初一数学应用题大汇总

合集下载

七年级数学应用题大全及答案

七年级数学应用题大全及答案

七年级数学应用题大全及答案1. 问题一一台机器在8小时内完成了一项任务,那么该任务需要多少小时完成?解答:假设该任务需要x小时完成。

根据题意,可以列出方程:x = 8解方程可得:x = 8所以,该任务需要8小时完成。

2. 问题二甲、乙两人同时从A地出发,速度相同,经过3小时后,甲到达B地,乙还要走2小时才能到达B地。

求甲、乙两地的距离。

解答:假设甲、乙两地的距离为D。

甲的速度为V,乙的速度也为V。

根据题意,可以列出方程:甲走了3小时:3V = D 乙走了5小时:5V = D解方程可得:D = 15V所以,甲、乙两地的距离为15V。

3. 问题三一块田地面积为500平方米,现在要用若干块相同的正方形土地拼成一个长方形花坛,已知长比宽为7:3,求每块土地的边长。

解答:假设正方形土地的边长为x。

长方形花坛的长为7x,宽为3x。

根据题意,可以列出方程:长方形花坛的面积:7x * 3x = 500解方程可得:x = √(500 / 21)所以,每块土地的边长为√(500 / 21)。

4. 问题四小明花了30元买了一包饼干和一瓶果汁,已知饼干比果汁贵5元,饼干的价格是果汁的多少倍?解答:设果汁的价格为x元。

根据题意,可以列出方程:饼干的价格:x + 5 饼干的价格加果汁的价格等于30:x + x + 5 = 30解方程可得:x = 12所以,饼干的价格是果汁的12 / 5倍。

5. 问题五一个三角形的两个角分别是70°和50°,求第三个角的角度。

解答:假设第三个角的角度为x°。

根据题意,可以列出方程:三个角的和等于180°:70 + 50 + x = 180解方程可得:x = 60所以,第三个角的角度为60°。

以上是七年级数学应用题的答案,希望能对你有所帮助!。

七年级数学应用题大全

七年级数学应用题大全

七年级数学应用题(60题)1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。

还要运几次才能完?2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?3、某车间计划四月份生产零件5480个。

已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。

甲每小时行45千米,乙每小时行多少千米?5、某校六年级有两个班,上学期级数学平均成绩是85分。

已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?7、四年级共有学生200人,课外活动时,80名女生都去跳绳。

男生分成5组去踢足球,平均每组多少人?8、食堂运来150千克大米,比运来的面粉的3倍少30千克。

食堂运来面粉多少千克?9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。

平均每行梨树有多少棵?10、一块三角形地的面积是840平方米,底是140米,高是多少米?11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。

每件大人衣服用2.4米,每件儿童衣服用布多少米?12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。

甲几小时到达中点?16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。

如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。

已知甲速度是15千米/时,求乙的速度。

初一数学应用题分类汇总(分类全)

初一数学应用题分类汇总(分类全)

行程问题① 路程=时间×速度 时间= 速度路程 速度=时间路程② 相遇路程=时间(相同)×(V 甲+ V 乙)(速度之和) 相遇时间(相同)=相遇路程÷(V 甲+ V 乙) 相遇速度(V 甲+ V 乙)=相遇路程÷相遇时间③ 追及路程(速度快比速度慢多走的路程)=追及时间(相同)×(V 甲- V 乙)(速度之差) 追及时间=追及路程÷(V 甲- V 乙)(追击速度) 追击速度(V 甲- V 乙)=追及路程÷追及时间④ 行船问题: V 顺= V 静+ V 水 V 逆= V静- V 水V静=(V 顺+ V 逆)÷2V 水=(V 顺- V 逆)÷21.甲、乙两辆火车相向而行,甲车的速度是乙车速度的5倍还快20km/h ,两地相距298km ,两车同时出发,半小时后相遇。

两车的速度各是多少?2.从甲地到乙地,公共汽车原来需行驶7小时,开通高速公路后,车速平均提高30km/h ,只需4小时即可到达。

求甲、乙两地间的距离。

3.一辆汽车已行驶12000km ,计划每月再行驶800km ,几个月后这辆汽车将行驶20800km ?4.京沪高速公路全长1262km ,一辆汽车从北京出发,匀速行驶5小时后,提速20km/h ;又匀速行驶5小时后,减速10km/h ,又匀速行驶5小时后到达上海,求各段时间的车速。

(精确到1km/h )5.甲、乙两地相距300km ,一列慢车从甲站开往乙站,每小时行40km ,一列快车从乙站开往甲站,每小时行80km ,已知慢车先行1.5h ,快车再开出,问快车开出多长时间与慢车相遇?6.A 、B 两地相距64千米,甲从A 地出发,每小时行14千米,乙从B 地出发,每小时行18千米,(1)若两人同时出发相向而行,则需经过几小时两人相遇?(2)若两人同时出发相向而行,则需几小时两人相距16千米?(3)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?7.一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员需多少时间可以追上学生队伍?8.五一”长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?9.甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度是4米/秒,乙跑几圈后,甲可超过乙一圈?10.小王在400米的环形跑道上跑了一圈,从起点出发,最初跑了45秒,后来加速1.5米/秒,再花了20秒跑到终点,问小王最初跑的速度是多少?11.甲乙两人在400米环形跑道上练习长跑,两人速度分别是200米/分和160米/分. (1)若两人从同一地点同时反向跑,多少分钟后两人第3次相遇? (2)若两人从同一地点同时同向跑,多少分钟后两人第2次相遇?12.某校运动会在400米环形跑道上进行10000米比赛,甲、乙两运动员同时起跑后,乙速超过甲速,在第15分钟时甲加快速度,在第18分钟时甲追上乙并且开始超过乙,在第23分钟时,甲再次追上乙,而在第23分50秒时,甲到达终点,那么乙跑完全程所用的时间是多少分钟?13. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?14.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。

七年级应用题以及答案

七年级应用题以及答案

七年级应用题以及答案题目一:速度与时间小明骑自行车去学校,他的速度是每小时15公里,如果他需要30分钟到达学校,那么小明家到学校的距离是多少公里?答案一:小明的速度是每小时15公里,即每分钟0.25公里(15公里/60分钟)。

他需要30分钟到达学校,所以距离是0.25公里/分钟× 30分钟 = 7.5公里。

题目二:百分比问题一个班级有50名学生,其中25%的学生喜欢数学,20%的学生喜欢英语,剩下的学生喜欢其他科目。

问喜欢数学和英语的学生总共占班级的百分比是多少?答案二:喜欢数学的学生占25%,喜欢英语的学生占20%,所以喜欢数学和英语的学生总共占25% + 20% = 45%。

题目三:面积计算一个长方形的长是10米,宽是5米,求这个长方形的面积。

答案三:长方形的面积计算公式是:面积 = 长× 宽。

所以这个长方形的面积是10米× 5米 = 50平方米。

题目四:折扣问题一件衣服原价是200元,现在打八折出售,问这件衣服现在的价格是多少?答案四:打八折意味着现价是原价的80%。

所以这件衣服现在的价格是200元× 80% = 160元。

题目五:时间计算如果现在是下午3点,那么从现在起4小时后是什么时间?答案五:从下午3点起4小时后是晚上7点。

题目六:分数问题一个班级有40名学生,其中2/5的学生是女生,问这个班级有多少名女生?答案六:班级女生的比例是2/5,所以女生的人数是40名学生× 2/5 = 16名。

题目七:体积计算一个长方体的长是4厘米,宽是3厘米,高是2厘米,求这个长方体的体积。

答案七:长方体的体积计算公式是:体积 = 长× 宽× 高。

所以这个长方体的体积是4厘米× 3厘米× 2厘米 = 24立方厘米。

题目八:比例问题如果5个苹果的重量是1千克,那么10个苹果的重量是多少?答案八:如果5个苹果重1千克,那么10个苹果的重量是1千克× (10/5) = 2千克。

七年级数学应用题大全

七年级数学应用题大全

七年级数学应用题(60题)1、运送吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为吨的货车运。

还要运几次才能完2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米3、某车间计划四月份生产零件5480个。

已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。

甲每小时行45千米,乙每小时行多少千米5、某校六年级有两个班,上学期级数学平均成绩是85分。

已知六(1)班40人,平均成绩为分;六(2)班有42人,平均成绩是多少分6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒7、四年级共有学生200人,课外活动时,80名女生都去跳绳。

男生分成5组去踢足球,平均每组多少人8、食堂运来150千克大米,比运来的面粉的3倍少30千克。

食堂运来面粉多少千克9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。

平均每行梨树有多少棵10、一块三角形地的面积是840平方米,底是140米,高是多少米11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。

每件大人衣服用米,每件儿童衣服用布多少米12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵元,苹果和梨每千克各多少元15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。

甲几小时到达中点16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。

如果甲从A地,乙从B 地同时出发,同向而行,那么4小时后甲追上乙。

已知甲速度是15千米/时,求乙的速度。

17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。

初中数学应用题目大全

初中数学应用题目大全

初中数学应用题目大全
一、整数运算
1. 某车间今年共生产了-1200辆汽车,明年计划生产2400辆汽车,问两年内共生产了多少辆汽车?
-1200 + 2400 = 1200
2. 甲数温度计的度数比乙数温度计的度数少45℃,已知乙数温度计的度数是-8℃,问甲数温度计的度数是多少?
-8 + 45 = 37
二、百分数
1. 某项商品原价为200元,现在打8折出售,问现价为多少?
200 × 0.8 = 160
2. 小明考试得了85分,班级总分为400分,班级平均分为80分,问小明的成绩相对于平均分高几个百分点?
85 - 80 = 5
三、利率问题
1. 某银行存款年利率为5%,小明存了2000元,请问3年后小明将获得多少利息?
2000 × 0.05 × 3 = 300
2. 甲行存款年利率为3%,乙行存款年利率为2%,小刚同时在两家银行存了5000元,问一年后他能获得多少利息?
(5000 × 0.03) + (5000 × 0.02) = 250
四、几何问题
1. 一个直角三角形的直角边长分别为3cm和4cm,求斜边长。

斜边长= √(3^2 + 4^2) = 5
2. 某房子的地面是一个长方形,长为8m,宽为6m,求地面的面积。

面积 = 8 × 6 = 48
以上是初中数学应用题目大全,希望能帮到你!。

七年级数学应用题大全及答案

七年级数学应用题大全及答案

七年级数学应用题大全及答案1. 张三和李四的年龄比较张三今年25岁,比他年长的李四比他小2岁。

请问李四今年多少岁?解答:李四今年25 - 2 = 23岁。

2. 餐厅打折活动某餐厅举办了一次打折活动,原价10元的饭菜现在只要打8折,那么现在售价是多少?解答:原价10元的饭菜打8折,售价为10 * 0.8 = 8元。

3. 运动员比赛成绩对比小明和小红是两名小学生,他们参加了一次跳远比赛。

小明跳远3.5米,小红跳远比小明还远0.2米。

请问小红跳远了多少米?解答:小红跳远了3.5 + 0.2 = 3.7米。

4. 袋子里的水果一个袋子里有10个苹果和5个橘子,如果小明随机从袋子里取出一个水果,取到苹果的概率是多少?解答:袋子里总共有10 + 5 = 15个水果,其中苹果有10个,所以小明取到苹果的概率是10 / 15 = 2 / 3。

5. 零食分配班级里有30名学生,老师要将20包零食分给这些学生,每人分到几包零食?解答:每人分到的零食包数是20 / 30 = 2 / 3包。

6. 兔子的繁殖问题一对兔子,每个月可以生一对小兔子,并且小兔子出生后的第三个月才能繁殖。

如果开始时只有一对兔子,请问经过6个月后有多少对兔子?解答:第一个月只有一对兔子,第二个月还是一对兔子,第三个月有两对兔子,第四个月有三对兔子,第五个月有五对兔子,第六个月有八对兔子。

所以经过6个月后有8对兔子。

7. 造纸问题某工厂每天生产60吨纸张。

如果每吨纸张需耗费2棵树,那么每天需要砍伐多少棵树?解答:每天需要砍伐60 * 2 = 120棵树。

8. 车速问题小明骑自行车从A地出发,以每小时15公里的速度向B地骑行,骑行1小时后,他发现还剩6公里就到B地了。

请问他离B地还有多远?解答:小明每小时骑行15公里,骑行1小时后已经骑行了15 * 1 = 15公里。

剩下的路程是6公里,所以他离B地还有15 - 6 = 9公里。

9. 比例问题小明家的花园长40米,宽是长度的一半。

数学初一应用题及答案

数学初一应用题及答案

数学初一应用题及答案1. 问题:小明的爸爸给他买了一辆自行车,原价为500元,现在商店打8折出售,小明的爸爸实际支付了多少钱?答案:首先,我们需要计算打折后的价格。

原价为500元,打8折,即支付原价的80%。

计算方法如下:500元× 80% = 500元× 0.8 = 400元所以,小明的爸爸实际支付了400元。

2. 问题:一个长方形的长是15米,宽是10米,求这个长方形的面积。

答案:长方形的面积可以通过长乘以宽来计算。

计算方法如下:面积 = 长× 宽 = 15米× 10米 = 150平方米所以,这个长方形的面积是150平方米。

3. 问题:一个班级有40名学生,其中男生人数是女生人数的1.5倍,求这个班级男生和女生各有多少人?答案:首先,我们设女生人数为x,那么男生人数就是1.5x。

根据题意,男生和女生的总人数为40人。

我们可以列出方程:x + 1.5x = 402.5x = 40x = 40 ÷ 2.5 = 16所以,女生有16人,男生有1.5x = 1.5 × 16 = 24人。

4. 问题:小华家离学校的距离是2公里,小华每天骑自行车上学,他的速度是每小时5公里。

求小华每天骑自行车上学需要多少时间?答案:首先,我们需要计算小华骑自行车上学的总时间。

已知距离是2公里,速度是每小时5公里。

计算方法如下:时间 = 距离÷ 速度 = 2公里÷ 5公里/小时 = 0.4小时所以,小华每天骑自行车上学需要0.4小时。

5. 问题:一个数的3倍加上4等于20,求这个数。

答案:设这个数为x,根据题意,我们可以得到方程:3x + 4 = 203x = 20 - 43x = 16x = 16 ÷ 3x = 5.33(保留两位小数)所以,这个数是5.33。

初一数学应用题带答案

初一数学应用题带答案

初一数学应用题带答案题目一某购物网站上,一件衣服的原价为200元,现在打8折优惠,请问现在的价格是多少?解答:打8折优惠意味着价格打八折,即原价乘以0.8。

所以现在的价格为200元 * 0.8 = 160元。

题目二小明从家到学校的距离是2.5公里,他每小时可以步行5公里。

请问他需要多长时间才能到达学校?解答:小明每小时可以步行5公里,所以他需要2.5公里 / 5公里/小时 = 0.5小时,即30分钟才能到达学校。

题目三某商店举办促销活动,原价一盒牛奶是8元,现在买5盒牛奶只需要38元。

请问买一盒牛奶需要多少钱?解答:买5盒牛奶只需要38元,所以一盒牛奶的价格为38元 / 5盒 = 7.6元。

题目四小明爸爸开车从家到公司,全程共25公里,他每小时行驶的平均速度是50公里。

请问他需要多长时间才能到达公司?解答:小明爸爸的平均时速是50公里/小时,所以他需要25公里/ 50公里/小时 = 0.5小时,即30分钟才能到达公司。

题目五某商店举办活动,原价一瓶果汁是15元,现在打75折。

请问现在的价格是多少?解答:打75折意味着价格打七五折,即原价乘以0.75。

所以现在的价格为15元 * 0.75 = 11.25元。

题目六小明爸爸每个月的工资是5000元,他每个月要扣除房租400元和水电费200元。

请问他每个月能够剩下多少钱?解答:小明爸爸每个月的工资是5000元,他每个月扣除房租400元和水电费200元,所以他每个月能够剩下的钱是5000元 - 400元 - 200元 = 4400元。

题目七某书店卖一本书的原价是50元,现在打8折出售。

请问现在出售的价格是多少?解答:打8折意味着价格打八折,即原价乘以0.8。

所以现在出售的价格为50元 * 0.8 = 40元。

题目八小明每天晚上睡觉需要8小时,现在已经过了11点,请问他几点起床才能保证能够睡足8小时?解答:小明已经过了11点,他需要睡足8小时,所以他应该在11点加上8小时,即11点 + 8小时 = 19点,也就是晚上7点才能够保证能够睡足8小时。

七年级有理数应用题50道

七年级有理数应用题50道

七年级有理数应用题50道一、温度相关(5道)1. 某天,哈尔滨的最高气温是 -12℃,最低气温是 -22℃,这天哈尔滨的温差是多少?解析:温差就是最高气温减去最低气温,即公式。

2. 已知某地区早晨的气温为 -5℃,中午上升了8℃,傍晚又下降了6℃,求傍晚的气温。

解析:早晨气温是 -5℃,中午上升8℃后,气温变为公式,傍晚又下降6℃,则傍晚气温为公式。

3. 若甲地温度为20℃,乙地温度比甲地低15℃,丙地温度比乙地低10℃,求丙地温度。

解析:乙地温度为公式,丙地温度比乙地低10℃,所以丙地温度为公式。

4. 某冷库的温度是零下10℃,下降 -3℃后又下降5℃,此时冷库的温度是多少?解析:零下10℃即 -10℃,下降 -3℃,实际是上升3℃,此时温度为公式,又下降5℃后,温度为公式。

5. 一天中,最高气温是6℃,最低气温是 -10℃,若以0℃为基准,最高气温比最低气温高多少度?解析:以0℃为基准,最高气温6℃比0℃高6℃,最低气温 -10℃比0℃低10℃,所以最高气温比最低气温高公式。

二、海拔高度相关(5道)1. 某山峰的海拔高度为1500米,山脚的海拔高度为 -200米,山峰与山脚的相对高度是多少?解析:相对高度是山峰海拔高度减去山脚海拔高度,即公式米。

2. 甲地海拔高度为 -30米,乙地海拔高度比甲地高20米,丙地海拔高度比乙地低15米,求丙地海拔高度。

解析:乙地海拔高度为公式米,丙地海拔高度为公式米。

3. 飞机在海拔8000米的高空飞行,潜艇在海拔 -500米的海底航行,飞机与潜艇的高度差是多少?解析:高度差为飞机的海拔高度减去潜艇的海拔高度,即公式米。

4. 一座山的山顶海拔为2000米,山腰处的海拔为1200米,山底的海拔为 -300米,山腰与山底的相对高度是多少?解析:相对高度为山腰海拔减去山底海拔,即公式米。

5. 某高原的平均海拔为3000米,某盆地的平均海拔为 -200米,高原比盆地高多少米?解析:高原比盆地高的高度为高原平均海拔减去盆地平均海拔,即公式米。

(完整版)初一数学列方程解应用题归类含答案

(完整版)初一数学列方程解应用题归类含答案

应用题提高练习训练一、等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S·h=πr2h②长方体的体积 V=长×宽×高=abc1.把一段铁丝围成长方形,发现长比宽多2cm;围成正方形时,边长刚好为4cm.求所围成的长方形的长和宽各是多少?2.用一个底面半径为40mm,高为120mm的圆柱形玻璃杯向一个底面半径为100mm的大圆柱形玻璃杯中倒水,倒了满满10杯水后,大玻璃杯的液面离杯口还有10mm,大玻璃杯的高度是多少?3.一个长方形养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成.现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米.你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?4.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14).5.在一个底面直径为5cm,高为18cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径是6cm、高是10cm的圆柱形玻璃杯中,能否完全装下?若装不下,那么瓶内水还剩多高?若未能装满,求杯内水面离杯口的距离.二、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润×100%商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如打8折出售,即按原标价的80%出售.1.随着计算机技术的迅猛发展,电脑价格大幅度下降,某品牌电脑今年每台售出价格为4200元,比去年降低了30%,问去年该品牌电脑每台售出价为多少元?2、东方商场把进价为1890元的某商品按标价的8折出售,仍获利10%,则该商品的标价为多少?3、某种商品的进价是1000元,售价为1500元,由于销售情况不好,商店决定降价出售,但又要保证利润不低于5%,那么商店最多降多少元出售此商品。

初一数学应用题带答案

初一数学应用题带答案

初一数学应用题带答案1. 问题:小明骑自行车去上学,他的速度是每小时15公里。

如果他骑了40分钟,那么他骑了多远?答案:首先,我们需要将40分钟转换为小时,因为速度的单位是公里/小时。

40分钟等于2/3小时。

然后,我们使用公式:距离 = 速度× 时间。

所以,小明骑的距离是 15公里/小时× 2/3小时 = 10公里。

2. 问题:一个长方形的长是宽的两倍,如果宽是5米,那么长方形的周长是多少?答案:首先,我们知道长方形的长是宽的两倍,所以长是5米× 2 = 10米。

长方形的周长公式是:周长= 2 × (长 + 宽)。

将已知的长和宽代入公式,我们得到周长= 2 × (10米 + 5米) = 2 × 15米 = 30米。

3. 问题:一个班级有40名学生,如果每名学生需要2本练习册,那么总共需要多少本练习册?答案:根据题目,每名学生需要2本练习册。

所以,总共需要的练习册数量是 40名学生× 2本/学生 = 80本。

4. 问题:一个游泳池的长是25米,宽是10米,如果游泳池的水深是2米,那么游泳池的容积是多少立方米?答案:游泳池的容积可以通过体积公式计算,即体积 = 长× 宽× 高。

将游泳池的尺寸代入公式,我们得到体积 = 25米× 10米× 2米 = 500立方米。

5. 问题:一个苹果的重量是150克,如果一箱苹果有20个,那么一箱苹果的总重量是多少克?答案:一箱苹果的总重量可以通过将单个苹果的重量乘以苹果的数量来计算。

所以,总重量 = 150克/个× 20个 = 3000克。

6. 问题:一个工厂每天生产500个零件,如果一周工作5天,那么一周内工厂生产了多少个零件?答案:一周内工厂生产的零件数量可以通过将每天生产的零件数量乘以一周的工作天数来计算。

所以,一周内生产的零件数量 = 500个/天× 5天 = 2500个。

七年级上册应用题大全

七年级上册应用题大全

七年级上册应用题大全一、有理数相关应用题。

1. 某冷库的温度是零下10°C,下降 -3°C后又下降5°C,求两次变化后的库温。

- 解析:零下10°C记为 - 10°C。

下降 - 3°C,实际是温度上升3°C,此时温度为-10+3 = - 7°C。

又下降5°C后,温度为-7 - 5=-12°C。

2. 一潜水艇所在高度为 - 50米,一条鲨鱼在潜水艇上方10米处,求鲨鱼所在的高度。

- 解析:潜水艇高度为 - 50米,鲨鱼在其上方10米处,那么鲨鱼所在高度为-50+10 = - 40米。

3. 某商场老板对今年上半年每月的利润作了如下记录:1、2、5、6月盈利分别是13万元、12万元、12.5万元、10万元,3、4月亏损分别是0.7万元和0.8万元。

试用正、负数表示各月的利润,并算出该商场上半年的总利润额。

- 解析:- 1月利润:+13万元;2月利润:+12万元;3月利润: - 0.7万元;4月利润: - 0.8万元;5月利润:+12.5万元;6月利润:+10万元。

- 上半年总利润为:(13 + 12+12.5 + 10)+(-0.7-0.8)=47.5 - 1.5 = 46(万元)二、整式相关应用题。

4. 一个长方形的长是2x cm,宽比长少4cm,若将长方形的长和宽都增加3cm,求面积增大了多少?- 解析:- 原长方形宽为(2x - 4)cm。

- 原长方形面积为S1 = 2x(2x - 4)=4x²-8x。

- 长和宽增加3cm后,长为(2x + 3)cm,宽为(2x - 4+3)=(2x - 1)cm。

- 新长方形面积为S2=(2x + 3)(2x - 1)=4x²+4x - 3。

- 面积增大的值为S2 - S1=(4x²+4x - 3)-(4x² - 8x)=12x - 3(cm²)5. 已知A = 3x²+5y² - 2xy²,B = 4x² - 2y²+xy²,求A - B。

初一数学应用题60题

初一数学应用题60题

初一数学应用题60题1. 某车厂生产了600辆汽车,其中三分之一是轿车,四分之一是SUV,其余是面包车。

请问生产了多少辆面包车?解析:轿车的数量为600辆×三分之一=200辆;SUV的数量为600辆×四分之一=150辆。

那么面包车的数量为600辆-200辆-150辆=250辆。

2. 小明买了某商品,原价为160元,打了八折,最后花了多少钱?解析:八折即打折8折,也就是原价×80%。

所以小明最终花的钱为160元×80%=128元。

3. 某班级共有40名同学,其中女生占总人数的四分之三,男生占总人数的几分之几?解析:女生人数为40名同学×四分之三=30人。

男生人数为40名同学-30人=10人。

所以男生占总人数的十分之一。

4. 甲乙两个工程队共修建了120米的路段,甲队修建了其中的三分之一,乙队修建了其中的五分之二。

请问甲队修建了多少米的路段?解析:甲队修建的路段长度为120米×三分之一=40米。

5. 某电商平台进行促销活动,某商品原价为160元,打了三折又减去20元,最后售价为多少?解析:先打三折即为原价×30%。

然后再减去20元。

所以最后的售价为160元×30%-20元=28元。

6. 小明去超市买了一袋米,重5千克,他拿出一半的重量煮饭吃了,还剩下多少克?解析:小明煮饭吃掉了一半的重量,即5千克的一半。

所以还剩下的重量为5千克的一半=2.5千克(或2500克)。

7. 甲乙两个人一起行走,甲每走30步,乙走5步。

假设甲走了180步,乙走了多少步?解析:由甲每走30步,乙走5步,可得出他们的步数比为30:5。

所以乙走的步数为180步÷30步×5步=30步。

8. 小明参加了一次考试,满分为100分,他得了85分,占了多少百分比?解析:小明得分占满分的百分比即为85分÷100分×100%=85%。

(word完整版)初一数学经典应用题汇总,考试最常见,文档

(word完整版)初一数学经典应用题汇总,考试最常见,文档

初一经典应用题汇总1、绿谷商场“家电下乡〞指定型号冰箱、彩电的进价和售价以下表所示:种类冰箱彩电进价〔元 / 台〕 2 320 1 900售价〔元 / 台〕 2 420 1 980(1)按国家政策,农民购置“家电下乡〞产品可享受售价 13% 的政府补贴 .农民田大伯到该商场购置了冰箱、彩电各一台,可以享受多少元的政府补贴?(2)为满足农民需求 ,商场决定用不高出 85 000 元采买冰箱、彩电共 40 台 , 且冰箱的数量不少于彩电数量的.①请你帮助该商场设计相应的进货方案;②哪一种进货方案商场获得利润最大〔利润= 售价进价〕,最大利润是多少?解:(1)(2420+1980) ×13%=572答 : 可以享受政府 572 元的补贴 .(2)①设冰箱采买 x 台,那么彩电采买〔 40-x 〕台,依照题意,得2320x+1 900(40-x)≤85000,x≥(40-x).解不等式组,得≤x≤∵x 为正整数.∴x= 19,20 , 21 .∴该商场共有 3 种进货方案:方案一:冰箱购置19 台,彩电购置21 台方案二:冰箱购置20 台,彩电购置20 台;方案三:冰箱购置21 台,彩电购置19 台.②设商场获得总利润y 元,依照题意,得y=(2 420 - 2 320)x+(1 980 -1 900)(40-x)=20x+3 200∵20>0, ∴y 随 x 的增大而增大∴当 x=21 时, y 最大 =20 ×21+3 200=3 620答:方案三商场获得利润最大,最大利润是3620 元2 、某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所彖的竖式与横式两种长方体形状的无盖纸盒.(1)现有正方形纸板 162 张,长方形纸板 340 张.假设要做两种纸盒共 l00 个,设做竖式纸盒2个.①依照题意,完成以下表格:竖式纸盒横式纸盒(个)(个)x正方形纸板2(100-x)(张 )长方形纸板4x(张 )②按两种纸盒的生产个数来分,有哪几种生产方案?(2)假设有正方形纸板 162 张,长方形纸板口张,做成上述两种纸盒,纸板恰好用完.290<a<306 .那么 n 的值是.(写出一个即可)3 、为实现地域教育均衡睁开,我市方案对某县、两类单薄学校全部进行改造.依照预算,共需资本1575万元.改造一所类学校和两所类学校共需资本230 万元;改造两所类学校和一所类学校共需资本205 万元.〔 1〕改造一所类学校和一所类学校所需的资安分别是多少万元?〔 2〕假设该县的类学校不高出 5 所,那么类学校最少有多少所?〔3 〕我市方案今年对该县、两类学校共 6 所进行改造,改造资本由国家财政和地方财政共同担当.假设今年国家财政拨付的改造资本不高出400 万元;地方财政投入的改造资金很多于70 万元,其中地方财政投入到、两类学校的改造资安分别为每所10 万元和15万元.请你经过计算求出有几种改造方案?解:〔 1 〕设改造一所类学校和一所类学校所需的改造资安分别为万元和万元.依题意得:解之得答:改造一所类学校和一所类学校所需的改造资安分别为60 万元和 85 万元.(2〕设该县有、两类学校分别为所和所.那么∵类学校不高出5所∴∴即:类学校最少有15 所.〔 3〕设今年改造类学校所,那么改类学校为所,依题意得:造解之得∵ 取整数∴即:共有 4 种方案.说明:此题第〔 2〕问假设考生由方程获得正确结果记 2分.4 、某公司方案生产甲、乙两种产品共 20 件,其总产值〔万元〕满足:1150 << 1200 ,相关数据以下表.为此,公司应怎样设计这两种产品的生产方案.产品名称每件产品的产值〔万元〕甲45乙75解:设方案生产甲产品件,那么生产乙产品件,依照题意,得解得.为整数,∴此时,〔件〕.答:公司应安排生产甲产品11 件,乙产品 9 件.5 、在保护地球保护家园活动中,校团委把一批树苗分给初三〔 1 〕班同学去栽种.若是每人分 2 棵,还剩 42 棵;若是前面每人分 3 棵,那么最后一人获得的树苗少于 5 棵〔但至少分得一棵〕.〔 1〕设初三〔 1〕班有名同学,那么这批树苗有多少棵?〔用含的代数式表示〕.〔 2〕初三〔 1〕班最少有多少名同学?最多有多少名解:〔 1〕这批树苗有〔〕棵(2 〕依照题意,得解这个不等式组,得 40< ≤44答:初三〔 1〕班最少有 41 名同学,最多有44 名同学.6、某食品加工厂,准备研制加工两种口味的核桃巧克力,即原味核桃巧克力和益智核桃巧克力.现有主要原料可可粉 410 克,核桃粉 520 克.方案利用这两种主要原料,研制加工上述两种口味的巧克力共 50 块.加工一块原味核桃巧克力需可可粉 13 克,需核桃粉 4 克;加工一块益智核桃巧克力需可可粉 5 克,需核桃粉 14 克.加工一块原味核桃巧克力的本钱是 1.2 元,加工一块益智核桃巧克力的本钱是 2 元.设此次研制加工的原味核桃巧克力块.(1〕求该工厂加工这两种口味的巧克力有哪几种方案?(2〕设加工两种巧克力的总本钱为元,求与的函数关系式,并说明哪一种加工方案使总本钱最低?总本钱最低是多少元?解:〔 1〕依照题意,得解得为整数当时,当时,当时,∴一共有三种方案:加工原味核桃巧克力18 块,加工益智巧克力32 块;加工原味核桃巧克力 19 块,加工益智巧克力31 块,加工原味核桃巧克力20 块,加工益智巧克力30 块.6分(2〕=随的增大而减小当时,有最小值,的最小值为84.当加工原味核桃巧克力20 块、加工益智巧克力30 块时,总本钱最低.总本钱最低是84元.120 元钱,为“光明〞幼儿园购置价格分别为8 元、7 、“教师节〞快要到了,张爷爷欲用6 元和 5 元的图书 20 册.〔 1〕假设设 8 元的图书购置册,6元的图书购置册,求与之间的函数关系式.〔 2〕假设每册图书最少购置2 册,求张爷爷有几种购置方案?并写出取最大值和取最小值时的购置方案.解:〔 1〕依题意:解得:.〔 2〕依题意:解得:.是整数,的取值为 2 ,3,4, 5, 6.〕即张爷爷有 5种购置方案.一次函数随的增大而减小,当取最大值时,,.此时的购置方案为:8元的买 2册,6 元的买 14 册,5 元的买 4 册.当取最小值时,.此时的购置方案为:8元的买 6册,6 元的买 2册, 5 元的买 12 册.8 、某旅游商品经销店欲购进 A 、 B 两种纪念品,假设用 380 元购进 A 种纪念品 7 件, B 种纪念品 8 件;也可以用380 元购进 A 种纪念品10 件, B 种纪念品 6 件。

初一数学应用题

初一数学应用题

初一数学应用题1.比例应用题:(1)小明去超市买牛奶,买了2瓶牛奶,共花费16元。

如果他再买4瓶牛奶,需要花费多少元?(2)某工厂生产1.2万个产品,需要使用10吨原材料。

如果要生产3.6万个产品,需要使用多少吨原材料?(3)某学校有400名学生,其中男生和女生的比例为2:3。

女生有多少人?2.空间几何应用题:(1)有一条长为20cm的直线段,在该直线段上取3个点,要求它们两两之间的距离都相等,这个距离是多少?(2)某地市政府要在一片草坪上建造一个圆形花坛,该草坪长40m,宽20m。

如果要建造一个直径为6m的圆形花坛,需要从草坪上割去多少面积?(3)一个圆形沙坑的直径为10m,深度为3m,每立方米的沙子的重量为1.5吨,这个沙坑里有多少吨沙?3.函数应用题:(1)一枚铜币直径是2.5cm,它的表面积是多少?(2)一张矩形桌子长2.4m,宽1.2m,它的表面积是多少?(3)一辆汽车行驶了200km,每小时的平均速度是80km/h,这辆汽车行驶了多长时间?4.相关问题应用题:(1)甲、乙两人从A地出发,相向而行,甲每小时走10km,乙每小时走15km。

如果A地离他们的相遇点有60km,他们相遇需要多长时间?(2)从A到B有60km,从B到C有40km,从C到D有80km,从D到E有100km。

如果一辆汽车从A出发,依次到达B、C、D、E,沿途行驶速度为每小时40km、60km、30km、50km,到达E需要多长时间?(3)一条小溪宽20m,A、B两点在河岸上相距40m。

一只鸟从A 点出发,先向河心飞行30m,然后沿河流方向飞行,最后在B点上岸。

如果这(3)一条小溪宽20m,A、B两点在河岸上相距40m。

一只鸟从A点出发,先向河心飞行30m,然后沿河流方向飞行,最后在B点上岸。

如果这只鸟飞行的速度是每秒10m,那么这只鸟从A点出发到B 点上岸所需要的时间是多少?5.概率应用题:(1)一枚骰子被投掷4次,每次所得点数相加。

七年级上应用题100道题

七年级上应用题100道题

七年级上应用题100道题姓名:__________ 班级:__________ 得分:__________一、一元一次方程应用题1.一个数的 6 倍减去 10 等于这个数的 4 倍加上 15,求这个数。

2.某数的 5 倍比它的三分之二大 50,求这个数。

3.一个数加上 20 的差等于这个数的 7 倍减去 12,求这个数。

4.某数的 8 倍加上 15 等于这个数的 10 倍减去 10,求这个数。

5.一个数的 9 倍减去 20 等于这个数的 7 倍加上 18,求这个数。

6.某数的 7 倍比它的 6 倍多 42,求这个数。

7.一个数减去 18 的差等于这个数的 5 倍加上 10,求这个数。

8.某数的 9 倍加上 20 等于这个数的 11 倍减去 15,求这个数。

9.一个数的 10 倍减去 25 等于这个数的 8 倍加上 20,求这个数。

10.某数的 8 倍比它的 7 倍多 56,求这个数。

11.一个数的 11 倍加上 15 等于这个数的 13 倍减去 10,求这个数。

12.某数的 9 倍比它的一半大 72,求这个数。

13.一个数加上 25 的和等于这个数的 8 倍减去 15,求这个数。

14.某数的 10 倍加上 20 等于这个数的 12 倍减去 10,求这个数。

15.一个数的 12 倍减去 30 等于这个数的 10 倍加上 25,求这个数。

16.某数的 10 倍比它的 9 倍多 60,求这个数。

17.一个数减去 22 的差等于这个数的 6 倍加上 12,求这个数。

18.某数的 11 倍加上 25 等于这个数的 13 倍减去 15,求这个数。

19.一个数的 13 倍减去 35 等于这个数的 11 倍加上 30,求这个数。

20.某数的 12 倍比它的 11 倍多 72,求这个数。

二、行程问题应用题21.甲、乙两地相距 550 千米,一辆汽车从甲地开往乙地,速度为每小时 110 千米,几小时可以到达?22.小明骑自行车以每小时 25 千米的速度从家去学校,用时 24 分钟,小明家到学校有多远?23.一辆汽车以每小时 120 千米的速度行驶,经过 4.5 小时到达目的地,返回时速度为每小时100 千米,返回需要多长时间?24.甲、乙两人同时从相距 450 千米的两地相向而行,甲的速度是每小时 75 千米,乙的速度是每小时 60 千米,几小时后两人相遇?25.一艘轮船在两个码头之间航行,顺水航行需要 2.2 小时,逆水航行需要 3.5 小时,水流速度是每小时 6 千米,求轮船在静水中的速度。

2024年七年级上册数学应用题

2024年七年级上册数学应用题

2024年七年级上册数学应用题一、行程问题。

1. 甲、乙两人从相距20千米的两地同时出发,相向而行,甲每小时走6千米,乙每小时走4千米,几小时后两人相遇?- 解析:设x小时后两人相遇。

根据路程 = 速度和×时间,可列方程(6 + 4)x=20,即10x = 20,解得x = 2。

所以2小时后两人相遇。

2. 一辆汽车以每小时60千米的速度从A地开往B地,3小时后到达。

返回时速度为每小时45千米,求汽车往返的平均速度。

- 解析:A地到B地的距离为60×3 = 180千米。

返回时所用时间为180÷45=4小时。

往返总路程为180×2 = 360千米,总时间为3 + 4=7小时。

则平均速度为360÷7=(360)/(7)≈51.43千米/小时。

3. 甲、乙两人在环形跑道上跑步,甲每分钟跑200米,乙每分钟跑160米,两人同时同地同向出发,经过40分钟甲第一次追上乙。

求环形跑道的周长。

- 解析:甲每分钟比乙多跑200 - 160 = 40米,40分钟甲比乙多跑了一圈,即环形跑道的周长。

所以周长为40×40 = 1600米。

二、工程问题。

4. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要多少天完成?- 解析:设两人合作需要x天完成。

把这项工程的工作量看作单位“1”,甲的工作效率是(1)/(10),乙的工作效率是(1)/(15)。

根据工作量=工作效率和×工作时间,可列方程((1)/(10)+(1)/(15))x = 1,通分得到((3)/(30)+(2)/(30))x=1,即(1)/(6)x = 1,解得x = 6。

所以两人合作需要6天完成。

5. 某工程队修一条路,原计划每天修400米,25天完成,实际每天修500米,实际多少天可以完成?- 解析:这条路的总长度为400×25 = 10000米。

实际每天修500米,那么实际完成天数为10000÷500 = 20天。

数学初一应用题及答案

数学初一应用题及答案

数学初一应用题及答案数学初一应用题及答案导语:数学应用就是指单独的数量关系,构成的题目,没有涉及到真正实量的存在及关系。

下面由店铺为大家整理的数学初一应用题及答案,希望可以帮助到大家!数学初一应用题及答案篇11、为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。

若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元?设总用电x度:[(x-140)*0.57+140*0.43]/x=0.50.57x-79.8+60.2=0.5x0.07x=19.6x=280再分步算: 140*0.43=60.2(280-140)*0.57=79.879.8+60.2=1402、某大商场家电部送货人员与销售人员人数之比为1:8。

今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。

结果送货人员与销售人数之比为2:5。

求这个商场家电部原来各有多少名送货人员和销售人员?设送货人员有X人,则销售人员为8X人。

(X+22)/(8X-22)=2/55*(X+22)=2*(8X-22)5X+110=16X-4411X=154X=148X=8*14=112这个商场家电部原来有14名送货人员,112名销售人员3、现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?设:增加x%90%*(1+x%)=1解得: x=1/9所以,销售量要比按原价销售时增加11.11%4、甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少?设甲商品原单价为X元,那么乙为100-X(1-10%)X+(1+5%)(100-X)=100(1+2%)结果X=20元甲100-20=80 乙5、甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。

(完整版)初一数学应用题分类汇总分类全

(完整版)初一数学应用题分类汇总分类全

应用题练习行程问题
1.甲、乙两辆火车相向而行,甲车的
速度是乙车速度的5倍还快20km/h,两地相距298km,两车同时出发,半小时后相遇。

两车的速度各是多少?
2、甲、乙两地相距300km,一列慢车从甲站开往乙站,每小时行40km,一列快车从乙站开往甲站,每小时行
80km,已知慢车先行 1.5h,快车再开出,问快车开出多长时间与慢车相
遇?
3、一队学生去校外进行训练,他们以
5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员需
多少时间可以追上学生队伍?
4、甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度是4米/秒,乙跑几圈后,甲可超过乙一圈?
5、.甲乙两人在400米环形跑道上练习长跑,两人速度分别是200米/分和160米/分.
(1)若两人从同一地点同时反向跑,
多少分钟后两人第3次相遇?
(2)若两人从同一地点同时同向跑,
多少分钟后两人第2次相遇?
6. 一艘船在两个码头之间航行,水流
速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?
二、工程类问题
1、有水桶两只,甲桶的容量是400升,乙桶的容量是150升,如果从甲桶放出的水是乙桶放出的2倍,那么甲桶剩的水是乙桶所剩的4倍。

问每桶放出了多少升水?
2、一项任务由甲完成一半以后,乙完
成其余的部分,两人共用2小时。

如。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甲每小时行45千米,乙每小时行多少千米?
乙每小时行x千米
3(45+x)+17=272
3(45+x)=255
45+x=85
x=40
乙每小时行40千米
5、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?
平均成绩是x分
40*87.1+42x=85*82
需要x时间
50x=40x+80
10x=80
x=8
需要8时间
14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?
苹果x
3x+2(x-0.5)=15
5x=16
x=3.2
苹果:3.2
梨:2.7
15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。甲几小时到达中点?
甲x小时到达中点
50x=40(x+1)
10x=40
x=4
甲4小时到达中点
16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。已知甲速度是15千米/时,求乙的速度。
乙的速度x
2(x+15)+4x=60
2x+30+4x=60
6x=30
x=10
它的高是10米
3、某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?
这9天中平均每天生产x个
9x+908=5408
9x=4500
x=500
这9天中平均每天生产500个
4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。
6x-52=20
6x=72
x=12
平均每行梨树有12棵
10、一块三角形地的面积是840平方米,底是140米,高是多少米?
高是x米
140x=840*2
140x=1680
x=12
高是12米
11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。每件大人衣服用2.4米,每件儿童衣服用布多少米?
每件儿童衣服用布x米
平均每组x人
5x+80=200
5x=160
x=32
平均每组32人
8、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?
食堂运来面粉x千克
3x-30=150
3x=180
x=60
食堂运来面粉60千克
9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵?
平均每行梨树有x棵
平均每组x人
5x+80=200
5x=160
x=32
平均每组32人
8、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?
食堂运来面粉x千克
3x-30=150
3x=180
x=60
食堂运来面粉60千克
9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵?
平均每行梨树有x棵
x=5
乙的速度5
17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。
问原来两根绳子各长几米?
原来两根绳子各长x米
3(x-15)+3=x
3x-45+3=x
2x=42
x=21
原来两根绳子各长21米
18.某校买来7只篮球和10只足球共付248元。已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元?
解:设该商贩当初买进X个鸡蛋.
根据题意列出方程:
(X-12)*0.28-0.24X=11.2
0.28X-3.36-0.24X=11.2
0.04X=14.56
X=364
答:该商贩当初买进364个鸡蛋.
6、某车间有技工85人,平均每天每人可加工甲种部件15个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?
3484+42x=6970
42x=3486
x=83
平均成绩是83分
6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?平均每箱x盒
10x=250+550
10x=800
x=80
平均每箱80盒ห้องสมุดไป่ตู้
7、四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢足球,平均每组多少人?
所以(40*8%+x)/(40+x)=20%
(3.2+x)/(40+x)=0.2
3.2+x=8+0.2x
0.8x=4.8
x=6
所以加盐6xx
5、某市场鸡蛋买卖按个数计价,一商贩以每个0.24元购进一批鸡蛋,但在贩运途中不慎碰碎了12个,剩下的蛋以每个0.28元售出,结果仍获利11.2元。问该商贩当初买进多少个鸡蛋?
2x+3y=15.5
5x+6y=35
得到x=4
y=2.5
得到(3x+5y)*30=735
2、现对某商品降价10%促销.为了使销售总金额不变.销售量要比按原价销售时增加百分之几?
解:原价销售时增加X%
(1-10%)*(1+X%)=1
X%=11.11%
为了使销售总金额不变.销售量要比按原价销售时增加11.11%
10、甲乙两名同学在同一道路上从相距5km的两地同向而行,甲的速度为5km/h,乙的速度为3km/h,甲同学带着一条狗,当甲追乙时,狗先追乙,再返回遇上甲,又返回追乙,……直到甲追到乙为止。已知狗的速度为15km/h,求此过程中,狗跑的总路程。
解:首先要明确,甲乙的相遇时间等于狗来回跑的时间
所以狗的时间=甲乙相遇时间=总路程/甲乙速度和
3484+42x=6970
42x=3486
x=83
平均成绩是83分
6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?平均每箱x盒
10x=250+550
10x=800
x=80
平均每箱80盒
7、四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢足球,平均每组多少人?
解:设标价为X元.
80%X=1996×(1+20%)
80%X= 2395.2
X=2994
8、某商店把某种商品按标价的8折出售,可获利20%。若该商品的进价为每件22元,则每件商品的标价为多少元?
解::设标价为X元.
80%X=22×(1+20%)
80%X= 26.4
X=33
9、在一段双轨铁道上,两列火车迎头驶过,A列车车速为20m/s,B列车车速为24m/s,若A列车全长180m,B列车全长160m,问两列车错车的时间为多少秒?解:(180+160)/(20+24)=7.28秒
1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。还要运几次才能完?
还要运x次才能完
29.5-3*4=2.5x
17.5=2.5x
x=7
还要运7次才能完
2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?它的高是x米
x(7+11)=90*2
18x=180
16x+20*2.4=72
16x=72-48
16x=24
x=1.5
每件儿童衣服用布1.5米
12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?女儿今年x岁
30=6(x-3)
6x-18=30
6x=48
x=8
女儿今年8岁
13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?
3、1个商品降价10%后的价格恰好比原价的一半多40元,问该商品原价是多少?解:设原价为x元
(1-10%)x-40=0.5x
x=100
答:原价为100元
4、有含盐8%的盐水40克,要使盐水含盐20%,则需加盐多少克?
解:设加盐xxx
开始纯盐是40*8%克
加了x克是40*8%+x
盐水是40+xxx
浓度20%
16x+20*2.4=72
16x=72-48
16x=24
x=1.5
每件儿童衣服用布1.5米
12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?女儿今年x岁
30=6(x-3)
6x-18=30
6x=48
x=8
女儿今年8岁
13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?
所以狗的路程=狗的时间*狗的速度
所以甲乙相遇狗走了千米
1.一天小红和小亮2人利用温度差测量某山峰的高度,小红在山顶侧的温度是-1度小亮此时在山脚下测得的温度是5度已知该地区的高度每增加100M,气温大约下降0.6度这座山峰的高度是?
2.当气温每上升1度时,某种金属丝伸长0.002MM反之,当温度每下降1度时,金属丝缩短0.002MM。把15度的金属丝加热到60度,在使它冷却降温到5度,金属丝的长度经历了怎样的变化?最后的长度比原来长度伸长多少?
每只篮球x
7x+10x/3=248
21x+10x=744
31x=744
相关文档
最新文档