三角形?为什么?
3.如下图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸。问:一个散步者能否一次不重复地走遍这七座桥?
4.邮递员要从邮局出发பைடு நூலகம்走遍左下图(单位:千米)中所有街道,最后回到邮局,怎样走路程最短?全程多少千米?
例3:有三个小岛,分别有七座桥相通请回答,能不能一次不重复走完这七座桥呢?
三年级上册数学试题-奥数.几何.一笔画与多笔画(A级)(含答案)沪教版
![三年级上册数学试题-奥数.几何.一笔画与多笔画(A级)(含答案)沪教版](https://img.taocdn.com/s3/m/54a3381f58fb770bf68a552c.png)
一、一笔画的认识所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从上图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法。
什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.所谓一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 二、 一笔画问题(1) 能一笔画出的图形必须是连通的图形;(2) 凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3) 凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作为终点;(4) 奇点个数超过两个的图形,一定不能一笔画.三、多笔画问题我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.重难点知识框架一笔画与多笔画A(2) 知道什么样的图形可以一笔画出。
(3) 不能一笔画出的图形叫做多笔画图形,多笔画图形的笔画数与什么有关呢?【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?【考点】一笔画问题 【难度】2星【题型】解答【解析】 奇点: D H J O 偶点:A B C E F G I 【答案】奇点: D H J O 偶点:A B C E F G I【巩固】 下图中,哪些点是奇点,哪些点是偶点?【考点】一笔画问题 【难度】2星 【题型】解答【解析】 奇点: E C 偶点:A B D F G 【答案】奇点:E C 偶点:A B D F G【例 2】 观察下面的图形,说明哪些图可以一笔画完,哪些不能,为什么?对于可以一笔画的图形,指明画法.J O I H G FED CBA GF E D CBA例题精讲【考点】一笔画问题【难度】2星【题型】解答【解析】(a)图:可以一笔画,因只有两个奇点A、B;画法为A→头部→翅膀→尾部→翅膀→嘴。
2018三年级奥数.几何.一笔画与多笔画(C级)学生版
![2018三年级奥数.几何.一笔画与多笔画(C级)学生版](https://img.taocdn.com/s3/m/44420de5bb4cf7ec4afed096.png)
知识框架一、一笔画的认识所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从上图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.所谓一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.二、一笔画问题(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点;(3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作为终点;(4)奇点个数超过两个的图形,一定不能一笔画.三、多笔画问题我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n个奇点(n为自然数),那么这个图一定可以用n笔画成.重难点(1)知道什么样的的是奇点?什么样的点是偶点.(2)知道什么样的图形可以一笔画出.(3)不能一笔画出的图形叫做多笔画图形,多笔画图形的笔画数与什么有关呢?一笔画与多笔画例题精讲【例1】下图是某地区所有街道的平面图.甲、乙二人同时分别从A、B 出发,以相同的速度走遍所有的街道,最后到达C.如果允许两人在遵守规则的条件下可以选择最短路径的话,问两人谁能最先到达C?【例2】右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?【巩固】右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?E CDB A 【例3】下图中的每条线都表示一条街道,线上的数字表示这条街道的里数.邮递员从邮局出发,要走遍各条街道,最后回到邮局.问:邮递员怎样走,路线最合理?【例4】右图是某地区街道的平面图,图上的数字表示那条街道的长度.清晨,洒水车从A出发,要洒遍所有的街道,最后再回到A.问:如何设计洒水路线最合理?欢迎关注:奥数轻松学余老师薇芯:69039270【例5】在3×3的方阵中每个小正方形的边长都是100米.小明沿线段从A点到B点,不许走重复路,他最多能走多少米?欢迎关注:奥数轻松学余老师薇芯:69039270【例6】如图是某餐厅的平面图,共有五个小厅,相邻两厅之间有门相通,并且设有入口.请问你能否从入口进入一次不重复地穿过所有的门.如果可以,请指明穿行路线,如果不能,应关闭哪个门就可以办到?【例7】(2009“数学解题能力展示"读者评选活动五年级初赛6题)某城市的交通系统由若干个路口(右图中线段的交点)和街道(右图中的线段)组成,每条街道都连接着两个路口.所有街道都是双向通行的,且每条街道都有一个长度值(标在图中相应的线段处).一名邮递员传送报纸和信件,要从邮局出发经过他所管辖的每一条街道最后返回邮局(每条街道可以经过不止一次).他合理安排路线,可以使得自己走过最短的总长度是.【例8】18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A和一座半岛D,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来(如图a).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?【巩固】如下图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸.问:一个散步者能否一次不重复地走遍这七座桥?【例9】一个邮递员投递信件要走的街道如右图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局.怎样走才能使所走的行程最短?全程多少千米?课堂检测【随练1】一辆清洁车清扫街道,每段街道长1公里,清洁车由A出发,走遍所有的街道再回到A.怎样走路程最短,全程多少公里?【随练2】右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?家庭作业【作业1】下列图形分别是几笔画?怎样画?【作业2】从A点出发,走遍右上图中所有的线段,再回到A点,怎样走才能使重复走的路程最短?【作业3】邮递员要从邮局出发,走遍左下图(单位:千米)中所有街道,最后回到邮局,怎样走路程最短?全程多少千米?【作业4】有一个邮局,负责21个村庄的投递工作,下图中的点表示村庄,线段表示道路.邮递员从邮局出发,怎样才能不重复地经过每一个村庄,最后回到邮局?欢迎关注:奥数轻松学【作业5】在六面体的顶点B和E处各有一只蚂蚁(见右图),它们比赛看谁能爬过所有的棱线,最终到达终点D.已知它们的爬速相同,哪只蚂蚁能获胜?【作业6】下图是一个街区街道的平面图.邮递员从邮局出发,跑遍所有街道投送信件.请你为他安排一条最短的路线,并按图中标出的千米数算出这条路线的长度(单位:千米).教学反馈学生对本次课的评价○特别满意○满意○一般家长意见及建议家长签字:2122△邮局2113。
三年级奥数专题:一笔画
![三年级奥数专题:一笔画](https://img.taocdn.com/s3/m/053388abf111f18582d05a23.png)
三年级奥数专题:一笔画(一)如果一个图形可以用笔在纸上连续不断而且不重复地一笔画成,那么这个图形就叫一笔画。
显然,在下面的图形中,(1)(2)不能一笔画成,故不是一笔画,(3)(4)可以一笔画成,是一笔画。
同学们可能会问:为什么有的图形能一笔画成,有的图形却不能一笔画成呢?一笔画图形有哪些特点?关于这个问题有一个著名的数学故事——哥尼斯堡七桥问题。
哥尼斯堡是立陶宛共和国的一座城市,布勒格尔河从城中穿过,河中有两个岛,18世纪时河上共有七座桥连接A,B两个岛以及河的两岸C,D(如下图)。
所谓七桥问题就是:一个散步者要一次走遍这七座桥,每座桥只走一次,怎样走才能成功?当时的许多人都热衷于解决七桥问题,但是都没成功。
后来,这个问题引起了大数学家欧拉(1707-1783)的兴趣,许多人的不成功促使欧拉从反面来思考问题:是否根本就不存在这样一条路线呢?经过认真研究,欧拉终于在1736年圆满地解决了七桥问题,并发现了一笔画原理。
欧拉是怎样解决七桥问题的呢?因为岛的大小,桥的长短都与问题无关,所以欧拉把A,B两岛以及陆地C,D用点表示,桥用线表示,那么七桥问题就变为右图是否可以一笔画的问题了。
我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点。
如下图中,A,B,C,E,F,G,I是偶点,D,H,J,O是奇点。
欧拉的一笔画原理是:(1)一笔画必须是连通的(图形的各部分之间连接在一起);(2)没有奇点的连通图形是一笔画,画时可以以任一偶点为起点,最后仍回到这点;(3)只有两个奇点的连通图形是一笔画,画时必须以一个奇点为起点,以另一个奇点为终点;(4)奇点个数超过两个的图形不是一笔画。
利用一笔画原理,七桥问题很容易解决。
因为图中A,B,C,D 都是奇点,有四个奇点的图形不是一笔画,所以一个散步者不可能不重复地一次走遍这七座桥。
顺便补充两点:(1)一个图形的奇点数目一定是偶数。
因为图形中的每条线都有两个端点,所以图形中所有端点的总数必然是偶数。
三年级上册数学试题-奥数.几何.一笔画与多笔画(B级)沪教版(含答案)
![三年级上册数学试题-奥数.几何.一笔画与多笔画(B级)沪教版(含答案)](https://img.taocdn.com/s3/m/714bc43352ea551810a68796.png)
一、一笔画的认识所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从上图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法。
什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.所谓一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.二、一笔画问题(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点;(3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作为终点;(4)奇点个数超过两个的图形,一定不能一笔画.三、多笔画问题我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n个奇点(n为自然数),那么这个图一定可以用n笔画成.(1)知道什么样的的是奇点?什么样的点是偶点。
(2)知道什么样的图形可以一笔画出。
(3)不能一笔画出的图形叫做多笔画图形,多笔画图形的笔画数与什么有关呢?【例 1】判断下列图a 、图b 、图c 能否一笔画.【考点】一笔画问题【难度】2星【题型】解答【解析】图a 能,因为有2个奇点,图b 不能,因为图形不是连通的,图c 能,因为因为图中全是奇点【答案】a 能,b 不能,c 能【例 2】同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要种颜色的旗子,如果贝贝从某营地出发,不走重复路线就(填“能”或“不能”)完成任务.【考点】一笔画问题【难度】2星【题型】填空【关键词】2007年,第十二届,华杯赛,六年级,初赛,第10题【解析】最少需要4种颜色的旗子。
三年级上册数学试题奥数.几何.一笔画与多笔画(B级)沪教版(含答案)
![三年级上册数学试题奥数.几何.一笔画与多笔画(B级)沪教版(含答案)](https://img.taocdn.com/s3/m/790b291125c52cc58bd6beea.png)
一、 一笔画的认识所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从上图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法。
什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.所谓一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.二、 一笔画问题(1) 能一笔画出的图形必须是连通的图形;(2) 凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点;(3) 凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作为终点;(4) 奇点个数超过两个的图形,一定不能一笔画.三、 多笔画问题我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.(1) 知道什么样的的是奇点?什么样的点是偶点。
(2) 知道什么样的图形可以一笔画出。
(3) 不能一笔画出的图形叫做多笔画图形,多笔画图形的笔画数与什么有关呢?【例 1】 判断下列图a 、图b 、图c 能否一笔画.【考点】一笔画问题 【难度】2星 【题型】解答【解析】 图a 能,因为有2个奇点,图aNML KF DECBA 图bODCBA图cGFEDCBA一笔画与多笔画B知识框架重难点例题精讲图b 不能,因为图形不是连通的, 图c 能,因为因为图中全是奇点【答案】a 能,b 不能,c 能【例 2】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.【考点】一笔画问题【难度】2星【题型】填空【关键词】2007年,第十二届,华杯赛,六年级,初赛,第10题【解析】最少需要4种颜色的旗子。
三年级奥数(一笔画)题及答案-一笔画图形
![三年级奥数(一笔画)题及答案-一笔画图形](https://img.taocdn.com/s3/m/f4807f1286c24028915f804d2b160b4e767f817f.png)
四年级奥数(年龄问题)题及答案-父子年龄
一年级数学上册第1-4单元复习试题(新版人教版在线看
小学教育,5068小学教育推荐:
2014二年级数学上册第二单元线与角 1~2节练p)在线看
2014年9月五年级数学上册月考试卷在线看
2014年小学六年级语文毕业复习题在线看
小学二年级数学上册练习题在线看
2014三年级数学上册第二单元测试题(北师版)在线看
小编为同学们带来一道三年级奥数一笔画每日一题及答案
三年级奥数(一笔画)题及答案-一笔画图形
编者小语:小编为同学们带来一道三年级奥数(一笔画)每日一题及答案:一笔画图形,同学们要仔细观察图形啊?
下面图形能不能一笔画成?
【答案解析】
图1能 因为图中全是偶点,
图2能 因为图中全是偶点,
图3不能因为有4个奇点.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、一笔画的认识所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从上图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.所谓一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 二、 一笔画问题(1) 能一笔画出的图形必须是连通的图形;(2) 凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3) 凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作为终点;(4) 奇点个数超过两个的图形,一定不能一笔画.三、多笔画问题我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.(1) 知道什么样的的是奇点?什么样的点是偶点.重难点知识框架一笔画与多笔画C(2)知道什么样的图形可以一笔画出.(3)不能一笔画出的图形叫做多笔画图形,多笔画图形的笔画数与什么有关呢?例题精讲【例 1】下图是某地区所有街道的平面图.甲、乙二人同时分别从A、B出发,以相同的速度走遍所有的街道,最后到达C.如果允许两人在遵守规则的条件下可以选择最短路径的话,问两人谁能最先到达C?【解析】本题要求二人都必须走遍所有的街道最后到达C,而且两人的速度相同.因此,谁走的路程少,谁便可以先到达C.容易知道,在题目的要求下,每个人所走路程都至少是所有街道路程的总和.仔细观察上图,可以发现图中有两个奇点:A和C.这就是说,此图可以以A、C两点分别作为起点和终点而一笔画成.也就是说,甲可以从A出发,不重复地走遍所有的街道,最后到达C;而从B出发的乙则不行.因此,甲所走的路程正好等于所有街道路程的总和,而乙所走的路程则必定大于这个总和,这样甲先到达C.【答案】甲先到达C.【例 2】右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?【考点】一笔画问题【难度】2星【题型】解答【解析】将图形中的6个区域看成6个点,每个门看成连结他们的线段,显然6个点都是偶点,所以有人能一次不重复的走过所有的门.【答案】能【巩固】 右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?【考点】一笔画问题 【难度】2星【题型】解答【解析】 不能【例 3】 下图中的每条线都表示一条街道,线上的数字表示这条街道的里数.邮递员从邮局出发,要走遍各条街道,最后回到邮局.问:邮递员怎样走,路线最合理?【解析】 邮递员走的路程最短时,路线最合理.利用一笔画的知识分析可得:因为邮递员从邮局作为起点和终点,所以没有奇点是最理想的,但实际上图中却有8个奇点,邮递员必须重复走某些路线.根据多笔画改为一笔画的方法得知:重复走的路线的两个端点应为奇点.重复的总路程应该尽可能短.我们把需重复走的路线,用虚线添在图中,通过分析与计算可知;当邮递员所走的路线如右图时,重复的路程最短,全程共走了56+4=60(里).其中56为所有街道的总长,4为所重复走的路程.小结:本题属于最短邮递路线问题.解决这样的题目时,有两点值得注意:①在所给图中,每条边都有具体的长度,这与前面其他问题中不考虑长度是不同的;②邮递路线中,邮递员必须以邮局作为起点和终点,即在最后能一笔画出的图中,所有的点都必须是偶点.这也与前面游人可以选择进出口的问题不同.E CDBA【例 4】右图是某地区街道的平面图,图上的数字表示那条街道的长度.清晨,洒水车从A出发,要洒遍所有的街道,最后再回到A.问:如何设计洒水路线最合理?【解析】这又是一个最短路线的问题.通过分析可以知道:在洒水路线中,K是中间点,因此必须成为偶点,这样洒水车必须重复走KC这条边(如下左图).至此,奇点的个数并未减少,仍是6个,但问题却转化为例6的类型.类似于例6,容易得出,洒水车必须重复走的路线有:GF、IJ、BC.即洒水路线如下右图.全程45+3+6=54(里).【例 5】在3×3的方阵中每个小正方形的边长都是100 米.小明沿线段从A点到B 点,不许走重复路,他最多能走多少米?【考点】一笔画问题【难度】3星【题型】解答【解析】这道题大多数同学都采用试画的方法,实际上可以用一笔画原理求解.首先,图中有8 个奇点,在8 个奇点之间至少要去掉4 条线段,才能使这8 个奇点变成偶点;其次,从A点出发到B 点,A,B 两点必须是奇点,现在A,B 都是偶点,必须在与A,B 连接的线段中各去掉1 条线段,使A,B 成为奇点.所以至少要去掉6 条线段,也就是最多能走1800 米,走法如图【答案】【例 6】如图是某餐厅的平面图,共有五个小厅,相邻两厅之间有门相通,并且设有入口.请问你能否从入口进入一次不重复地穿过所有的门.如果可以,请指明穿行路线,如果不能,应关闭哪个门就可以办到?【考点】一笔画问题【难度】4星【题型】解答【解析】可以将图中的五个小厅以及厅外的部分都抽象成点,为方便解题,给它们分别编号.这时,连通厅与厅之间的门就相当于各点之间的连线.于是题目中餐厅平面图就抽象成为一个连通的图形,如下:求穿形路线的问题就转化成一笔画的问题.在抽象出的图形中,我们可以找到四个奇点,即②、③、④和厅外,所以图形不能一笔画出也就是说,从入口进入不可能一次不重复的穿过所有的门.但根据一笔画问题的知识,只要关闭门,把③、④变为偶点,就可以办到,关闭B门,可行路线如上图.【答案】关闭B门.【例 7】(2009“数学解题能力展示"读者评选活动五年级初赛6题)某城市的交通系统由若干个路口(右图中线段的交点)和街道(右图中的线段)组成,每条街道都连接着两个路口.所有街道都是双向通行的,且每条街道都有一个长度值(标在图中相应的线段处).一名邮递员传送报纸和信件,要从邮局出发经过他所管辖的每一条街道最后返回邮局(每条街道可以经过不止一次).他合理安排路线,可以使得自己走过最短的总长度是.【考点】一笔画问题 【难度】4星 【题型】填空【解析】 根据一笔画的有关概念,道路图中有6个奇点,邮递员不可能不重复地走遍所有街道并返回邮局.但可以对道路图作一些处理,相当于邮递员通过走重复的道路,完成一笔画,如下图:总路程为3102846⨯+⨯=.【答案】46【例 8】 18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A 和一座半岛D ,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来(如图a ).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?【考点】一笔画问题 【难度】4星 【题型】解答【解析】 欧拉解决这个问题的方法非常巧妙.他认为:人们关心的只是一次不重复地走遍这七座桥,而并不关心桥的长短和岛的大小,因此,岛和岸都可以看作一个点,而桥则可以看成是连接这些点的一条线.这样,一个实际问题就转化为一个几何图形(如下图)能否一笔画出的问题了.而图B 中有4个奇点显然不能一笔画出.【答案】不能【巩固】 如下图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸.问:一个散步者能否一次不重复地走遍这七座桥?【考点】一笔画问题 【难度】4星 【题型】解答 【答案】能.【例 9】 一个邮递员投递信件要走的街道如右图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局.怎样走才能使所走的行程最短?全程多少千米?【考点】一笔画问题 【难度】5星 【题型】解答【解析】 图中共有8 个奇点,必须在8 个奇点间添加4 条线,才能消除所有奇点,成为能从邮局出发最后返回邮局的一笔画.在距离最近的两个奇点间添加一条连线,如左下图中虚线所示,共添加4 条连线,这4 条连线表示要重复走的路,显然,这样重复走的路程最短,全程30千米.走法参考右下图(走法不唯一).【答案】30千米【随练1】 一辆清洁车清扫街道,每段街道长1公里,清洁车由A 出发,走遍所有的街道再回到A.怎样走路程最短,全程多少公里?例题精讲【考点】一笔画问题【难度】2星【题型】解答【解析】【答案】如图,27;【随练2】 右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?【解析】 我们将每个展室看成一个点,室外看成点E ,将每扇门看成一条线段,两个展室间有门相通表示两个点间有线段相连,于是得到右图.能否不重复地穿过每扇门的问题,变为右图是否一笔画问题.上图中只有A ,D 两个奇点,是一笔画,所以答案是肯定的,应该从A 或D 展室开始走.【答案】能,应该从A 或D 展室开始走.EDCBA【作业1】 下列图形分别是几笔画?怎样画?【答案】(1)1笔 (2)2笔 (3)1笔【作业2】 从A 点出发,走遍右上图中所有的线段,再回到A 点,怎样走才能使重复走的路程最短?【答案】【作业3】 邮递员要从邮局出发,走遍左下图(单位:千米)中所有街道,最后回到邮局,怎样走路程最短?全程多少千米?A例题精讲【答案】【作业4】 有一个邮局,负责21个村庄的投递工作,下图中的点表示村庄,线段表示道路.邮递员从邮局出发,怎样才能不重复地经过每一个村庄,最后回到邮局?【答案】邮局213332邮局33322111 / 12【作业5】 一只木箱的长、宽、高分别为5,4,3厘米(见右图),有一只甲虫从A 点出发,沿棱爬行,每条棱不允许重复,则甲虫回到A 点时,最多能爬行多少厘米?【答案】34厘米.【作业6】 在六面体的顶点B 和E 处各有一只蚂蚁(见右图),它们比赛看谁能爬过所有的棱线,最终到达终点D.已知它们的爬速相同,哪只蚂蚁能获胜?【解析】 许多同学看不出这是一笔画问题,但利用一笔画的知识,能非常巧妙地解答这道题.这道题只要求爬过所有的棱,没要求不能重复.可是两只蚂蚁爬速相同,如果一只不重复地爬遍所有的棱,而另一只必须重复爬某些棱,那么前一只蚂蚁爬的路程短,自然先到达D 点,因而获胜.问题变为从B 到D 与从E 到D 哪个是一笔画问题.图中只有E ,D 两个奇点,所以从E 到D 可以一笔画出,而从B 到D 却不能,因此E 点的蚂蚁获胜.【答案】E 点的蚂蚁获胜.【作业7】 下图是一个街区街道的平面图.邮递员从邮局出发,跑遍所有街道投送信件.请你为他安排一条最短的路线,并按图中标出的千米数算出这条路线的长度(单位:千米).△ 邮局 3数学文化小故事:“0”的来历大约1500年前,欧洲的数学家们是不知道用“0”的。