储氢材料与方式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

储氢材料的研究概况与发展方向

随着社会发展、人口增长,人类对能源的需求将越来越大。以煤、石油、天然气等为代表的化石能源是当前的主要能源,但化石能源属不可再生资源,储量有限,而且化石能源的大量使用,还造成了越来越严重的环境污染问题。因此,可持续发展的压力迫使人类去寻找更为清洁的新型能源。氢能作为一种高能量密度、清洁的绿色新能源,氢能的如何有效利用便引起了人们的广泛研究。

目前来看,氢能的存储是氢能应用的主要瓶颈。氢能工业对储氢的要求总的来说是储氢系统要安全、容量大、成本低、使用方便。美国能源部将储氢系统的目标定为:质量密度为6.5%,体积密度为62kgH2/m3。瞄准该目标,国内外展开了大量的研究。本文综述了目前所采用或正在研究的主要储氢材料与技术,包括金属氢化物、碳质材料、配位氢化物、水合物,分析了它们的优缺点,同时指出其相关发展趋势。

1金属氢化物

金属氢化物储氢具有安全可靠、储氢能耗低、储存容量高(单位体积储氢密度高)、制备技术和工艺相对成熟等优点。此外,金属氢化物储氢还有将氢气纯化、

压缩的功能。因此,金属氢化物储氢是目前应用最为广泛的储氢材料。

储氢合金是指在一定温度和氢气压力下,能可逆地大量吸收、储存和释放氢气的金属间化合物。储氢合金由两部分组成,一部分为吸氢元素或与氢有很强亲和力的元素(A),它控制着储氢量的多少,是组成储氢合金的关键元素,主要是I A~ VB族金属,如Ti、Zr、Ca、Mg、V、Nb、Re(稀土元素);另一部分则为吸氢量小或根本不吸氢的元素(B),它则控制着吸/放氢的可逆性,起调节生成热与分解压力的作用,女口Fe、Co、Ni、Cr、Cu、Al等。图1列出了一些金属氢化物的储氢能力。

目前世界上已经研制出多种储氢合金,按储氢合金金属组成元素的数目划分,可分为:二元系、三元系和多元系;按储氢合金材料的主要金属元素区分,可分为:稀土系、镁系、钛系、钒基固溶体、锆系等;而组成储氢合金的金属可分为吸氢类(用A表示)和不吸氢类(用B表示),据此又可将储氢合金分为:AB5型、AB2 型、AB 型、A2B 型。

1.1稀土系储氢合金

稀土储氢合金中典型代表是LaNi5。该合金为CaCu5型六方结构,它的优点为活化容易,平台压力适中且平坦,吸/放氢平衡压差小,动力学性能优良,不易中毒。在25 C及0.2MPa压力下,该合金储氢量约为1.4% (本文中储氢量、储氢能力均为质量分数),分解热为30kJ/molH2,所以室温下便可以实现对氢的存储。此外,该合金还具有吸/放氢纯度高的特点(99.9%以上),因此可以作为制备高纯度氢气的一种途径。LaNi5合金的缺点为抗粉化、抗氧化性能较差,且由于含有稀土元素La,价格偏高。WillemsJJ等人通过采用、Mm (Mm为混合稀土,主要成分为La、Ce、Pr、Nd)取代部分元素La,不仅使其抗粉化、抗氧化性能得到改善,而且降低了稀土合金的成本。但同时带来了氢分解压升高的问题。于是在此基础上开发了大量多元合金Mm1-xCxNi5-yDy,其中C有Al、Cu、Mn、Si、Ca、Ti、Co ;D 为Al、Cu、Mn、Si、Ca、Ti、Co、Cr、Zr、V、Fe(x=0.05 〜0.20,y=0.1 〜2.5)。

对于稀土储氢合金的研究开发,今后应着重于通过更进一步调整和优化合金的化学组成,不仅要对合金吸氢侧A侧,也包括对不吸氢侧B侧的化学组成进行优化,以及进一步优化合金的组织结构、合金的表面等,从而使合金的综合性能进一步得到提高。

1.2镁系储氢合金

镁系合金的典型代表是Mg2Ni。镁系合金具有成本低(即资源丰富、价格低廉)、重量轻、储氢量高(储氢合金中,其储氢能力最高,如MgH2储氢量

7.6% )。因此,镁系合金被认为是最具潜力的合金材料。

该合金的缺点为放氢温度高(一般为250 C〜300 C),放氢动力学性能较差以及抗腐蚀性能较差。TsukaharaM等人通过机械合金化法,使晶态Mg2Ni合金非晶化,从而利用非晶合金表面的高催化性。结果发现,可以显著改善镁基合金吸/放氢的热力学和动力学性能。1998年,Zhang等人采用Zr部分替代Mg2Ni 合金中的Ni后,合金的储氢量达到3.3%,而且脱氢温度有所下降。2002年,Wang 等人则采用Ag部分替代Mg2Ni合金中的Mg后,其吸氢量可达2.2%,吸放氢温度降低同样也得到降低。

近年来出现了一种新的金属氢化物储氢技术----- 薄膜金属氢化物储氢,包括纯Mg膜、Mg-Pd薄膜、Mg-Ni薄膜、Mg-Nb薄膜、Mg-V薄膜、Mg-Al薄膜、Mg-LaNi5薄膜。Wang等人采用厚度为数十纳米至数百纳米的薄膜金属氢化物进行研究,发现储氢合金薄膜化后具有以下优点:1)吸、放氢速度快;2)抗粉化能力强;3)热传导率高;4)可相对容易地对薄膜进行表面处理,如表面离子轰击,

化学镀等。此外,他们在薄膜金属氢化物表面喷涂保护层,结果发现这样可起到活化薄膜金属氢化物和保护氢化物不受杂质组分的毒害。但目前制备的镁薄膜一般都需用价格较高的Pd作为催化组元来改善Mg的吸氢性能,成本太高,且其吸氢性能仍不够理想。因此迫切需要寻找一种低廉的金属元素取代价格较高的Pd、V,或者采用于其它类贮氢合金复合等方法,获取动力学性能优良的高性能合金材料。

对于镁系储氢合金的研究开发,除了通过进一步调整和优化合金的化学组成,以及进一步优化合金的组织结构、合金的表面,今后还可以通过表面包覆合金粉末、机械球磨等手段加以改进,力求使合金的综合性能进一步得到提高。

1.3钛系储氢合金

钛系合金的典型代表是TiFe。钛系合金具有较好储氢性能(储氢量为1.8%〜4%,与稀土系相近),放氢温度低(可在-30 C时放氢),成本适中等优点,其缺点是不易活化、易中毒(特别易受CO气体毒化)、室温平衡压太低,致使氢化物不稳定。为此,很多学者采用Ni等金属部分取代Fe,从而形成三元合金以实现常温活化,使其具备更高的实用价值。女口,日本金属材料技术研究所成功研制了具有吸氢量大、氢化速度快、活化容易等优点的钛-铁-氧化物储氢体系。近年来,Ti-V-Mn系贮氢合金的研究开发十分活跃,通过亚稳态分解形成的具有纳米结构的贮氢合金吸氢量可达2%以上。

对于钛系合金的研究开发,最常用的手段依然是通过进一步调整和优化合金的化学组成(即通过采用过渡金属、稀土金属等部分替代Fe或Ti)以及优化合金

的组织结构、合金的表面;其次是改变单一传统的冶炼方式,如采用机械合金化法制取合金。

1.4钒基固溶体型储氢合金

V3TiNiO.56Mx是目前研究较多的钒基固溶体型储氢合金,其中x=0.046〜0.24 ; M 为Al、Si、Mn、Fe、Co、Cu、Ge、Zr、Nb、Mo、Pd、Hf、Ta 等元素,主要应用于镍氢电池领域。钒基固溶体型合金具有储氢量大、氢在氢化物中的扩散速度较快等优点,已应用于氢的贮存、净化、压缩以及氢的同位素分离等领域,其缺点是合金充放电的循环稳定性较差,循环容量衰减速度较快的问题。

因此,对于钒基固溶体型储氢合金的研究开发,优化合金成分与结构、采用新

的合金的制备技术以及对合金表面进行改性处理,仍是进一步提高合金性能的主要研究方向。

相关文档
最新文档