聚间苯二胺形貌调控

合集下载

片状纳米聚对苯二胺的制备与表征

片状纳米聚对苯二胺的制备与表征

片状纳米聚对苯二胺的制备与表征李廷希;袁成前;赵玉花;隋鹏;高苏苏;孔娜;陈泉良;魏萌【期刊名称】《功能材料》【年(卷),期】2012(043)012【摘要】以盐酸为掺杂剂,过硫酸铵为氧化剂,采用溶液聚合,合成了片状结构的聚对苯二胺.通过红外光谱(FT-IR)、X射线衍射(XRD)、热分析(TGA/DSC)和扫描电子显微镜(SEM)分别对产物的结构、结晶性、热稳定性和微观形貌进行了表征.结果表明,所得的聚对苯二胺纳米片具有一定的结晶性和良好的热稳定性,聚对苯二胺的形貌与n(HCl)∶n(p-PDA)的比例有关,当n(HCl)∶n(p-PDA)=0.8时最易形成片状纳米聚对苯二胺.讨论了聚对苯二胺纳米片可能的形成机理.【总页数】4页(P1583-1585,1589)【作者】李廷希;袁成前;赵玉花;隋鹏;高苏苏;孔娜;陈泉良;魏萌【作者单位】山东科技大学材料科学与工程学院,山东青岛266590;山东科技大学材料科学与工程学院,山东青岛266590;山东科技大学材料科学与工程学院,山东青岛266590;山东科技大学材料科学与工程学院,山东青岛266590;山东科技大学材料科学与工程学院,山东青岛266590;山东科技大学材料科学与工程学院,山东青岛266590;山东科技大学材料科学与工程学院,山东青岛266590;山东科技大学材料科学与工程学院,山东青岛266590【正文语种】中文【中图分类】O631.2;TQ317.4【相关文献】1.用于去除水溶液中铜离子的环境友好的聚(对苯二胺)及其壳聚糖复合材料的制备和表征 [J], N A ABDELWAHAB;E A AL-ASHKAR;M A ABD EL-GHAFFAR2.聚对苯二甲酰对苯二胺/水滑石纳米复合材料的制备与表征 [J], 郭冰之;矫庆泽3.用于去除水溶液中铜离子的环境友好的聚(对苯二胺)及其壳聚糖复合材料的制备和表征(英文) [J], N.A.ABDELWAHAB;E.A.AL-ASHKAR;M.A.ABD;EL-GHAFFAR;4.聚对苯二甲酰对苯二胺多孔膜的制备及表征 [J], 王纯;肖长发;黄庆林5.固相法制备纳米级聚对苯二胺和聚邻苯二胺 [J], 吐尔逊.阿布都热依木;张校刚因版权原因,仅展示原文概要,查看原文内容请购买。

间位芳纶的结构与耐酸碱性能研究

间位芳纶的结构与耐酸碱性能研究

研究与开发合成纤维工业,2024,47(1):7CHINA㊀SYNTHETIC㊀FIBER㊀INDUSTRY㊀㊀收稿日期:2023-07-28;修改稿收到日期:2023-12-06㊂作者简介:王红红(1989 ),女,工程师,主要研究方向为高性能纤维的改性㊂E-mail:344015824@㊂基金项目:陕西省教育厅重点科学研究计划协同创新中心项目(20JY027)㊂间位芳纶的结构与耐酸碱性能研究王红红,孙润军,王㊀斌(西安工程大学,陕西西安710048)摘㊀要:通过X 射线衍射仪和红外光谱仪分别对间位芳纶的晶体聚集态结构和大分子结构进行表征,利用场发射扫描电镜观察其表面形貌,使用热重/差示扫描量热同步热分析仪测试其热学性能,并对酸碱处理后的纤维力学性能进行表征㊂结果表明:间位芳纶的结晶度为46.24%,晶区轴取向指数为0.8494;间位芳纶表面粗糙,内部大分子链中存在苯环结构;间位芳纶具有良好的耐热性能,在292ħ的高温内无任何损伤;间位芳纶具有一定的耐强酸强碱腐蚀能力,在85ħ下分别经体积分数小于等于20%的硫酸溶液及质量分数小于等于20%的氢氧化钠溶液处理,处理后其断裂强度均保持在原来的90%以上㊂关键词:间位芳纶㊀结构㊀热性能㊀力学性能㊀耐酸碱性能中图分类号:TQ342+.721㊀㊀文献标识码:A㊀㊀文章编号:1001-0041(2024)01-0007-05㊀㊀间位芳纶即聚间苯二甲酰间苯二胺(PMIA)纤维㊂1962年美国杜邦公司率先研制出间位芳纶产品,其商品名为 Nomex ,并于1967年开始逐步实现了间位芳纶的工业化生产[1-2]㊂我国于2004年成功实现间位芳纶的工业化生产,经过长期努力,目前间位芳纶总产能仅次于美国,已成为全球第二大间位芳纶制造供应基地[3]㊂我国间位芳纶生产商主要有烟台泰和新材料股份有限公司㊁超美斯新材料股份有限公司和广东彩艳股份有限公司等[4]㊂间位芳纶的大分子结构很稳定,具有很好的耐高温㊁耐化学试剂性能及优良的阻燃性[5-6],是所有耐高温纤维品种中产量最大㊁应用最广的高性能纤维[7],已成为工业过滤和高温防护领域的主要材料之一[8-10]㊂为了提升间位芳纶的应用效能,研究者们就间位芳纶的制备工艺优化㊁力学性能及热学性能改善等开展了大量工作㊂任仲恺等[11]通过工艺优化制备了高强度间位芳纶,与常规间位芳纶对比,新工艺制备的纤维内部分子取向性增强,从而提升了纤维的强伸性能㊂李岱霖等[12]通过酸度㊁温度和时间3因素正交实验考察了间位芳纶的耐酸腐蚀性,发现纤维的耐酸腐蚀性能受温度和酸度的影响大,温度越高,耐腐临界酸度越低㊂已有的研究对间位芳纶的性能改善提供了一定的参考,但均未对其微观结构㊁聚集态结构㊁大分子结构㊁热学性能和力学性能等进行系统的研究㊂为了进一步提升国产间位芳纶的加工应用性能,作者对国产间位芳纶的结构㊁热学性能㊁力学性能和耐化学性能进行了系统研究,通过X 射线衍射(XRD)分析了大分子链聚集态结构,通过红外光谱(FTIR)和扫描电镜(SEM)表征了大分子结构中的官能团和表面形貌,利用热重(TG)/差示扫描量热(DSC)同步热分析研究了间位芳纶的热学性能,通过测试高温强酸和强碱处理后纤维的强伸性能,研究了间位芳纶的耐酸碱腐蚀性㊂1㊀实验1.1㊀原料及试剂间位芳纶(短纤维):密度为1.389g /cm 3,单纤维线密度为1.67dtex,烟台泰和新材料股份有限公司产;浓硫酸:质量分数98%,天津市富宇精细化工有限公司产;固体氢氧化钠(NaOH):纯度大于98%,天津市富宇精细化工有限公司产㊂1.2㊀主要设备与仪器HH-4A 型水浴锅:北京科伟永兴仪器有限公司制;D /MAX-RAPID Ⅱ型X 射线衍射仪:日本理学公司制;Spotlight 400&Frontier 傅里叶变换红外光谱仪:美国Perkin Elmer 公司制;Quanta 450FEG 场发射扫描电镜:美国FEI 公司制;STA 449F3Jupiter TG /DSC 同步热分析仪:德国耐驰公司制;Instron 5565万能强力机:美国英斯特朗公司制㊂1.3㊀酸碱腐蚀实验使用98%的浓硫酸配置体积分数分别为10%㊁20%㊁30%㊁40%㊁50%的硫酸溶液;使用NaOH 固体配置质量分数分别为10%㊁15%㊁20%㊁25%㊁30%的NaOH 溶液㊂利用水浴锅将上述溶液加热至85ħ,然后将间位芳纶分别浸泡于不同浓度的酸溶液和碱溶液中进行处理,处理时间均为4h,最后将纤维取出并进行洗涤㊁烘干㊂1.4㊀分析与测试聚集态结构:将间位芳纶纤维束直接夹持在X 射线衍射仪的试样台上进行检测,使用Cu 靶,电压为40kV,电流为30mA,扫描角(2θ)为10ʎ~90ʎ㊂使用MID Jade 5软件进行衍射峰拟合并计算纤维的结晶度(X c )和晶区轴取向指数(R ),计算公式分别见式(1)㊁式(2)[13]㊂X c =I cI c +K x I a(1)R =180ʎ-H 180ʎ(2)式中:I c 为结晶态部分的衍射积分强度,I a 为非晶态部分的衍射积分强度,K x 为修正常数即晶态与非晶态的相对衍射系数,H 是由X 射线衍射斑点图获得的 强度-转动角 曲线图的半高宽㊂大分子结构:采用衰减全反射法(ATR)测试间位芳纶的大分子官能团,将间位芳纶纤维束直接放置于红外光谱仪ATR 附件的检测台上,选择中红外扫描模式,检测波段为650~4000nm㊂表面形貌:将间位芳纶通过导电胶粘贴于金属试样台上,喷金后置于扫描电镜舱体内进行形貌观测,电压为20kV,放大倍数为12000㊂热学性能:将间位芳纶剪碎成粉末状,使用TG /DSC 同步热分析仪获得纤维的TG 曲线及DSC 曲线,测试气氛为氮气(N 2),测试温度为室温~900ħ㊂力学性能:将间位芳纶单丝加持在万能强力机的纤维夹头上进行拉伸,夹持长度为20mm,测试高温强酸和强碱处理前后纤维的强伸性能,并计算处理后纤维的强度保持率和伸长保持率,以表征纤维的耐酸碱腐蚀性㊂2㊀结果与讨论2.1㊀间位芳纶的聚集态结构通过X 射线衍射仪测试得到间位芳纶的XRD 图谱,并通过MID Jade 5软件对其进行分峰处理,结果见图1㊂从分峰结果可以看出:间位芳纶的晶体结构中同时存在结晶峰和非晶峰,其中非晶峰的2θ为20.957ʎ;在结晶峰中,2θ为23.471ʎ的结晶峰较为尖锐,其他结晶峰都呈现出宽化的状态,这表明间位芳纶内部存在不完整的晶相㊂通常,这种不尖锐又不像非晶峰一样弥散的衍射峰称作 次晶 或者 仲晶 ,此晶相中存在结晶态的大分子链,但其聚集排列很不完善[14]㊂图1㊀间位芳纶的XRD 图谱及衍射峰的分峰处理Fig.1㊀XRD patterns and peak separation of diffractionpeaks of m-aramid fibers㊀㊀从图2可以看出:间位芳纶的XRD 斑点图像中存在结晶态集中的衍射亮斑,同时伴随了非晶态的弥漫散射点,这与分峰结果一致;此外,在亮斑出现的地方可以看到亮斑分布较宽,意味着其对应的特征峰具有较大的半高宽,这是由于间位芳纶内部大分子链较低的结晶态所致㊂图2㊀间位芳纶的XRD 斑点图像Fig.2㊀XRD spot images of m-aramid fiber㊀㊀在XRD 斑点图像上的衍射强度最大处即2θ为23.471ʎ处沿着同心圆弧长方向上进行X 射线方位角(β)的衍射强度扫描,β为90ʎ~270ʎ,获取对应的 强度-转动角 曲线光谱[13],结果见图3㊂从图3可以看出,曲线相对噪音较大,此现象是由于XRD 斑点图像中因非晶态结构呈现出的弥漫8㊀合㊀成㊀纤㊀维㊀工㊀业㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2024年第47卷散射点所致㊂图3㊀间位芳纶的强度-转动角曲线Fig.3㊀Strength-rotation angle curve of m-aramid fiber㊀㊀从表1可知:间位芳纶的衍射峰中,非晶峰出现在2θ为20.957ʎ的位置,其他衍射峰均属于结晶峰,由此计算获得其X c 为46.24%;从间位芳纶的强度-转动角曲线中获得取向度特征峰的H 为27.1ʎ,计算得到纤维的晶区R 为0.8494㊂由此可见,间位芳纶的X c 不高,但晶体中大分子排列的取向度较好,这对纤维的力学性能和热学性能产生了积极的影响[15]㊂表1㊀间位芳纶的聚集态结构参数Tab.1㊀Aggregation state structural parametersof m-aramid fiber项目㊀㊀㊀㊀参数非晶峰2θ/(ʎ)20.957X c /%46.24H /(ʎ)27.1R0.84942.2㊀间位芳纶的大分子结构从图4和表2可以看出:在间位芳纶的FTIR图谱中1300~4000cm -1的官能团区,波数为3302,1646,1604,1477,1529,1410,1300cm -1的吸收峰分别由间位芳纶大分子链中酰胺键的N H 伸缩振动㊁C O 伸缩振动㊁苯环骨架振动㊁C N 伸缩和N H 弯曲偶合振动㊁N C O 非对称伸缩振动㊁苯环C N 伸缩振动引起;在650~1300cm -1的指纹区中,波数为1241cm -1处也是C N 伸缩和N H 弯曲偶合振动的吸收峰,950~1250cm -1处的多条谱带为苯环C H面内弯曲振动吸收峰,855cm -1处的吸收峰是苯环间位二取代孤立H 的面外弯曲振动引起,且779cm -1和682cm -1处的峰是苯环间位二取代3个相邻H 的面外弯曲振动吸收峰,715cm -1处的吸收峰为N H 面外弯曲振动峰㊂上述分析结果验证了间位芳纶中存在大量的苯环,直接影响纤维的热稳定性㊁耐化学腐蚀性和耐高温性能㊂图4㊀间位芳纶的FTIR 图谱Fig.4㊀FTIR spectra of m-aramid fiber表2㊀间位芳纶的FTIR 特征峰属性Tab.2㊀FTIR characteristic peak properties of m-aramid fibers波数/cm -1特征峰属性3302酰胺键的N H 伸缩振动1646酰胺键的C O 伸缩振动(酰胺Ⅰ谱带)1604㊁1477苯环骨架振动1529C N 伸缩和N H 弯曲偶合振动(酰胺Ⅱ谱带)1410N C O 非对称伸缩振动1300苯环C N 伸缩振动1241C N 伸缩和N H 弯曲偶合振动(酰胺Ⅲ谱带)950~1250苯环C H 面内弯曲振动855苯环间位二取代孤立H 的面外弯曲振动779㊁682苯环间位二取代3个相邻H 的面外弯曲振动715N H 面外弯曲振动2.3㊀间位芳纶的表面形貌从图5可知,间位芳纶的表面很粗糙,存在很多沟槽,此现象跟纤维制备中的纺丝工艺有关㊂纤维之间的抱合力是影响高性能纤维复合材料制品力学性能的关键因素之一,间位芳纶中这种沟槽有利于其复合材料制品中纤维之间抱合能力的增强,从而有利于提升复合材料的强度㊂图5㊀间位芳纶的表面SEM 照片Fig.5㊀Surface SEM image of m-aramid fiber9第1期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀王红红等.间位芳纶的结构与耐酸碱性能研究2.4㊀间位芳纶的热学性能使用TG /DSC 同步热分析仪测试获得的间位芳纶的TG 曲线及DSC 曲线见图6,TG /DSC 特征温度见表3㊂图6㊀间位芳纶的TG 曲线及DSC 曲线Fig.6㊀TG and DSC curves of m-aramid fiber表3㊀间位芳纶的TG /DSC 特征温度Tab.3㊀TG /DSC characteristic temperature of m-aramid fiber㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀项目㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀参数TG 特征温度㊀起始分解温度/ħ292外延起始温度/ħ428外延终止温度/ħ562失重终止温度/ħ900失重5%时温度/ħ439失重10%时温度/ħ455DSC 特征温度裂解吸热峰起始点/ħ418裂解吸热峰峰谷/ħ438㊀㊀从图6a 和表3可看出:间位芳纶在加热至292ħ时才开始分解;当温度高达428ħ时开始出现急剧的分解失重;最终加热至900ħ时,其质量仍保持在52%左右㊂从图6b 和表3可看出:在间位芳纶的DSC 曲线中,温度为100ħ时的峰为纤维中水分吸收热量而蒸发的吸热峰;在400~500ħ出现一个向上且较为尖锐的峰,此处为温度升高时间位芳纶内部大分子裂解的吸热峰,裂解吸热峰起始点位置为418ħ,裂解吸热峰峰谷位置为438ħ;当温度加热至900ħ左右时出现一个较高的吸热峰,结合TG 曲线中800~900ħ质量保持率无明显下降趋势,由此推断在此处间位芳纶的残留物发生晶相转变,因而产生吸热峰㊂由此可知,间位芳纶具有良好的耐高温性能㊂2.5㊀间位芳纶的耐强酸强碱性能从表4可知:酸处理前间位芳纶的单丝断裂强度为3.8cN /dtex,断裂伸长率高达32.3%,说明间位芳纶具有较高的强度及优异的延展性能;经体积分数10%~20%硫酸溶液处理后,纤维的断裂强度和断裂伸长率均保持初始强伸性能的90%以上,展现出优异的耐酸性能;经体积分数30%硫酸溶液处理后,纤维的断裂强度和断裂伸长率明显下降,但继续增大硫酸溶液体积分数至40%和50%处理后,纤维的断裂强度和伸长率仅略微下降,在经体积分数50%硫酸溶液处理后纤维强度保持率为76.32%㊁伸长保持率为60.68%,仍然具有一定的力学性能㊂由上述分析可知,间位芳纶具有良好的耐高温强酸腐蚀能力㊂表4㊀不同酸处理条件下间位芳纶的力学性能Tab.4㊀Mechanical properties of m-aramid fiberunder different acid treatment conditions硫酸溶液体积分数/%断裂强度/(cN㊃dtex -1)强度保持率/%断裂伸长率/%伸长保持率/%未处理 3.8100.0032.3100.0010 3.797.3729.892.2620 3.592.1129.691.6430 3.078.9523.071.2140 3.078.9521.265.63502.976.3219.660.68㊀㊀从表5可知:在NaOH 溶液质量分数为10%时,间位芳纶的断裂强度保持初始强度的97.37%,断裂伸长率保持初始的99.07%,其力学性能几乎未受到影响;继续增大NaOH 溶液质量分数为20%时,纤维的断裂强度仅仅是略微下降,强度保持率为94.74%,但断裂伸长率下降至初始的70%左右,显然,在NaOH 溶液质量分数小于等于20%时间位芳纶表现出了很好的耐高温强碱腐蚀性能;然而,当NaOH 溶液质量分数达25%~30%时,间位芳纶的断裂强度和断裂伸长率急剧下降,这是因为此时纤维受到腐蚀并使其大分子结构受到破坏,导致力学性能降低㊂由此可见,间位芳纶的耐高温强碱能力具有一定的局限性,但在合理的高温强碱环境下仍然具有较好的01㊀合㊀成㊀纤㊀维㊀工㊀业㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2024年第47卷耐腐蚀性能㊂表5㊀不同碱处理条件下间位芳纶的力学性能Tab.5㊀Mechanical properties of m-aramid underdifferent alkaline treatment conditionsNaOH 溶液质量分数/%断裂强度/(cN㊃dtex -1)强度保持率/%断裂伸长率/%伸长保持率/%未处理 3.8100.0032.3100.0010 3.797.3732.099.0715 3.797.3722.770.2820 3.694.7423.271.8325 1.642.11 4.213.00301.334.213.711.463㊀结论a.间位芳纶的X c 为46.24%,晶体内部存在不完整的非晶态结构,但其R 为0.8494,取向较好㊂间位芳纶大分子结构中存在苯环,纤维表面粗糙㊂间位芳纶的起始分解温度为292ħ,内部大分子结构开始裂解温度为418ħ,具有良好的耐高温性能㊂b.间位芳纶具有良好的耐高温强酸腐蚀能力,经85ħ㊁体积分数小于等于20%的硫酸溶液处理,断裂强度和断裂伸长率均保持初始强伸性能的90%以上;间位芳纶经85ħ㊁质量分数小于等于20%的NaOH 溶液处理,强度保持率为94.74%,伸长保持率约70%,NaOH 溶液浓度较高时其断裂强度和断裂伸长率急剧下降,其耐高温强碱能力具有一定的局限性,但在合理的高温强碱环境下仍然具有较好的耐腐蚀性能㊂参㊀考㊀文㊀献[1]㊀高启源.高性能芳纶纤维的国内外发展现状[J].化纤与纺织技术,2007(3):31-36.[2]㊀王家飞,耿胜男,孔祥宇,等.导电性间位芳纶的制备技术及应用研究进展[J].离子交换与吸附,2022,38(6):516-527.[3]㊀王芳,秦其峰.芳纶技术的发展及应用[J].合成技术及应用,2013,28(1):21-27.[4]㊀李明专,王君,鲁圣军,等.芳纶纤维的研究现状及功能化应用进展[J].高分子通报,2018(1):58-69.[5]㊀杨佑,曹凯凯,杨军,等.不同处理条件下间位芳纶的热氧老化性能研究[J].合成纤维工业,2022,45(6):24-28.[6]㊀尚润玲,李松波.间位芳纶织物的载体深色染色[J].毛纺科技,2023,51(3):52-56.[7]㊀姚穆.纺织材料学[M].3版.北京:中国纺织出版社,2009.[8]㊀宋翠艳,张春花.高性能防护服在欧洲的应用[J].中国个体防护装备,2009,97(4):53-54.[9]㊀王红,楚久英.芳香族聚酰胺纤维研究进展及应用[J].国际纺织导报,2020,48(4):4-9.[10]白琼琼.高性能纤维的发展现状及展望[J].毛纺科技,2021,49(6):91-94.[11]任仲恺,杨文华,张爱华.高强度间位芳纶的制备及力学性能测试[J].棉纺织技术,2019,47(12):13-15.[12]李岱霖,陈家旺,刘洋,等.间位芳纶耐酸腐蚀性能及表面改性研究[J].上海纺织科技,2012,40(12):26-28.[13]于伟东.纺织材料学[M].北京:中国纺织出版社,2006.[14]王红红,孙润军,吴蓓,等.芳纶Ⅲ的结构与热学性能研究[J].上海纺织科技,2017,45(5):3-7.[15]刘玉峰,曹凯凯,杨佑,等.干湿法纺丝制备高性能间位芳纶及其结构与性能研究[J].合成纤维工业,2022,45(5):33-36.Structure and acid-alkali resistance of m-aramid fibersWANG Honghong,SUN Runjun,WANG Bin(Xiᶄan Polytechnic University ,Xi ᶄan 710048)Abstract :The crystal aggregation structure and macromolecular structure of m-aramid fiber were characterized by X-ray diffrac-tion and infrared spectroscopy.The surface morphology was observed by field emission scanning electron microscopy.The thermal properties were tested with a thermogravimetry /differential scanning calorimetry synchronous thermal analyzer.And the mechani-cal properties of the fibers were characterized after acid-alkali corrosion.The results showed that the crystallinity of the m-aramid fiber was 46.24%,and the axial orientation index of the crystal region was 0.8494;the m-aramid fibers had a rough surface andbenzene ring structure in the internal macromolecular chain;the m-aramid fibers had no damage at a high temperature of 292ħ,indicating a good heat resistance;and the breaking strength remained above 90%of the original when the m-aramid fiber wastreated with sulfuric acid solution at a volume fraction of not higher than 20%and sodium hydroxide solution at a mass fraction ofnot higher than 20%at 85ħ,indicating a certain resistance to strong acid and alkali corrosion.Key words :m-aramid fiber;structure;thermal properties;mechanical properties;acid-alkali resistance11第1期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀王红红等.间位芳纶的结构与耐酸碱性能研究。

添加共试剂改善聚酰胺复合反渗透膜的性能

添加共试剂改善聚酰胺复合反渗透膜的性能

复合反渗透膜(PA-RO-x, x 代表添加 DMAc 的质量分数)的性能 . X 射线光电子能谱(XPS)和衰减全反射傅里叶
红外光谱(ATR-FTIR)分析表明, 随着 DMAc 含量的增加, 复合膜结构中交联聚酰胺含量相对于线性羧基部分
有所增加; 场发射扫描电子显微镜(FE-SEM)的增加, 膜
Vol.42
2021 年 6 月
高等学校化学学报
CHEMICAL JOURNAL OF CHINESE UNIVERSITIES
No.6
2008~2014
doi:10.7503/cjcu20200746
添加共试剂改善聚酰胺复合 反渗透膜的性能
闫婷婷 1,张 娜 1,李 强 1,李振华 2,李春辉 3,李 于 茹 1,王 瑞 1,王吉华 1,曹赞霞 1
(1. 德州学院生物物理研究院, 山东省生物物理重点实验室, 2. 物理与电子信息学院, 3. 实验管理中心, 德州 253023; 4. 青岛大学附属医学院心脏超声科, 青岛 266000)
雪 4,
摘要 将 N,N′-二甲基乙酰胺(DMAc)作为共试剂添加在间苯二胺水溶液中参与界面聚合反应, 以改善聚酰胺
光谱可以有效地反映出聚酰胺复合反渗透膜的活
性分离层和支撑层的化学结构信息 . 由图 1 可见,
所测薄膜均出现聚酰胺特征峰 . 其中,1663 cm−1
在实际应用中,薄膜复合膜的通量、选择性和抗菌能力主要取决于活性层的性能 . 多年来,科研 人员已经提出多种用于改善薄膜复合膜性能的方案,主要包括以下 4 类:(1)开发新的活性层材 料[11~14];(2)修饰活性层,如采用酸、醇、氧化物等化学试剂后处理活性层[15~17];(3)对活性层的主体聚 合物链进行修饰[5,18~21];(4)在活性层中引入额外的水通道,如添加分子筛、碳纳米管和水通道蛋白 等 . [22~25] 其中,开发新的活性分离层是最困难的,其余方案相对容易实现 .

片状纳米聚对苯二胺的制备与表征_李廷希

片状纳米聚对苯二胺的制备与表征_李廷希
6] 。 表面积 [
图 1 掺杂态聚对苯二胺的结构式 F i 1T h e m o l e c u l a r s t r u c t u r e o f d o e d P P D - g p p 2. 2 样品的性能及表征 F T I R 由美国 N i c o l e t 3 8 0型 F T I R 光谱仪分析 - - 测定 , 样品经与 溴 化 钾 混 合 压 片 处 理 。 样 品 物 项 和 结 / 构分析采用 R i a k u D m a x 2 5 0 0 P C 型转靶 X 射线粉 g , 末衍射仪测定 , 辐射源 C 扫描 u K 1 5 4 2 n m) α线( λ=0. , / , 范围 为 1 扫 描 速 度 为 管 流 管 压 为 0~8 0 ° 1 0 °m i n / / 2 5 mA, 4 0 k V。 样 品 的 热 稳 定 性 分 析 用 T GA D S C 1 , 瑞士梅特勒分析仪器厂 ) 气 1 6 0 0 L F 型同步热分析仪 ( 氛为氮气 , 温度 范 围 从 5 升温速率为1 0~6 5 0℃ , 0℃/ m i n。P P D 纳米片 的 形 貌 分 析 采 用 KYKY 2 8 0 0 B扫 - p , 描电子显微镜 ( 中国科仪 ) 样品表面经喷金处理 。
李廷希 等 : 片状纳米聚对苯二胺的制备与表征
1 5 8 3

片状纳米聚对苯二胺的制备与表征
李廷希 , 袁成前 , 赵玉花 , 隋 鹏, 高苏苏 , 孔 娜 ,陈泉良 , 魏 萌
( ) 山东科技大学 材料科学与工程学院 , 山东 青岛 2 6 6 5 9 0 摘 要: 过 硫 酸 铵 为 氧 化 剂, 采用 以盐 酸 为 掺 杂 剂 , 溶液聚合 , 合成 了 片 状 结 构 的 聚 对 苯 二 胺 。 通 过 红 外 、 、 / 热分析( 光谱 ( F T I R) X 射线衍射( X R D) T GA - 和扫描电子显微镜 ( 分别对产物的结构 、 结 D S C) S EM) 晶性 、 热稳定性和微观形貌进行了表征 。 结果表明 , 所 得的聚对苯二胺纳米片具有一定的结晶性和良好的热 ) 稳定 性 , 聚 对 苯 二 胺 的 形 貌 与 n( 的 HC l ∶n( P D A) - p ) 当 n( 比例有关 , HC l ∶n( P D A) =0. 8时最易形成 - p 片状纳米聚对苯二胺 。 讨论了聚对苯二胺纳米片可能 的形成机理 。 关键词 : 纳米片 ; 溶液聚合 ; 结晶性 ; 聚对苯二胺 ; 热稳定性 中图分类号 : 文献标识码 : 6 3 1. 2; TQ 3 1 7. 4 A O ( ) 文章编号 : 1 0 0 1 9 7 3 1 2 0 1 2 1 2 1 5 8 3 0 3 - - - 结构和性能的表 征 , 分析了聚对苯二胺纳米片可能的 形成机理 。

碱性条件下聚苯胺形貌的调控

碱性条件下聚苯胺形貌的调控

近几 年 , 轭 聚合物 的微/ 共 纳米 结构 ( : 维 、管 、球 等 ) 如 纤 由于在 低维 系统 和决 定材 料性 质及 应用
方面的重要作用而备受瞩 目¨ .其潜在的应用领域包括分子导线 、 ] 化学传感 、 气体分离及光电子器
件等.聚苯胺( A I 具有优异的电学性能 , P N) 良好的加工性和突出的环境稳定性 , 是典型的共轭聚合 物 和非 常实 用 的聚合材 料之 一 .聚苯胺 已应 用 于纳米 器件 的制 取 , 微 观结 构 或形 貌 是影 响器件 效 J其
纳米纤维的传统方法 中, 无论采用无机酸还是有机酸 , 其降低浓度均导致产物形貌呈粒子状.我们的 前期研究结果表明, 在碱性条件下亦可获得 聚苯胺空 微球¨ 0 .可见 , H值对 聚苯胺形貌 的形成具 p
有调 控作 用 . 本文 报道 碱性 条件 对苯 胺 聚合形貌 的影 响 .
1 实验部 分
p H值的提高, 聚苯胺形貌由线形纤维状结构逐步聚集形成球形结构.在 p H≤1. 16时 , 产物为明显 的 线形 纤维 ,直径 约 20~10n 0 5 m;当 p =1. H 2 9时 ,产 物 为 明显 的球 形结 构 ,直径 约 为 25 I . m;而 当 x
p = 2 3时 ,产物 表现 为纤 维结构 向球 形结 构转 变 的过 渡态 . H 1.
1 1 试剂与仪பைடு நூலகம் 苯胺( . 纯度 9 % , 8 北京化工厂) 过硫酸铵( ; 纯度 9 % , 8 沈阳化工厂) 氢氧化钠 ( ; 纯
度 9 % , 京化 工厂 ) 无 水 甲醇 ( 6 北 ; 纯度 9 % , 9 北京 化 工厂 ) Ⅳ 甲基一一 ; _ 2吡咯烷 酮 ( 度 9 % , 纯 9 北京化 工

反相胶束法控制合成不同形貌半导体Ag2S纳米晶

反相胶束法控制合成不同形貌半导体Ag2S纳米晶

反相胶束法控制合成不同形貌半导体Ag2S纳米晶
周海成;庄京;王训;徐建;李亚栋
【期刊名称】《化学学报》
【年(卷),期】2003(061)003
【摘要】采用水(溶液)/Triton X-100/环已烷/正戊醇反相胶束体系,制备出不同形貌的Ag2S纳米晶,其中合成出的直径为50~100 nm、长度为2.0~3.5 μm、长径比为20~70的纯相Ag2S纳米棒为首次报导.就不同ω0、反应物浓度和陈化时间等因素对合成Ag2S的形貌和尺寸的影响进行了研究,获得了控制合成不同形貌Ag2S纳米晶的反应条件.所得产物利用透射电子显微镜分析进行了表征.
【总页数】4页(P372-375)
【作者】周海成;庄京;王训;徐建;李亚栋
【作者单位】清华大学化学系,北京,100084;山东理工大学化学工程学院,淄
博,255000;清华大学化学系,北京,100084;清华大学化学系,北京,100084;清华大学化学系,北京,100084;清华大学化学系,北京,100084
【正文语种】中文
【中图分类】O6
【相关文献】
1.金属氧化物半导体纳米晶液相法控制合成研究进展 [J], 施利毅;王竹仪;袁帅;赵尹
2.水热法合成二氧化钛纳米管的晶型与形貌控制的研究 [J], 张萍;许丽;王莉
3.不同形貌掺杂态聚苯胺纳米半导体材料的界面法合成 [J], 苏碧桃;慕红梅;左显维;王克;董娜;佟永纯
4.反相胶束软模板法合成Ag2S半导体纳米棒 [J], 齐锋;吴庆生;刘璐;丁亚平
5.不同形貌MnO_2纳米晶合成的研究进展 [J], 吕朝霞;孙彩云;刘胜昌
因版权原因,仅展示原文概要,查看原文内容请购买。

间苯二胺的动力学光度法测定

间苯二胺的动力学光度法测定

间苯二胺的动力学光度法测定
王胜忠;陈宁生
【期刊名称】《中国公共卫生》
【年(卷),期】2007(23)2
【总页数】2页(P248-249)
【关键词】动力学光度法;间苯二胺;测定;高效液相色谱法;有机物质;吸光度值;气相色谱法;荧光光度法
【作者】王胜忠;陈宁生
【作者单位】安徽工程科技学院生化工程系
【正文语种】中文
【中图分类】R123.1
【相关文献】
1.催化动力学褪色光度法测定痕量间苯二胺 [J], 金贞淑;赵晔;沈燕侠;王凤全
2.薄层分离一紫外二元光度法测定间苯二胺精制废水中的邻氨基苯磺酸 [J], 汤惠中
3.催化动力学分光光度法测定痕量对苯二胺 [J], 赵伟涛;陈燕清;黄广;闫玉新;郑平
4.人工神经网络阻抑动力学光度法同时测定邻苯二酚和间苯二胺 [J], 傅应强;陈宁生;王胜忠
5.催化动力学光度法测定痕量间苯二胺 [J], 陈宁生;王岚岚;贡晓洁;王胜忠
因版权原因,仅展示原文概要,查看原文内容请购买。

高渗透性芳香聚酰胺反渗透膜的影响因素及机理分析

高渗透性芳香聚酰胺反渗透膜的影响因素及机理分析

高渗透性芳香聚酰胺反渗透膜的影响因素及机理分析
谢潇;杨倩;张琳;宋娜;于立岩;董立峰
【期刊名称】《青岛科技大学学报(自然科学版)》
【年(卷),期】2024(45)2
【摘要】随着反渗透膜应用的普及化和广泛化,提升其渗透性能成为了当下的迫切追求。

为进一步改善以间苯二胺(MPD)与均苯三甲酰氯(TMC)为反应单体的芳香聚酰胺反渗透膜的分离性能以及表面形貌,从水相浸润时间、油相反应时间、热处理温度和时间、MPD及TMC的添加量、以及二甲亚砜(DMSO)的添加量等方面进行了研究,得到具有均一形貌的高渗透性芳香聚酰胺反渗透膜。

通过对芳香聚酰胺反渗透膜进行性能评价、扫描电子显微镜(SEM)以及傅里叶红外变换光谱仪(FT-IR)等测试。

结果表明:改善工艺参数后得到的反渗透膜拥有良好的渗透性能、分离性能以及表面形貌。

【总页数】11页(P80-90)
【作者】谢潇;杨倩;张琳;宋娜;于立岩;董立峰
【作者单位】青岛科技大学材料科学与工程学院;青岛科技大学分析测试中心【正文语种】中文
【中图分类】TQ028.8
【相关文献】
1.芳香聚酰胺纳滤膜的制备及影响因素
2.高含泥碱性氧化铜矿堆浸渗透性影响因素分析
3.芳香聚酰胺反渗透复合膜界面聚合影响因素分析
4.新型芳香聚酰胺纳滤膜
制备过程影响因素探讨5.热处理前溶剂活化对芳香聚酰胺反渗透膜结构的影响机制
因版权原因,仅展示原文概要,查看原文内容请购买。

《Ru-CeO2催化剂的形貌调控及助剂改性在温和条件下氨合成催化性能研究》范文

《Ru-CeO2催化剂的形貌调控及助剂改性在温和条件下氨合成催化性能研究》范文

《Ru-CeO2催化剂的形貌调控及助剂改性在温和条件下氨合成催化性能研究》篇一Ru-CeO2催化剂的形貌调控及助剂改性在温和条件下氨合成催化性能研究一、引言氨(NH3)作为重要的化工原料,在农业、工业和能源领域具有广泛的应用。

传统的哈伯-博施(Haber-Bosch)法虽然能高效合成氨,但该过程需要在高温高压条件下进行,能耗大且对环境产生压力。

因此,开发一种在温和条件下高效、低能耗的氨合成催化剂显得尤为重要。

Ru/CeO2作为一种新兴的氨合成催化剂,因其具有高活性、高选择性和良好的稳定性等特点而备受关注。

本文着重探讨了Ru/CeO2催化剂的形貌调控及助剂改性对在温和条件下氨合成催化性能的影响。

二、Ru/CeO2催化剂的形貌调控形貌调控是改善催化剂性能的有效手段。

Ru/CeO2催化剂的形貌调控主要涉及到催化剂的粒径、比表面积、孔结构等方面的调整。

研究表明,催化剂的粒径越小,比表面积越大,活性组分与反应物的接触面积就越大,从而有利于提高催化活性。

通过控制合成条件,可以制备出不同形貌的Ru/CeO2催化剂。

例如,采用溶胶-凝胶法可以制备出具有高比表面积的纳米级Ru/CeO2催化剂;而采用模板法或气相沉积法则可以制备出具有特定孔结构的Ru/CeO2催化剂。

这些不同形貌的催化剂在氨合成反应中表现出不同的催化性能。

三、助剂改性对Ru/CeO2催化剂性能的影响助剂改性是提高催化剂性能的另一种有效手段。

通过向Ru/CeO2催化剂中添加适量的助剂,可以改善催化剂的电子结构、增强其抗中毒能力、提高其热稳定性等。

常用的助剂包括碱土金属氧化物、稀土氧化物等。

助剂可以与活性组分Ru和载体CeO2之间形成相互作用,从而影响催化剂的电子结构和表面性质。

例如,添加适量的碱土金属氧化物可以增强Ru与CeO2之间的相互作用,提高Ru的分散度和利用率;而添加稀土氧化物则可以改善催化剂的氧化还原性能和抗中毒能力。

这些助剂的添加可以有效提高Ru/CeO2催化剂在温和条件下的氨合成催化性能。

苯二胺对聚苯胺电化学合成及其降解的影响

苯二胺对聚苯胺电化学合成及其降解的影响

*2004201205收稿,2004203208修稿;**通讯联系人苯二胺对聚苯胺电化学合成及其降解的影响*孙 莉 张汉昌**姜春明 白如科(中国科学技术大学化学与材料科学学院 合肥 230026)摘 要 运用循环伏安法和紫外2可见吸收光谱分别研究了邻、间、对3种苯二胺单体对苯胺聚合及其生成膜降解过程的影响.结果表明,对苯二胺在催化苯胺聚合的同时加速了膜的降解,而邻、间苯二胺对聚合与膜的降解均起抑制作用.这可能是由于3种苯二胺结构的不同影响了聚合机理,并在一定程度上改变了膜的化学物理性质所致.扫描电镜显示,苯二胺的加入对聚合膜的形态结构也有明显影响,与纯聚苯胺膜相比,共聚膜变得更加致密、光滑.关键词 聚苯胺,苯二胺,电化学合成,降解聚苯胺(PAn)作为一种性能优良并具有广泛应用前景的导电聚合物已得到了较为深入的研究.但PAn 在酸性溶液和较高的阳极电位下会发生降解,这又在一定程度上限制了它的应用范围,因此改进PAn 的物理化学性质,进一步提高其稳定性仍是目前人们感兴趣的研究领域之一.近年来已有许多文献报道,对聚苯胺进行掺杂、共聚等来改善其结构和性能.关于苯胺与苯二胺共聚的研究也不少(p PD A)合起催化效应,而且合适的浓度可以提高共聚物的聚合度和电导率.Malinauskas 等[3]研究了邻苯二胺(o PD A)与苯胺的共聚,结果o PD A 抑制苯胺的聚合.Si [4]和M az eikiene 等[5]则研究了它们的异构体间苯二胺(m PD A),讨论了浓度对共聚物结构和性质的影响,发现只有当m PD A 浓度较低时共聚才会发生,而且共聚物中本征态形成的电位范围比苯胺的要窄,浓度高时则对苯胺的聚合起抑制效应.Prokes 等[6]用化学法分别制备了p PD A 、o PD A 、m PD A 和苯胺的共聚物,并对它们的电导率进行了比较.以上文献中还讨论了聚合物的记忆效应.本文采用电化学法和紫外吸收光谱法研究了3种苯二胺单体与苯胺的共聚过程,重点讨论了共聚对聚合膜降解速度的影响.1 实验部分111 仪器与试剂L K98B Ò微机电化学分析系统(天津市兰力科化学电子高技术有限公司);Pt 片(012c m 2)电极,Pt 丝电极,饱和甘汞电极(SC E)(江苏电分析仪器厂),本文所用的电位值均相对于SC E;UV 22401PC 紫外可见分光光度计(日本岛津公司);X 2650扫描电镜(SE M)(日本);每次实验前,Pt 片电极都分别在稀硝酸和丙酮中超声清洗5min,再用二次蒸馏水冲洗干净在空气中晾干后使用.苯胺、m PD A 为分析纯;p PD A 为化学纯(中国医药上海化学试剂公司);o PD A 为化学纯(中国五联化工厂);硫酸为分析纯(中国铜化集团曙光化工厂).所有试剂均是直接使用没有进一步处理.112 实验内容配制011mol P L 苯胺溶液和3种含2mmol P L 苯二胺的011mol P L 苯胺溶液(支持电解质均为1mol P L H 2S O 4溶液),以Pt 片电极为工作电极,Pt 丝为对电极,SCE 为参比电极,于-012到110V 、扫描速度50mV P s,循环扫描制备PAn 膜,并同时记录循环伏安曲线,然后保持电位扫描范围、扫描速度不变,记录每种PAn 膜在1mol P L H 2SO 4空白溶液中的循环伏安曲线,观察伏安图形的变化.测定每种PAn 膜降解后空白溶液的紫外吸收光谱(1mol P L H 2SO 4溶液为参比),用扫描电镜观察PAn 膜的表面形貌.实验均在室温条件下进行.2 结果与讨论211 苯二胺对苯胺聚合的影响图1是苯胺聚合的循环伏安图,当加入少量的苯二胺时,得到的电流2电势曲线与此类似,但峰电流和峰电势有所变化,变化的趋势和大小与第2期2005年4月高 分 子 学 报AC TA POL Y M ERIC A SINIC ANo.2Apr.,2005219它们的结构有关.图2反映了浓度相同(均为2mmol P L)结构不同的苯二胺对苯胺聚合过程的影响(以Ñ峰峰电流I Ñ随聚合时间的增加表示),a 为纯苯胺聚合时的I Ñ2t 曲线,由于苯胺的聚合是一个自催化过程,开始聚合很慢,电流变化不明显,约在5min 后I Ñ值才随着时间的增加逐渐增大.而b 在一开始峰电流增加就较快,增大的趋势也大于a,显示了明显的催化作用.c 和d 在开始阶段基本没有变化,直到8min 后电流才有所上升,但比a 小的多,说明对聚合反应产生了抑制,抑制的程度是d>c.Fi g.1 C yclic voltam m ograms of 011m ol P L anili ne +1m ol P L H 2SO 4between -012and 110V at a scan rate of 50m V PsFi g.2 Dependence of I Ñon time duri ng the pol ymeriz ation of 011mol P L anili ne solution containing 2m mol P L (a)0;(b)P PDA;(c)O PDA;(d)M PD A引起上述现象的原因是,合适的p PD A 易形成长PAn 链,扩大了链上共轭体系,对苯胺的聚合起催化效应[1].m PD A 芳环的邻位有胺基存在,与苯胺形成的共聚物结构中有许多侧链,o PD A 自身比苯胺更容易聚合,即便它们加入的量很少,对苯胺的聚合也起抑制作用[3,5].212 苯二胺对聚苯胺膜降解的影响图3是PAn 膜在1mol P L H 2SO 4空白溶液中Fig.3 Cyclic voltam m ogram s of the P An film in 1mol P L H 2SO 4The film i s prepared as indicated in Fi g.1.的循环伏安曲线,可见随着循环次数的增加,两侧峰的峰电流逐渐下降,而中间峰的峰电流先增大后减小,体现了PAn 膜的降解过程.如图显示的4对氧化还原峰中,中间两对峰B P B'和峰C P C'通常被认为是由PAn 膜的降解产物(苯醌(B Q)P HQ 和PAP P BQI)之间的相互转变引起的[7,8],它们之间的关系具体可表示为:N H2(PA P)O HN H (B QI)O+2H ++2e -HO+H 2O O (BQ)O+N H 3由于PAn 膜降解的最终产物是B Q [9~11],所以本文根据PAn 膜降解后空白溶液中所含B Q 的多少来衡量其降解程度.按图2相同实验条件制备了相同量的4种PAn 膜(制膜时通过的电量相同),并把它们分别放在1mol P L 的H 2SO 4空白溶液中循环30次使其降解,并同时利用膜循环降解时产物的生成速度(以C 峰峰电流的增加来表示,见图4)及降解液的吸光度(如图5)来表示.由图4可知,加入p PD A 制备的膜产生的峰电流最大(曲线b),且随循环次数的增加也最快,而含m PD A 的膜产生的峰电流最小(曲线d),增加也最慢,4种PAn 膜所产生的降解产物C 的速度分别为b>a>c>d,很明显该关系也反映了膜降解的快慢.为了进一步证实以上观点,测降解后溶液的紫外吸收如图5.可以看出在230~270nm 范围内BQ 有很强的吸收,吸光度的大小依次为b>a >c>d,该顺序也反映了降解液中B Q 含量依此减小,可见降解液的吸光度与图4相对应.以上事实说明,p PD A 的加入使PAn 膜的降解速度加快,而o PD A 和m PD A 则抑制了PA n 膜的降解.220高 分 子 学 报2005年Fi g.4 Relations hips be tween I C and N during the de gradation of four P An filmsFi g.5 UV 2Vis spectra of the degradati on solution The film s are prepared as i ndicated in Fig.2.影响降解速度的因素与膜的化学组成、物理构型及膜电导等因素有关,当苯二胺的含量很低时(摩尔比约小于7%),共聚后膜的电导基本不变[6],因此本文在011mol P L 苯胺中加入2mmol P L 的苯二胺不足以引起共聚物电导的变化,即电导对降解速度的影响可以忽略.从上述聚合过程可知,不同结构的苯二胺对聚合速度影响很大,与纯苯胺聚合相比,加入p PD A 使聚合速度加快,但也同时加速了降解,o PD A 和m PD A 对聚合及降解都有抑制作用,说明聚合与降解有一定的内在联系.一般而言,聚合速度快,容易形成较为疏松的膜,有利于加快降解速度,但从膜的电镜照片看(图6),加入p PD A 生成的膜(图b)除表面的颗粒状物质比纯苯胺生成的膜有所减少外,总体上要平滑、致密.在这种情况下,降解速度加快的原因可能主要与聚合条件有关,如加入的p PD A 的量不太适当,在催化反应速度的同时,形成较多的低分子链物质,使膜的降解加快.聚合速度慢有利于形成均匀、有序的膜,加入o PD A 和m PD A 形成的共聚膜显然更加致密光滑(如图c 、d),颗粒状物质也更少,在这两种膜中由于加入的苯二胺的两个胺基不对称会使聚合物分子产生支链,这种紧密结构会阻止溶液中的组分进入聚合物内部,可能更有利于提高膜的电化学稳定性而使降解速度减慢.另外,膜本身电活性质点的多少也是影响苯胺聚合速度与聚苯胺降解速度的一个方面.Fig.6 SEM im ages of four PAn film sThe pol ymeri zati on condition as indicated i n Fig.2(@8000)综上所述,研究了邻、间、对3种苯二胺单体与苯胺共聚时,对苯胺聚合速度以及PAn 膜降解的影响.结果表明,p PD A 加快了苯胺的聚合和PAn 的降解,而o PD A 和m PD A 则起抑制作用,同时少量苯二胺的加入也明显改变了聚合物的物理结构,使PAn 膜表面更加光滑致密.o PD A 和m PD A 抑制PAn 的降解具有一定的实际意义,如可通过加入少量的o PD A 或m PD A 来增加PAn 的抗氧化性,以使其更适合二次电池、传感器等领域的应用.2212期孙 莉等:苯二胺对聚苯胺电化学合成及其降解的影响222高分子学报2005年REFERENCES1Tang H Q,Ki tani A,Mai tani S,Mai tani H.Electrochi mica Ac ta,1995,40:849~8572Yang CH,Wen T C.J Ap pl Electroche m,1994,24:166~1783Malin au skas A,B ro n M,Hol ze R.Sy n thetic Metals,1998,92:127~1374Si S H,Xu Y J,Nie L H,Yao S Z.Elec tro chimActa,1995,40:2715~27215Mazeik iene R,Malin ausk as A.S yn thetic Me tals,1998,92:259~2636Pro kes J,S tej skal J,Kri vk a I,To b olk o va E.Sy n theti c M etals,1999,102:1205~12067Stil well D E,Park SM.J Electroche m So c,1988,135(9):2254~22618Wan g Z H,Li Y X,Wu Y R,Tan g Y H.J Electe oanal Che m,1999,464:181~1869Hand R L,Nelso n R F.Jo u rn al o f the American C hem ical So cie ty,1974,96:850~85810Kob ayash i T,Yo ney am a H,Ta mu ra H.J Electro anal Che m,1984,177:293~29711S tilwell D E,Park S M.J Elec tro chem So c,1988,135:2497~2502EFFECT OF PHENYLENEDIAMINE ON THE ELECTROPOLYMERIZATION OFPOLY ANILINE AND ITS DEGRAD ATIONS UN Li,Z HANG Hanchang,JIA NG Chunming,B AI Ruke(Sc ho o l o f Ch em is try an d M aterialsScien ce,Un iv e rs ity o f Sc ience an d Te chn o lo gy o f C hina,He fe i230026)Abstract UV2Vis absorption spectrum and cyclic voltam metry were adopted to study the influence of o,m,p2 phenylenediamine monomers on the polymerization rate of aniline and the degradation process of P An films, respectively.The results sho wed p PD A accelera ted the polymerization of aniline and the degradation of PAn films, w hile o PD A and m PD A both restrained the polymerization and the degradation.A possible reason f or this phenomenon was that the different structures of phenylenedia mine af fected the polymerization mechanism and changed the chemical physics properties of PA n films to a certain extent.SE M ima ges displayed that the films became more compac t and smoother compared with pure PAn films,w hich indicated the addition of phenylenediamine monomers also had an apparent influence on the morphology of PAn films.Key words PA n,Phenylenediamine,Electropolymerization,D egradation。

单体结构对聚酰胺复合纳滤膜表面形貌与性能的影响

单体结构对聚酰胺复合纳滤膜表面形貌与性能的影响
/ pm p
图 1 GOP A 的 N —A H. MR谱 图
Fi H. g1 NM R p cr f0 g n r t AM AM oe u e s e tao e e a i P on m lc l
(S /DA MAC 3S 膜 在对 S 4 的脱 除率达 到 9 %, P SP D ) S P O2 - 6
胺(A P MAM. ) GO为水相 单体 ,均苯 三 甲酰氯 ( Mc) T
为油相 单体 , 过界 面聚合 法分 别制备 出 3 聚酰胺 复 通 种 合纳 滤膜。 采用傅 立叶转换红外全反射 分析膜表 面化 学 组成 的变化 ,用扫描 电镜观 察 了膜 的表 面形貌 ,分别评
价 了 3 膜 对 2 0 mg C 、 aS 4 Mg 1 Mg O 种 0 0 / Na 1 N 2O 、 C 2 L 、 S d
中图分类号: T 7 Q14
文献标 识码 :A
文章编 号: 10 .7 1 0 7增刊.7 20 0 19 3 ( 0 ) 2 2 6 —4
1 引 言
纳滤膜是一种 以压力为驱动 力的分离膜 , 分离性 能 介 于反渗透与超 滤之 间,可广泛地应 用于食 品 、医药、 硬水 软化、工业废 水处理及 回收利 用、石油 、化工等领
21 实验药 品、仪器及 设备 . 2 . ,5二胺 基苯磺 酸 ( , . A S Al i , %)。 2 5D B A, d c 9 rh 0 间苯二胺 ( D MP A, 国 药 集 团 化 学 试 剂 有 限 公 司 , 9 ,%),零 代聚酰胺一 胺 ( A 95 P MA G ,实验 室根据 M. O 文献[1 自制 )。图 1 G 1】 为 O的 N H MR谱图 。 苯三 甲 均

不同表面活性剂对高导电态聚苯胺形貌与性能的影响

不同表面活性剂对高导电态聚苯胺形貌与性能的影响

不同表面活性剂对高导电态聚苯胺形貌与性能的影响马超云;李玲【期刊名称】《电子元件与材料》【年(卷),期】2012(31)5【摘要】以过硫酸铵为氧化剂,采用自稳定分散聚合法(SSDP)合成高导电态聚苯胺(PANI).研究了不同种类的表面活性剂对PANI形貌与性能的影响,通过TEM、FT-IR、XRD、UV-Vis及四探针实验分别对PANI进行分析表征.结果表明,添加阴离子型表面活性剂十二烷基苯磺酸(DBSA)所得的PANI呈纳米纤维状,添加非离子表面活性剂聚乙二醇( PEG400)和阳离子表面活性剂三乙醇胺(TEA)所得的PANI分别呈扇形树枝状和薄膜状;添加DBSA所得PANI电导率最高,为8.7S·cm-1,而添加PEG400所得聚苯胺产率最高,为78.3%.%With ammonium persulfate as the oxidant, high conductive polyaniline (PANI) was synthesized by self-stabilizing dispersion polymerization (SSDP). The influences of the different types of surface active agents on the morphologies and properties of PANI were investigated, and the prepared PANI were analyzed and characterized by TEM, XRD, FT-IR, US-Vis spectra, Four-probe methods. The results show that the morphology of PANI is nanofibers added with anionic surfactant (DBSA), while the morphologies of PANI with adding non-ionic surfactant PEG400 and cationic surfactant TEA are shapes of fan-shaped arborization and membrane, respectively. The highest conductivity of PANI is 8.7 S ? Cm"1 added with DBSA, and the highest yield of PANI is 78.3% added with PEG400.【总页数】4页(P35-38)【作者】马超云;李玲【作者单位】暨南大学物理系,广东广州510632;暨南大学物理系,广东广州510632【正文语种】中文【中图分类】TN04【相关文献】1.基于灰色理论的掺杂态导电聚苯胺的制备及导电性能研究 [J], 冯辉霞;鲁华涛;刘生丽;王毅;张德懿2.不同形貌掺杂态聚苯胺纳米半导体材料的界面法合成 [J], 苏碧桃;慕红梅;左显维;王克;董娜;佟永纯3.不同形貌纳米炭/聚苯胺复合材料对超级电容器电化学性能的影响 [J], 周光敏;王大伟;李峰;张莉莉;翁哲;成会明4.不同表面活性剂对β-ZnMoO4形貌及其光催化性能的影响 [J], 王舜;李凯;魏巍;张立新;谢吉民5.不同酸掺杂对聚苯胺导电性能的影响 [J], 阿卜杜.伊拉明;姚凯伦因版权原因,仅展示原文概要,查看原文内容请购买。

液体过滤用静电纺纳米纤维材料

液体过滤用静电纺纳米纤维材料

液体过滤用静电纺纳米纤维材料常规织物、非织造布和滤纸的纤维直径粗、孔径大,因而过滤精度低,在实际应用过程中往往被用于拦截较大粒径的颗粒物,如何细化纤维直径以降低纤维膜孔径,在保证纤维膜高通量的同时提高其过滤精度一直是该领域研究者们所关注的热点[19]。

静电纺丝法是近年来制备微纳米纤维的新型加工方法,其所制备的纤维直径范围在10~500nm,所得纤维膜孔径分布均一且孔道连通性好。

因此,通过静电纺丝法细化纤维直径以提高纤维膜的过滤精度,并保证较高的液体渗透通量,有望实现该材料在液体过滤领域的新应用[20]。

1、PMIA纳米纤维膜间位芳纶(PMIA)全称为聚间苯二甲酰间苯二胺,经溶液纺丝方法制备的PMIA 纤维具有超高强度、高模量、耐高温、耐酸碱等优异性能,其在220℃下的稳定使用时间可长达10年,优于工业上的大多数有机耐高温纤维[21]。

由于PMIA纤维优异的耐酸碱性与耐高温性,其仅能在较高温度下溶解于类离子溶液体系,如N,N-二甲基甲酰胺(DMF)、N,N-二甲基乙酰胺(DMAc)等,将PMIA短纤溶解于DMF和氯化锂混合溶液体系以制备静电纺纤维膜[22]。

图4-1(a)和(b)分别为10wt%和8wt%PMIA溶液所制备的纳米纤维膜的SEM图,从图中可以看出膜中PMIA纳米纤维呈无规取向且层层堆积,纺丝液浓度为10wt%条件下所制备的PMIA纤维直径约为200nm,随着纺丝液浓度降低,纤维直径明显减小,8wt%浓度下所制备PMIA纳米纤维的平均直径小于100nm。

PMIA分子链中存在大量的酰胺键,相邻分子链中的酰胺键之间形成了氢键,从而使得PMIA静电纺纤维间具有一定的吸引力而紧密堆积,但纤维之间相互搭接仍形成了微/纳米级孔隙。

图4-1(c)和(d)为PMIA原丝与不同聚合物浓度溶液所制备的PMIA纳米纤维膜的氮气吸附—脱附曲线和孔径分布,从图4-1(c)中可以看出PMIA原丝因纤维直径较大导致氮气吸附量极低,而较细的PMIA静电纺纤维的吸附量较高,且随着PMIA纺丝液浓度的降低,所得静电纺纤维直径降低,纤维膜的吸附量增大。

用海藻酸钠包埋的聚间苯二胺吸附剂、其制备方法及其用途[发明专利]

用海藻酸钠包埋的聚间苯二胺吸附剂、其制备方法及其用途[发明专利]

专利名称:用海藻酸钠包埋的聚间苯二胺吸附剂、其制备方法及其用途
专利类型:发明专利
发明人:黄美荣,谢素芬,李新贵
申请号:CN200710039114.7
申请日:20070404
公开号:CN101091910A
公开日:
20071226
专利内容由知识产权出版社提供
摘要:本发明公开了一种用海藻酸钠包埋的聚间苯二胺吸附剂,聚间苯二胺外包附有海藻酸钠,聚间苯二胺与海藻酸钠的重量比为0.5~2∶1。

本发明还公开了制备用海藻酸钠包埋的聚间苯二胺吸附剂的方法及用海藻酸钠包埋的聚间苯二胺吸附剂的用途。

本发明中的用海藻酸钠包埋的聚间苯二胺吸附剂可用于吸附废水中的铅离子。

申请人:同济大学
地址:200092 上海市杨浦区四平路1239号
国籍:CN
代理机构:上海光华专利事务所
代理人:余明伟
更多信息请下载全文后查看。

聚间苯二甲酰间苯二胺平板膜的制备及其性能研究

聚间苯二甲酰间苯二胺平板膜的制备及其性能研究

聚间苯二甲酰间苯二胺平板膜的制备及其性能研究郑喜;王涛;任永胜;赵珍珍;王雪琪;赵之平【期刊名称】《化工学报》【年(卷),期】2022(73)10【摘要】以聚间苯二甲酰间苯二胺(PMIA)为制膜原料,氯化锂(LiCl)、聚乙二醇(PEG-400)和聚乙烯吡咯烷酮(PVP)为添加剂,通过非溶剂诱导相转化法制备了PMIA平板膜,系统考察了聚合物浓度、添加剂种类和含量对PMIA膜结构和性能的影响。

结果表明,聚合物浓度和LiCl含量增加,铸膜液黏度增大,导致膜孔径减小,纯水通量降低。

而PEG含量的增加,使得聚合物链呈现舒展状态,膜孔径增大,纯水通量升高,亲水性增强。

随着PVP含量的增加,膜的纯水通量先升高后降低,膜的亲水性变差。

当PMIA的质量分数为9%,LiCl的质量分数为2.8%,PVP的质量分数为1.2%时,膜的纯水通量高达1421.55 L·m^(-2)·h^(-1)·bar^(-1),对牛血清蛋白(BSA)的截留率为80%,展现出较高的渗透性,为制备高性能膜材料提供了新的思路。

【总页数】16页(P4707-4721)【作者】郑喜;王涛;任永胜;赵珍珍;王雪琪;赵之平【作者单位】北京理工大学化学与化工学院;省部共建煤炭高效利用与绿色化工国家重点实验室【正文语种】中文【中图分类】TQ028.8【相关文献】1.聚间苯二甲酰间苯二胺超滤膜的制备与性能研究2.改性聚对苯二甲酰间苯二胺的溶解性及其纤维性能研究3.溶液喷射聚间苯二甲酰间苯二胺纳米纤维膜的过滤性能4.改性钛酸钡/聚间苯二甲酰间苯二胺复合薄膜的制备与介电性能5.耐高温聚间苯二甲酰间苯二胺介电复合材料的制备及性能因版权原因,仅展示原文概要,查看原文内容请购买。

着色PMIA纤维结构与性能的研究

着色PMIA纤维结构与性能的研究

着色PMIA纤维结构与性能的研究
刘立起;陈蕾;诸静;潘婉莲;于俊荣;刘兆峰;胡祖明
【期刊名称】《合成纤维》
【年(卷),期】2008(37)3
【摘要】采用原液着色的方法,通过湿法纺丝制备了聚间苯二甲酰间苯二胺(PMIA)着色纤维,并对其进行了机械性能、染色深度、热失重、红外光谱分析测试。

结果表明:原液着色PMIA纤维的机械性能受颜料加入量的影响很小;颜料含量为3%时就能赋予PMIA原液着色纤维较好的染色深度;原液着色PMIA纤维的起始分解温度较未着色PMIA纤维有所降低,但二者在失重率15%的温度及550℃的重量保持率相似,都具有较好的热稳定性。

【总页数】4页(P17-19)
【关键词】聚间苯二甲酰间苯二胺纤维;原液着色;结构与性能
【作者】刘立起;陈蕾;诸静;潘婉莲;于俊荣;刘兆峰;胡祖明
【作者单位】东华大学纤维材料改性国家重点实验室
【正文语种】中文
【中图分类】TQ342.721
【相关文献】
1.原液着色PMIA纺丝浆液挤出胀大特性研究 [J], 张媛婧;刘立起;陈蕾;于俊荣;胡祖明
2.涤纶着色剂对聚酯熔体流变性能和纤维结构性能的影响 [J], 孙友德;李举荣
3.原液着色对聚丙烯腈纤维结构和性能的影响 [J], 焉瑞安;朱新军;张玉梅;王新厚
4.低折射率树脂对原液着色粘胶纤维结构
和性能的影响 [J], 刘稀;王冬;张丽平;李敏;付少海
5.4,4'-ODA改性含氯PMIA的合成及其纤维结构与性能研究 [J], 刘含茂;曹凯凯;李忠良;袁锋;杨佑;宋志成;张志军
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Poly(m-Phenylenediamine)Nanospheres and Nanorods: Selective Synthesis and Their Application for Multiplex Nucleic Acid DetectionYingwei Zhang1.,Hailong Li1,2.,Yonglan Luo1,Xu Shi3,Jingqi Tian1,2,Xuping Sun1*1State Key Lab of Electroanalytical Chemistry,Changchun Institute of Applied Chemistry,Changchun,Jilin,People’s Republic of China,2Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences,Beijing,People’s Republic of China,3Institute of Virology and AIDS Research,First Affiliated Hospital,Jilin University,Changchun,Jilin,People’s Republic of ChinaAbstractIn this paper,we demonstrate for the first time that poly(m-phenylenediamine)(PMPD)nanospheres and nanorods can be selectively synthesized via chemical oxidation polymerization of m-phenylenediamine(MPD)monomers using ammonium persulfate(APS)as an oxidant at room temperature.It suggests that the pH value plays a critical role in controlling the the morphology of the nanostructures and fast polymerization rate favors the anisotropic growth of PMPD under homogeneous nucleation condition.We further demonstrate that such PMPD nanostructures can be used as an effective fluorescent sensing platform for multiplex nucleic acid detection.A detection limit as low as50pM and a high selectivity down to single-base mismatch could be achieved.The fluorescence quenching is attributed to photoinduced electron transfer from nitrogen atom in PMPD to excited fluorophore.Most importantly,the successful use of this sensing platform in human blood serum system is also demonstrated.Citation:Zhang Y,Li H,Luo Y,Shi X,Tian J,et al.(2011)Poly(m-Phenylenediamine)Nanospheres and Nanorods:Selective Synthesis and Their Application for Multiplex Nucleic Acid Detection.PLoS ONE6(6):e20569.doi:10.1371/journal.pone.0020569Editor:Meni Wanunu,University of Pennsylvania,United States of AmericaReceived February14,2011;Accepted May4,2011;Published June23,2011Copyright:ß2011Zhang et al.This is an open-access article distributed under the terms of the Creative Commons Attribution License,which permits unrestricted use,distribution,and reproduction in any medium,provided the original author and source are credited.Funding:The authors have no support or funding to report.Competing Interests:The authors have declared that no competing interests exist.*E-mail:sunxp@.These authors contributed equally to this work.IntroductionDuring the past decades,conducting polymers(CPs)have constituted a subject of research for their unique properties and important application potential[1].Polyaniline is one of the most studied CPs due to its chemical stability and relative high conductivity[2]and,at the same time,polymers based on aniline derivatives have also been widely investigated[3].Among them, poly(phenylenediamine)(PPD)homopolymer is a highly aromatic polymer containing2,3-diaminophenazine or quinoraline repeat-ing unit and exhibiting high thermostability and has found important applications in sensor designing,immunospecies detection,and as component of rechargeable cells etc[4–13]. PPD is usually prepared by electrochemical[14]and chemical oxidation polymerization[15].Although we[16]and other researchers[17–19]have successfully prepared poly(o-phenylene-diamine)nanobelts and microparticles by chemical oxidation polymerization method,respectively,the selective synthesis of PPD with different morphologies has not been addressed so far.On the other hand,it is vitally important to develop rapid,cost-effective,sensitive and specific methods for the detection of nucleic acid due to their various applications in gene expression profiling, clinical disease diagnostics and treatment[20].The increasing availability of nanostructures has created widespread interest in their use in biotechnological system for diagnostic application[21]. Indeed,the use of a variety of nanostructures for this purpose has been well-demonstrated[22].Recently,there have been many efforts toward developing homogeneous fluorescence assays based on fluorescence resonance energy transfer(FRET)or quenching mechanism for nucleic acid detection[23].The use of nanos-tructures as a‘‘nanoquencher’’has a remarkable advantage in that the same nanostructure has the ability to quench dyes of different emission frequencies and thus the selection issue of a fluorophore-quencher pair is eliminated from the nanostructure-involved system[23,24].Up to now,a number of structures have been successfully used by us and other researchers in this assay, including gold nanoparticles,single-walled carbon nanotubes (SWCNTs),multi-walled carbon nanotubes,carbon nanoparticles, carbon nanospheres,nano-C60,mesoporous carbon microparti-cles,graphene oxide(GO),polyaniline nanofibres,poly(o-phenyl-enediamine)colloids,poly(2,3-diaminonaphthalene)microspheres, coordination polymer colloids and nanobelts,Ag@poly(m-phenyl-enediamine)core-shell nanoparticles,tetracyanoquinodimethane nanoparticles,and supramolecular microparticles[23–46].For the SWCNT or GO system,it has drawbacks:(1)several hours’sonication is required to disperse SWCNT in an organic solvent like N,N-dimethylformamide(DMF)[30];(2)the GO preparation by the Hummer’s method is time-consuming and labor-intensive [47].We have also found that conjugation polymer poly(p-phenylenediamine)nanobelts(PNs)can serve as an effective fluorescent sensing platform for multiplex nucleic acid detection [48];however,this system still has two serious drawbacks which limit its practical use:(1)the nanobelts are tens of micrometers in length and thus tend to sink in aqueous solution due to the gravity,causing the problem of stability in detection;(2)it has poor discrimination ability in that it gives only 8.8%difference of detection signal between single-base mismatched and complemen-tary sequences [48].Accordingly,developing new nanostructure-based fluorescent sensing platform to overcome all these drawbacks is highly desired.In this paper,we report on the selective synthesis of poly(m -phenylenediamine)(PMPD)nanospheres and nanorods by chem-ical oxidation polymerization of MPD monomers using ammoni-um persulfate (APS)as an oxidant at room temperature for the first time.It is found that the pH value is key to controlling the morphology of the nanostructures and fast polymerization rate favors the anisotropic growth of PMPD under homogeneous nucleation condition.We further demonstrate that such PMPD nanostructures can serve as an effective fluorescent sensing platform for multiplex nucleic acid detection.A detection limit as low as 50pM and a high selectivity down to single-base mismatch could be achieved.The fluorescence quenching is attributed to photoinduced electron transfer from nitrogen atom in PMPD to excited fluorophore.Most importantly,the successful use of this sensing platform in human blood serum system is also demonstrated.Results and DiscussionFigure 1A shows low magnification SEM image of the products thus formed in water (sample 1,see Materials and Methods for preparation details),indicating that they consist exclusively of a large amount of nanoparticles.A close view of such nanoparticles further reveals that they are nearly spherical in shape and have size ranging from 300to 600nm,as shown in Figure 1B.The chemicalcomposition of the nanospheres was determined by the energy-dispersed spectrum (EDS),as shown in Figure S1.The peaks of C and N elements are observed,indicating the nanospheres are formed from MPD.The presence of the peaks of S and O elements can be attributed to the fact that the polymerization of MPD by APS yields cationic polymer PMPD due to the proton doping effect,the SO 422(the reduced product of APS)and excessive S 2O 822as counter-ions,however,will diffuse into the PMPD nanostructures for charge compensation [49,50].Very interestingly,it is found that the PMPD morphology can be changed by simply varying the reaction solvent used.Figure 1C and 1D shows typical SEM images of the products obtained with the use of N-methylpyrrolidone (NMPD)as reaction solvent,under otherwise identical conditions used for preparing sample 1.It is clearly seen that a large quantity of nanorods are produced as the main products.It was found that the use of N,N-dimethylforma-mide (DMF)and ethanol as the reaction solvent lead to nanorods (Figure S2A)and nanoshperes (Figure S2B),respectively.The possible mechanism of the effect of solvent in controlling the PMPD morphology is proposed as follows:The polymerization of MPD monomers by APS leads to a decrease of pH value of the system.Given the weak basic nature of NMPD and DMF,they are expected to neutralize the protons generated and thus the rate of polymerization of MPD is accelerated,which may favor the anisotropic growth of PMPD under homogeneous nucleation condition [51,52].It was found that polymerization of MPD monomers using water as reaction solvent but at basic condition also produced rod-like products.(Figure S2C).All these observa-tions indicate that the pH value has played a critical role in controlling the morphology of the nanostructures.It is important to mention that these PMPD nanospheres and nanorodshaveFigure 1.Instrumental analysis of the precipitate thus formed.Low magnification SEM images of the PMPD nanostructures formed using (A)water and (C)NMPD as reaction solvent,(B)and (D)corresponding to the high magnification SEM images.doi:10.1371/journal.pone.0020569.g001smaller sizes and higher zeta potential(5mV)and thus their dispersion exhibits better stability than PNs[48].Indeed,we have found that such PMPD nanostructures are well-dispersed in water or buffer solutions.The resultant dispersions are very stable and no precipitation is observed within a couple of days.To test the feasibility of using PMPD nanostructures as an effective fluorescent sensing platform for nucleic acid detection,we chose PMPD nanorods and an oligonucleotide sequence associ-ated with human immunodeficiency virus(HIV)as a model system.Figure2A shows the fluorescence emission spectra of P HIV, the FAM-labeled probe,at different conditions.In the absence of PMPD,the fluorescence spectrum of P HIV exhibits strong fluorescence emission due to the presence of the fluorescein-based dye(curve a).However,the presence of PMPD results in about 96%quenching of the fluorescence emission(curve c),revealing that PMPD can strongly adsorb ssDNA and quench the fluorescent dye very effectively.However,the P HIV–PMPD complex exhibits significant fluorescence enhancement upon its incubation with complementary target T1over a1-h period, leading to a77%fluorescence recovery(curve d).Note that the fluorescence of the free P HIV was,however,scarcely influenced by the addition of T1in the absence of PMPD(curve b).It should be mentioned that the PMPD sample exhibits weak fluorescence emission(curve e)which contributes a little to the whole fluorescence intensity of each sample measured.Hence,a background fluorescence subtraction is performed for all PMPD-involved measurements.Figure2A inset illustrates the fluorescence intensity changes(F/F0–1)of P HIV–PMPD complex upon addition of different concentrations of T1,where F0and F are FAM fluorescence intensities at522nm in the absence and presence of T1,respectively.In the DNA concentration range of5–300nM,a dramatic increase of FAM fluorescence intensity was observed, which suggests that the nanorod/DNA assembly approach is effective in probing biomolecular interactions due to the excellent signalling process.It is worthwhile mentioning that optimal signal-to-noise ratio of3.8:1and thus low detection limit can be achieved by decreasing the amount of PMPD and P HIV used.A detection limit as low as50pM can be achieved when1-m L PMPD sample and500pM P HIV are used in this system(Figure2B). Because PMPD is a p-rich polymer,it can strongly and effectively adsorb single-stranded DNA(ssDNA)on its surface via p-p stacking between unpaired DNA bases and PMPD[53].The zeta potential of the nanorods was measured to be about5mV in water,indicating that the nanorod has a low positively charged surface.However,the electrostatic attractive interactions between nanorod and negatively charged backbone of ssDNA contribute little to the adsorption of ssDNA on nanorod in the presence of a large amount of salt in buffer[44].In contrast,the PMPD nanorod should have weak or even no binding with double-stranded DNA(dsDNA)due to the absence of unpaired DNA bases and the rigid conformation of dsDNA.Figure3A presents a schematic to illustrate the fluorescence-enhanced nucleic acid detection using PMPD nanorod as a sensing platform.The DNA detection is accomplished by the following two steps:(1)PMPD binds dye-labeled ssDNA and quenches the fluorescence of the dye when they are brought into close proximity.(2)The subsequent hybridization of the probe with its target produces dsDNA which detaches from PMPD,leading to fluorescence recovery.The release of the resultant dsDNA from PMPD can be supported by the following experimental observation that there is no obvious fluorescence change observed after the removal of the PMPD nanorods from the hybridized solution by centrifugation,as shown in Figure S3.The observed fluorescence quenching in our present study could be attributed to photoinduced electron transfer(PET)from nitrogen atom in PMPD to excited fluorophore FAM when they are brought into close proximity[54].Figure3B illustrates the quenching mechanism involved.When the fluorophore FAM is excited,an electron from the highest occupied molecular orbital (HOMO)is promoted to the lowest unoccupied molecular orbital (LUMO),leaving an electronic vacancy in the fluorophore HOMO,which is filled by transfer of an electron from the higher energy HOMO of the nitrogen atom in PMPD serving as a donor. The overall effect of PET process is that the excited state life time is shortened and little fluorescence occurs,leading to fluorescence quenching.Upon protonation of the donor,however,the redox potential of the protonated donor is raised and its HOMO becomes lower in energy than that of the fluorophore.Conse-quently,electron transfer is hindered and fluorescence quenching is suppressed.This PET-based fluorescence quenching is con-firmed by the experimental observation that the quenching is suppressed with the decrease of pH value and thus the increase of protonation degree of donor[18],as shown in Figure4.It should be noted that the amount of PMPD nanorods used in this system has profound effect on the efficiency of the fluorescence quenching and the subsequent recovery.Figure S4shows the fluorescence intensity histograms of five samples with the use of0, 5,10,15,and20-m L PMPD nanorods sample,respectively.It suggested that the use of increased amount of nanorods leads to an increase in quenching efficiency but a decrease in recovery efficiency.The above observations can be reasoned as follows: When the ssDNA probe molecules are mixed with nanorods,they will adsorb on the nanorod surface.Obviously,the use of more nanorods leads to more efficient adsorption of ssDNA and thus higher quenching efficiency.But at the same time,the possibility of direct surface adsorption of target molecules on those excess nanorods increases during the following hybridization process.As a result,decreased hybridization efficiency and thus lower recovery efficiency is observed.Based on these observations,an optimal volume of10m L was chosen in our present study if not specified.Figure S5shows a Stern–Volmer quenching curve describing F0/F as a function of MPD concentration,where F0 and F are FAM fluorescence intensities at522nm in the absence and the presence of PMPD nanorods,respectively.The plot is linear in the concentration range of0to5m M and the Stern–Volmer quenching constant(K SV)is calculated to be 3.7686105M21[55].The kinetic behaviors of P HIV and PMPD,as well as of the P HIV–PMPD complex incubated with T1,were also studied by collecting the time-dependent fluorescence emission spectra. Curve a in Figure5A shows the fluorescence quenching of P HIV in the presence of PMPD as a function of incubation time at room temperature of25u C.In the absence of the target,the curve exhibits a rapid reduction in the first20min and a slow decrease over a period of40min.Curve b in Figure5A shows the subsequent fluorescence recovery of P HIV–PMPD by T1in Tris-HCl buffer as a function of incubation time.In the presence of the target T1,the curve shows a fast increase in the first10min, followed by a slow process over a period of50min.The best fluorescence response was obtained after1h of incubation time. All above observations indicate that both ssDNA–PMPD associ-ation and dsDNA–PMPD dissociation occur faster than SWCNT but slower than GO system[24,30,36,37].These results are quite similar to those obtained from PN system[48].We also investigated the influence of temperature on the kinetic behaviors of these two processes.Figure5B shows the corresponding results obtained at50u C,indicating that the time required to reach equilibrium is greatly shortened for both the quenching and the subsequent recovery process.It should be noted the decrease offluorescence recovery in intensity at elevated temperature is observed in our present study,which can be attributed to that hybridization temperature close to the melting temperature does not favor duplex formation [56],leading to decreased hybridiza-tion and thus decreased fluorescence recovery efficiency.It is worthwhile mentioning that this sensing platform can well differentiate complementary and mismatched sequences.Figure 6A shows the fluorescence responses of P HIV –PMPD complex toward complementary target T 1,single,two,and three-base mismatched target (T 2,T 3,and T 4,respectively).The fluorescence intensitychange (F /F 0–1)value obtained upon addition of 300nM of T 2,T 3,and T 4is about 46%,33%,and 14%of the value obtained upon addition of 300nM of T 1into P HIV –PMPD complex at room temperature of 25u C,respectively (where F 0and F are the fluorescence intensity without and with the presence of target).However,the addition of a non-complementary target to P HIV (T 5)leads to no observable fluorescence recovery (curve f).Compared to the complementary target,the mismatched target should have lower hybridization ability toward the adsorbed dye-labeled ssDNA probe,leading to a decreased hybridization andthusFigure 2.Performance of target DNA detection and determination of detection limit.(A)Fluorescence emission spectra of P HIV (50nM)at different conditions:(a)P HIV ;(b)P HIV +300nM T 1;(c)P HIV +PMPD nanorods;(d)P HIV +PMPD nanorods +300nM T 1.Curve e is the emission spectra of PMPD nanorods.Inset:fluorescence intensity change (F /F 0–1)of P HIV –PMPD nanorods complex (where F 0and F are the fluorescence intensity without and with the presence of T 1,respectively)plotted against the logarithm of the concentration of T 1.(B)(a)Fluorescence emission spectra of P HIV (500pM),(b)fluorescence quenching of P HIV (500pM)by 1-m L PMPD nanorods,and (c)fluorescence recovery of (b)by T 1(50pM).Inset in Figure 2B:the corresponding fluorescence intensity histograms with error bar.Excitation was at 480nm,and the emission was monitored at 522nm.All measurements were done in Tris-HCl buffer in the presence of 5mM Mg 2+(pH:7.4).10-m L PMPD nanorods were used in each measurement.doi:10.1371/journal.pone.0020569.g002Figure3.Illustration of the sensing process and fluorescence quenching mechanism.(A)A schematic(not to scale)illustrating the fluorescence-enhanced nucleic acid detection using PMPD nanorod as a sensing platform and(B)a schematic illustrating the photo-induced electron transfer(PET)process to explain the mechanism of fluorescence quenching.doi:10.1371/journal.pone.0020569.g003decreased fluorescence recovery efficiency.The inset is the corresponding fluorescence intensity histograms with error bar.It is worthwhile mentioning that,for the PN system,the addition of 300nM of T 2only leads to a 8.8%difference between complementary and single-base mismatched target under other-wise identical conditions [48],but our new platform described herein gives a 49%difference which is about 5.6times that of PN system,suggesting this sensing platform can greatly improve discrimination ability.We also performed hybridization experi-ments at an elevated temperature of 50u C and compared the fluorescence signal enhancement of P HIV –PMPD complex upon incubation with T 1and T 2at 25and 50u C,respectively,as shown in Figure 6B.We found that the fluorescence intensity change (F /F 0–1)value obtained upon addition of T 2is about 33%of the value obtained upon addition of T 1into P HIV –PMPD complex at 50u C.All the above observations indicate that the present nucleic acid detection system can distinguish complementary and mismatched nucleic acid sequences and its discriminating ability increases with increased temperature which makes the hybridiza-tion harder for probe and mismatched target due to that hybridization temperature close to the melting temperature does not favour duplex formation.It is important to note that the use of shorter oligonucleotide can improve the mismatch discrimination ability of our present sensing system.Figure 7A shows the fluorescence responses of FAM-labeled,9-nucleotide ssDNA probe P s (50nM)toward comple-mentary target T s1,single-base mismatched target T s2,and non-complementary target T s3at room temperature,in the presence of PMPD.The (F /F 0–1)value obtained upon addition of 300nM of T s2is about 38%of the value obtained upon addition of 300nM of T s1into P s –PMPD complex.We further evaluated its ability of this sensing platform to distinguish single-base mismatch by mimicking the realistic situations,where a short oligonucleotide probe binds a small loci of a large DNA strand.Two long DNA strands were chosen as model systems:the middle part of T L1is complementary target sequence to P HIV and the middle part of T L2is single-base-mismatched target sequence to P HIV .Figure 7B shows the fluorescence responses of P HIV toward T L1and T L2in the presence of PMPD at room temperature.The addition of300nM of T L1to P HIV –PMPD complex leads to about 41%fluorescence recovery which is much lower than 77%observed when 300nM of T 1was used as the target.Such observation is not surprising given that P HIV –T L1is a complex with a duplex DNA in the middle and two single strands on both ends and thus there are unpaired DNA bases for binding to PMPD.The (F /F 0–1)value obtained upon addition of 300nM of T L2is about 58%of the value obtained upon addition of 300nM of T L1into P HIV –PMPD complex,indicating that this sensing platform is still able to discriminate complementary and mismatched target sequences embedded in a large DNA strand with a short oligonucleotide probe.We also performed DNA detection in human blood serum.Figure S6shows the fluorescence emission spectra of P HIV in the presence of 5%blood serum (volume ratio)in Tris-HCl buffer at different conditions.This system exhibits 86%fluorescence quenching and 50%fluorescence recovery and the difference of detection signal between single-base mismatched andcomplemen-Figure 4.Influence of pH value on the fluorescence quenching.Fluorescence quenching histograms of of P HIV (50nM)by PMPD nanorods at different pH values (where F and F 0are the fluorescence intensity with and without the presence of PMPD).10-m L PMPD nanorods were used in each measurement.doi:10.1371/journal.pone.0020569.g004Figure 5.Kinetic behaviour study of fluorescence quenching and recovery at different temperatures.(a)Fluorescence quench-ing of P HIV (50nM)by PMPD nanorods and (b)fluorescence recovery of P HIV –PMPD by T 1(300nM)as a function of incubation time (A:25u C,B:50u C).Excitation was at 480nm,and the emission was monitored at 522nm.All measurements were done in Tris-HCl buffer in the presence of 5mM Mg 2+(pH:7.4).10-m L PMPD nanorods were used in each measurement.doi:10.1371/journal.pone.0020569.g005tary sequences is 40%.We further examined the influence of the amount of blood serum on the discrimination ability of this sensing system.Figure 8shows the corresponding histograms of fluores-cence intensity ratio of F (T 2)/F (T 1),where F (T 1)and F (T 2)are the fluorescence intensities in the presence of human blood serum spiked with T 1and T 2,respectively.It suggests that the increase of blood serum in amount leads to decreased dicrimination ability.Note that,in the presence of different amount of blood serum,this system is still able to discriminate complementary and single-base mismatched sequences with good reproducibility.All the aboveobservations indicate that there is no heavy interference from blood serum components on our measurements and thus this sensing system is promising for practically useful mismatch detection upon further development.Multiplex detection of nucleic acid sequences is a challenge for many assays because of the need of eliminating probe set/target set cross-reactivity,minimizing nonspecific binding,and designing spectroscopically and chemically unique probes [57],which motivated us to explore the feasibility of using the platform described herein to detect multiple DNA targetssimultaneously.Figure 6.Evaluation of discrimination ability at different temperatures.(A)Fluorescence emission spectra of P HIV (50nM)at different conditions:(a)P HIV –PMPD complex;(b)P HIV –PMPD complex +300nM T 1;(c)P HIV –PMPD complex +300nM T 2;(d)P HIV –PMPD complex +300nM T 3;(e)P HIV –PMPD complex +300nM T 4;(f)P HIV –PMPD complex +300nM T 5.Inset:fluorescence intensity histogram with error bar.(B)Fluorescence signal enhancement of P HIV –PMPD complex upon incubation with 300nM T 1and 300nM T 2at 25and 50u C,respectively.10-m L PMPD nanorods were used in each measurement.doi:10.1371/journal.pone.0020569.g006To do this,we chose three probes (P HIV ,P HBV ,and P K167)labeled with FAM,ROX,and Cy5(cyanine 5),respectively,as model systems.Because these three dyes are individually excited at 480,587,and 643nm to emit at 522,601,and 660nm,respectively,significant dye-to-dye energy transfer is avoided.It is found that the presence of PMPD leads to dramatic quenching of all dyes in the probe mixture,indicating that PMPD can effectively quench dyes of different emission frequencies.The absorption spectrum of the aqueous dispersion of PMPD nanorods shown in Figure S7exhibits one strong peak at 206nm and another pretty weak peak at 307nm,suggesting there is no spectra overlap and thus no FRET occurs between PMPD and all the fluorescent dyes used.Figure 9shows the fluorescence intensity histograms of the probe mixture toward different target combinations in the presence of PMPD under excitation/emission wavelengths of 480/522,587/601,and 643/660nm/nm,respectively.It is clearly seenthatFigure 7.Evaluation of discrimination ability using (A)shorter probe or (B)longer target.(A)Fluorescence emission spectra of P s (50nM)at different conditions:(a)P s –PMPD complex;(b)P s –PMPD complex +300nM T s1;(c)P s –PMPD complex +300nM T s2;(d)P s –PMPD complex +300nM T s3.(B)Fluorescence emission spectra of P HIV (50nM)in the presence of PMPD nanorods at different conditions:(a)P HIV –PMPD complex;(b)P HIV –PMPD complex +300nM T L1;(c)P HIV –PMPD complex +300nM T L2.Inset:fluorescence intensity histograms with error bar.Excitation was at 480nm,and the emission was monitored at 522nm.All measurements were done in Tris-HCl buffer in the presence of 5mM Mg 2+(pH:7.4).10-m L PMPD nanorods were used in each measurement.doi:10.1371/journal.pone.0020569.g007there is only one strong emission peak at 522nm when excited at 480nm in the presence of T 1only.However,the target combination of T 1+T 6gives two strong emission peaks at 522and 601nm when excited at 480and 587nm,respectively.As expected,three strong emission peaks are observed for the T 1+T 6+T 7target combination at 522,601,and 660nm when excited at 480,587,and 643nm,respectively.Other target combinations also give similar results.All these observationsindicate that this sensing platform can be used to detect multiple DNA targets with high selectivity.In summary,PMPD nanospheres and nanorods can be selectively synthesized via the chemical oxidation polymerization of MPD monomers by APS with the use of different reaction solvent at room temperature.We demonstrate that such PMPD nanos-tructures can be used as an effective fluorescent sensing platform for multiplex nucleic acid detection with high sensitivity and selectivity.The fluorescence quenching mechanism invovled is also studied and the application of this sensing platform in human blood serum system is also demonstrated.Our present observations are significant for the following three reasons:(1)It provides us a facile method for the selective synthesis of PMPD nanostructures for multiplex and single-base mismatch detection of nucleic acid;(2)This PMPD-based assay holds great promise for practical application in clinical sample analysis;(3)It provides us a promising,universal and effective sensing platform for a fluorescence-enhanced detection sensitive and selective to the target molecule studied.Materials and MethodsAll chemically synthesized oligonucleotides were purchased from Shanghai Sangon Biotechnology Co.Ltd.(Shanghai,China).DNA concentration was estimated by measuring the absorbance at 260nm.All the other chemicals were purchased from Aladin Ltd.(Shanghai,China)and used as received without further purifica-tion.The water used throughout all experiments was purified through a Millipore system.The PMPD nanospheres (sample 1)were prepared as follows:In a typical experiment,0.06mL of 0.5M APS aqueous solution was dilutted with 0.84mL water at room temperature,followed by the addition of 0.1mL of 0.1M MPD aqueous solution under shaking.After that,a large amount of precipitates were observed.The resulting precipitates were washed with water by centrifugation twice first,and then redispersed in water to give a 8.6-m g/mL suspension and stored at 4u C for characterization and further use.The PMPD nanorods were similarly prepared except that an equivalent aliquot ofN-Figure 8.Performance of single-base mismatch discrimination in the presence of blood serum.The histograms of fluorescence intensity ratio of F (T 2)/F (T 1),where F (T 1)and F (T 2)are the fluorescence intensities in the presence of different amount of blood serum spiked with T 1and T 2,respectively.([T 1]=300nM;[T 2]=300nM).Excitation was at 480nm,and the emission was monitored at 522nm.The total volume of each sample was 300m L in Tris-HCl buffer (pH 7.4)containing 5mM Mg 2+.10-m L PMPD nanorods were used in each measurement.doi:10.1371/journal.pone.0020569.g008Figure 9.Multiplex DNA detection.Fluorescence intensity histograms of the probe mixture ([P HIV ]=[P HBV ]=[P K167]=50nM)toward different target combinations in the presence of PMPD nanorods under excitation/emission wavelengths of 480/522,587/601,and 643/660nm/nm.All measurements were done in Tris-HCl buffer in the presence of 5mM Mg 2+(pH:7.4).10-m L PMPD nanorods were used in each measurement.doi:10.1371/journal.pone.0020569.g009。

相关文档
最新文档