智能配电网建设及其关键技术

合集下载

智能配电网及其关键技术研究

智能配电网及其关键技术研究

智能配电网及其关键技术研究
智能配电网是一种全新的配电网形式,它把电能传输和分配、调度和控制、自动化和信息化有机地结合在一起,形成层次清晰、系统可靠、运行安全、经济高效的电力系统。

智能配电网以智能硬件和智能控制器作为依托,将智能控制技术、物联网技术以及电力自动化技术等,结合起来协同工作,形成自动监控、自动控制、自动调度的网络体系。

(1)电力计量技术。

通过电力计量,可以实时监测电力系统发电、输电、配电的状态及安全运行情况,及时发现电力系统的故障,以及系统的不平衡状态,保证系统的安全运行。

(2)智能调度技术。

通过实时监测系统运行状态,根据系统的实时需求,来进行智能化的调度和控制,保证电力系统负荷的平衡,降低电力系统的故障率。

(3)智能运行保护技术。

智能配电网采用智能运行保护技术,实现系统实时自动监测,发现系统的运行状态异常,并进行及时的处理,防止电力系统的损坏。

(4)无线通信技术。

采用无线通信技术,可以将系统的控制信息迅速的传递到相应的点,从而提高系统的操作效率,保证系统的运行可靠性。

智能配电系统的内涵及其关键技术

智能配电系统的内涵及其关键技术

智能配电系统的内涵及其关键技术摘要:对于居民生活以及企业生产来说,在其正常运行中严重依赖于配电系统,所以说供配电系统对于现代化生活具有非常重要的保障作用,这就要求要保证供配电系统的合理设计。

然而在我国,对配电网的发展还不是很重视,配电自动化水平也不是太高,在配电网的网架结构设计上基础仍然很薄弱。

总的来说,配电自动化以及配电网的智能化程度有待提高,这就需要提高整体的电力系统水平。

关键词:智能配电技术;智能配电网建设;应用;探讨导言智能配电网的建设在很大程度上可以弥补传统配电网的弊端,在智能配电网建设过程中需要应用智能配电技术,此项技术对配电网能够安全运行有着非常重要的影响,基于此电力部门需要对配电自动化技术进行不断的研究,从而为智能配电网建设提供强有力的技术支持。

1智能配电系统分析的内涵1.1智能配电系统可靠性评估(SDS Reliability Assessment)通常意义上,配电体系可靠性评价是对配电系统过去利索的性能状况进行评价,反映了配电体系对继续供电的保证能力。

只需用户不停电就不会影响对体系供电可靠性的评价。

例如,如果在一个时间段内用户从未停电,则在该时间段内的体系的供电可靠性能够认为是100%。

配电体系可靠性评价可分为元件可靠性评价和体系可靠性评价两部分。

现有的配电体系可靠性评价通常建立在对以往绵长时间内的元件和体系可靠性数据分析的基础之上,并以此为基础猜测将来较长一段时间内的体系可靠性,主要为配电网计划提供参考。

分布式电源、储能、电动汽车、微电网等的引入会对配电体系的可靠性发生主要影响。

智能配电系统的可靠性评价就包含了分布式发电体系可靠性评估、微电网可靠性评价、含分布式电源和微电网的配电体系可靠性评价等内容。

智能配电体系条件下提出适应新需要的可靠性评价方针和评价算法是该范畴的技术关键。

1.2智能配电体系安全性分析(SDS Security Analysis)智能配电体系安全性是指有源配电体系对于一组料想事端调集(负荷改变、支路开断、短路故障、分布式电源投退等),能够坚持对悉数或大多数负荷的不间断供电,并能够经过开关操作或别的技术手法,迅速阻隔故障区域和康复对非故障区域的供电,并坚持潮流及电压幅值在答应的限值范围内的能力。

智能配电网态势感知和态势利导关键技术

智能配电网态势感知和态势利导关键技术

智能配电网态势感知和态势利导关键技术摘要:智能配电网体系对电力系统和终端用户的运行有着十分密切的联系,态势感知技术可以更加全面、精准地掌握电网及设备的运行状态,以势能信息的采集、分析来实现更高效的态势利导技术,使大电网系统能够向着更加稳定、安全的状态运行,不断提升现代化电力输配体系的智能化水平。

因此,将系统性地介绍态势感知和态势力导的技术概念,并结合智能配电网运行的配置需求,详细分析其在智能配电网中的关键技术应用。

关键词:智能配电网;态势感知;态势利导;关键技术引言:随着社会科技的不断发展,人们的工作、生活中对电力资源的需求量也在不断增加,对电网输配和管理提出了更高的要求,在高压、长输的配电网建设中也取得了重要的技术突破。

在电力系统的运行过程中,为保证其安全、高效,需要采取可靠的监测与调控技术来实现维护,态势感知和态势利导技术可以根据配电网中终端用户及设备的随机性需求实现智能化响应配置,且在地震、火灾等紧急状况下的电网安全评估管理也具有重要应用意义。

一、态势感知和态势利导的技术概述态势感知是指,在特定的时域和空域条件下,对某些环境元素产生的觉察、理解和预测等一系列动作,在其感知分析的过程中包括了一级态势感知的数据信息获取、二级态势感知的数据分析评估、三级态势感知的趋势预测与可视化;态势利导是指,在获取环境元素基础信息的同时,按照系统运行更有利的方向对这些环境元素展开调整和控制,因此,态势利导的实现其实是一个不断动态交互、反复的重要过程。

二、智能配电网运行的配置需求在电网体系建设规模不断扩张的背景之下,远距离的长输配电网可以更好地满足大规模的电力资源输配应用,且实现了传统火电和风光新能源的有效接入。

在构建智能输配电网的过程中,需要利用更加广域的态势感知技术来保证电网的稳定性,实现了对电网运行的实时监测,充分考虑系统不稳定性带来的调控影响,根据电网系统中的负荷实现随机的响应。

在智能配电网体系的建立过程中,需要利用态势感知和态势利导来实现更优的配置。

智能配电网关键技术研究

智能配电网关键技术研究

智能配电网关键技术研究引言:智能配电网主要由主站系统、子站系统、通信系统、配电远方终端组成,通过对配电网各个环节、模块和设备的智能化,同时结合地理信息系统应用,实现正常情况下配电网与电力系统各个环节的协调和优化运行以及故障情况下的快速定位、隔离、恢复、负荷转移等功能,从而为用户提供优质可靠的电能,为电力企业提供便捷、高效的管理平台和途径,进而实现电力企业管理者、电力用户、系统运行操作的协调和统一。

与传统的配电网相比,智能配电网具有以下功能特征:坚强:在电网发生大扰动和故障时,仍能保持对用户的供电能力,而不发生大面积停电事故;在自然灾害、极端气候条件下或外力破坏下仍能保证电网的安全运行;具有确保电力信息安全的能力。

自愈:具有实时、在线和连续的安全评估和分析能力,强大的预警和预防控制能力,以及自动故障诊断、故障隔离和系统自我恢复的能力。

兼容:支持可再生能源的有序、合理接入,适应分布式电源和微电网的接入,能够实现与用户的交互和高效互动,满足用户多样化的电力需求并提供对用户的增值服务。

经济:支持电力市场运营和电力交易的有效开展,实现资源的优化配置,降低电网损耗,提高能源利用效率。

集成:实现电网信息的高度集成和共享,采用统一的平台和模型,实现标准化、规范化和精益化管理。

优化:优化资产的利用,降低投资成本和运行维护成本。

一、智能配网的关键技术(一)分布式电源与储能技术分布式电源技术是新型电源技术,能够兼容多种发电方式接入电网,同时能起到系统储能器的作用,补充主网电力,减缓峰时电网压力,谷时进行储能,提高了供电可靠性,扩展了供电容量。

配网中的分布式电源一般以小电源系统居多,其发电容量在10mw以下,通常采用小型风力发电、光伏电源、秸秆等废作物燃烧发电。

储能技术作为分布式电网的重要环节起着无可替代的作用。

却具有不稳定性,受环境影响较大,属于间歇性波动能源。

因此为保证能够提供稳定、持续的电能就需要储能技术。

(二)可重构的网络拓扑结构现代智能网采用环形网络结构取代传统辐射网络结构,它的优点在于提供了更加友好的线路途径,当系统发生故障的时候,能够将故障点切除或者能将故障限制在一个局部的小范围之内,不会对整个电网系统产生冲击,并且可以智能判断迅速反应,通过其他连接避开故障部分,恢复对用户供电。

智能电网建设的关键技术及其建议

智能电网建设的关键技术及其建议

智能电网建设的关键技术及其建议摘要:随着能源问题的不断加剧,智能电网因其具有的智能化、自动化等诸多优势而逐渐成为我国电力市场发展的主要方向。

在智能电网建设中,关键技术是智能电网建设的基础,基于此,本文首先对智能电网建设中的关键技术进行了详细的分析,并就如何更好地实施智能电网建设提出了几点优化建议,以期能够更好地推动电网朝着智能化方向发展。

关键词:智能电网;关键技术;优化建议1引言智能电网是在传统电网的基础上实现的,其是一个涵盖多种技术的系统工程。

其中,先进的通信技术、自动化控制技术、新型发电方式、新能源接入等都是智能电网建设的关键技术。

而随着信息科技和通信网络的快速发展,将进一步推动智能电网实现智能化发展。

以下将基于智能电网建设的关键技术提出几点优化建议,以期更好地推动智能电能可持续性发展。

2智能电网建设的关键技术2.1 电网分析决策共性技术智能电网的核心是实现电力系统的高效运行,其主要体现在调度层面。

随着智能电网的建设,未来电网运行将变得更加复杂多变。

对此,有必要加强信息采集技术、数据集成和共享技术以及智能设备管理系统等共性技术的研究。

目前,电力系统数字化已成为发展趋势,通过建立统一的电网数据中心、建立统一的信息交换标准规范以及建设数字平台来提高系统运行效率和可靠性是当前最迫切和最重要的任务。

目前已开展了四个专题的研究:“能源基础设施数字化”、“分布式电源与负荷接入及协调控制”、“配电网设备监测及信息管理平台”和“配电自动化系统应用研究”,前三个专题研究成果为构建一个高效的智能电网系统提供了重要保障。

能源基础设施数字化通过全面、及时、准确的数据采集手段,对所有电力设施进行监测和管理,并通过信息集成和共享平台将采集到的数据以图形化的方式进行展示,实现了电网运行信息的可视化呈现。

分布式电源与负荷接入及协调控制通过对电源与电网协调关系以及配网负荷发展趋势等方面分析,为智能调度提供了可靠的决策依据。

配电网设备监测及信息管理平台在生产设备信息监测与管理、设备状态与运行状态评估方面发挥了重要作用。

智能配电网关键技术

智能配电网关键技术

总 结 智 能 配 电 网其 内涵 主 要 包 括 3 方 面 川: 以 个 ①
物 理实体 电 网为 基础 ,包 括各 种 配 电基础 设施 、 开
监测 等 实时信 息 , 决 配 电网“ 管 ” 解 盲 问题 。
12 实现 配 网设 备 管理 、 .. 7 生产 管理 的 自动 化和信
山东 电力 高 等专科 学校 学报
第 1 5卷 第 4期
J u n lo h n o gElcrcP we olg o r a fS a d n e ti o 的 电力 。
3 9
处 于 电力 系 统 的末 端 , 以 与用 户 直接 相 连 , 能 可 智
【 要 】 文对智 能配 电网( D ) 摘 本 S G 建设 中的若干 关键 问题进 行 了介 绍 和分析 。首先介 绍 了智 能
配 电 网的概 念 和基本 特征 , 要说 明 了建 设智 能配 电网对 智 能 电网的重 要性 : H 是 电网智 能 简 A I
化 的 第一 步 , 绍 了其 概 念 、 介 系统组 成 以及 优 点 , 并指 出现 在发 展 中的 不足 ; 级 配 电 自动 化 高
的停 电 占用 户停 电 的9 %以上 : 电网 的损耗 占据 5 配 了电 网损 耗 的一半 : 分布 式 电源 的接入 主要 影 响配
电运行 ( T 和 高级 资产 管 理 ( A 彼此 之 间通 A O) A M)
过 配合 , 在技 术层 面实现 上述 的 目标 。发 展智 能 电 网的顺序 会影 响成 本 和效 益 。一般 情况 下 A 是 MI 电网智 能化 的第一 步 。 在对 电能 质量要 求 高 的地方
收 稿 1 :0 2 0 — 1 3期 2 1 — 5 3

10kV配电网自动化系统的智能化建设

10kV配电网自动化系统的智能化建设

10kV配电网自动化系统的智能化建设随着社会的不断发展和信息化的进步,电力系统作为现代社会的重要基础设施之一,也在不断进行着自动化和智能化的升级和改造。

10kV配电网自动化系统作为电力系统中的重要组成部分,其智能化建设对于提高电网的安全性、稳定性和可靠性具有重要意义。

本文将从智能化建设的意义、现状和发展趋势以及关键技术等方面进行探讨。

一、智能化建设的意义10kV配电网自动化系统的智能化建设,主要体现在两个方面:一是在智能设备的应用上,通过先进的传感器、监控设备和通信技术,实现对电网设备和运行状态的实时监测、分析和控制;二是在智能决策与管理上,通过数据分析、智能算法和人工智能等技术手段,实现对电网运行的智能化管理和决策。

智能化建设的意义主要表现在以下几个方面:1. 提高电网安全性和可靠性。

智能化建设可以实现对电网运行状态的实时监测和分析,一旦出现故障或异常情况,可以及时做出相应的应对措施,降低故障对电网的影响,保障电网的安全运行。

2. 提高电网的运行效率和经济性。

通过智能化建设,可以实现对电网运行数据的全面分析和优化,使得电网的运行更加高效和经济。

4. 为电网的未来发展奠定基础。

智能化建设是电网未来发展的必然趋势,只有不断提升电网的智能化水平,才能更好地适应未来电能互联网等新技术的发展和应用。

二、现状和发展趋势未来,10kV配电网自动化系统的智能化建设将朝着以下几个方向发展:1. 智能感知技术的应用。

通过传感器技术的进一步发展,实现对电网设备和用电负荷等信息的智能感知,以提高对电网运行状态的实时监测能力。

3. 智能设备的互联互通。

通过智能设备和通信技术的进一步发展,建立起智能设备之间的互联互通,实现对电网的深度监测和控制。

4. 电力物联网的发展。

未来,电力物联网将成为10kV配电网自动化系统的重要组成部分,通过物联网技术,实现对电网设备和工艺的智能化管理和控制。

三、关键技术10kV配电网自动化系统的智能化建设涉及众多技术领域,其中包括智能感知技术、大数据与人工智能技术、智能设备与通信技术以及电力物联网技术等。

10kV配电网自动化系统的智能化建设

10kV配电网自动化系统的智能化建设

10kV配电网自动化系统的智能化建设随着社会的发展和科技的进步,电力系统的智能化建设已经成为必然趋势。

10kV配电网作为电力系统中的重要组成部分,其智能化建设对于提高电网运行效率、降低运行成本、提高供电质量具有重要意义。

下面将从智能化建设的概念、目标、关键技术、应用效果等方面对10kV配电网自动化系统的智能化建设进行探讨。

一、智能化建设的概念智能化建设是指利用先进的信息技术,对电力系统进行深度管理和控制,提高系统的运行效率和供电质量。

通过智能化建设,可以实现对电力系统的实时监测、远程控制、智能分析和预测,从而提高系统的可靠性、智能化水平和经济效益。

二、智能化建设的目标1. 提高运行效率:通过智能化管理和控制,实现电网设备的自动化运行,提高系统的运行效率和响应速度,降低运行成本。

2. 提高供电质量:实时监测电网设备的运行状态,及时发现和排除故障,保障供电质量和可靠性。

3. 降低运行成本:通过智能化管理和控制,提高设备的利用率和能源利用效率,降低运行成本和维护成本。

4. 实现智能分析和预测:通过大数据分析和智能算法,实现对电网设备运行情况的智能分析和预测,提前发现潜在问题并采取措施,避免发生故障。

三、智能化建设的关键技术1. 传感技术:通过传感器和监测装置实时采集电网设备的运行数据,实现对电网设备的实时监测和状态诊断。

2. 通信技术:利用先进的通信技术,实现对电网的远程监控和控制,实现对电网设备的远程管理和运行。

3. 大数据技术:通过大数据技术对电网设备的大量数据进行分析和挖掘,实现对电网设备运行情况的智能分析和预测。

4. 人工智能技术:利用人工智能技术实现对电网设备的智能化管理和控制,提高系统的智能化水平和运行效率。

5. 云计算技术:通过云计算技术实现对电网设备的集中管理和数据存储,提高系统的信息化和智能化水平。

浅析智能配电网技术支持系统的关键技术

浅析智能配电网技术支持系统的关键技术
化系 统 是实 现 配 电网运 行监 测和 控 制 的 自动化 系 统 ,是 配 电 自动 数 据 交 换和 共 享 的平 台提 供至 电 网, 现 数 据 、 型和 图形 管 理 , 实 模
地 高 了 电 网信 息 获取 能 力 , 得 电 网运 行 和 管理 更 加 精确 、 时 , 使 及 并 化 。 目前 , 区 电网配 电 网调度 工作 主要 存在 以下 问题 : ( ) 电 网的监 视 、 1配 控制 手段 不 足 。配 电 网 自动化 系 统 的建 设 且 也使 能源 的 综合 投 资和利 用效 益 得 以提 高 地 区 电 网企 业 的核
羹至 Gguh 三量 。 iJu n i y ys
ቤተ መጻሕፍቲ ባይዱ
浅 析智能配 电网技术支持 系统 的关键 技术
李 德 强
( 东 电 网 公 司江 门 鹤 山 供 电局 , 东 江 门 5 9 o ) 广 广 2 7 o

要: 随着两 网改造的持续投 入和配 电 自动化技术 的深入研究 , 一轮配 电网 自动化建设 的热潮 来临 , 新 将进 一步推动我 国配 电自动化 的
22 配 电 网 智 能 调 度 技 术 .
智 能调 度技 术 支持 系统 和职 能 型运 行控 制体 系 是 通 过获 取 配 网全景 信 息实 现一 体化 的信 息 支撑 、 优化 调 度计 划 建 立起 来 的 , 其
运行 状况 实 时 监控 , 而 进 行数 据 收 集 、 合 和分 析 , 终使 得 电 实 这就 是 配 电网智 能调 度 。在线 实 时决 策指 挥 是配 电网 智能 调 度 进 整 最 网 各成 员 之间 的无 缝连 接 以及 实时 互动 得 以实现 。智能 配 电 网提 的核心 ,而 对现 有 配 网调度 控制 功 能 的扩展 就 是 配 电 网调度 智 能

智慧化配电网建设方案

智慧化配电网建设方案

智慧化配电网建设方案随着电力行业的不断发展,智慧化配电网建设已成为当前基础设施建设的重点之一。

智慧化配电网建设旨在通过引入信息技术,提升配电网的管理智能化水平,实现配电网的可靠、安全、高效运行,提供更优质的电力服务。

本文将从技术、管理和投资三个方面,提出智慧化配电网建设方案。

一、技术方面1.智能监测系统智能监测系统是智慧化配电网建设的核心技术,主要包括智能监测、智能控制、智能保护、智能调度等功能模块。

通过传感器等技术手段实时监测电网运行状态,实现电力负载的准确计量,精细化管理电力资源,提升电网供电可靠性和智能化水平。

同时,利用人工智能等技术手段,可实现对电网异常事件的快速判断和处理,提高配电网的应急响应能力。

2.智能电能质量分析电能质量是智慧化配电网建设的一个重要问题,对于提高电能利用效率、保障用户电器设备安全运行具有十分重要的意义。

智能电能质量分析系统是通过对配电网中的电能质量进行实时检测和分析,帮助电力企业了解电能质量的变化情况,并及时采取措施进行调整和优化,提高电网供电质量和可用性。

3.智能配电网智能配电网建设是智慧化配电网建设的重点内容,主要指基于数字化技术、信息技术和电力技术,建立智能化的配电网系统。

智能配电网实现了电力设备的互联互通和数据传输,能够对电网进行智能化管理和运行控制,提高电网供电可靠性和经济性。

二、管理方面1.完善管理流程智慧化配电网建设最终目的是提升配电网管理的水平。

因此,在建设过程中,应当充分认识到管理流程的重要性。

通过梳理完善配电网管理流程,扩大运行数据的覆盖面和深度,全面提升企业对配电网的监控和管理能力。

2.强化安全意识智慧化配电网的建设必须要保证完善的安全保障措施。

企业应当加强安全培训,提高员工安全意识,制订并执行配电网安全管理制度,从源头上预防和控制事故发生。

3.优化运营管理实施智慧化配电网建设也要注重配电网的运营管理。

对于配电网运营过程中出现的各种问题,应及时采取有效措施,提高运营管理水平,逐步提高电网的经济效益和社会效益。

基于智能配电网关键技术的城市配电网规划

基于智能配电网关键技术的城市配电网规划

基于智能配电网关键技术的城市配电网规划
智能配电网是一种基于先进的信息与通信技术的现代化配电系统,可通过智能化控制和管理,提高电能的可靠性、经济性和安全性。

在城市配电网规划中,智能配电网的应用已成为重要的发展方向。

本文将重点介绍智能配电网的关键技术及其在城市配电网规划中的应用。

智能配电网的关键技术之一是传感器技术。

传感器技术能实时监测电网中的电流、电压、功率等参数,通过传感器获取的数据可以用于智能化管理和控制。

在城市配电网规划中,传感器技术可以用于实时监测电网的负荷状态、线路的损耗情况等,为优化配电网络拓扑结构和提高供电可靠性提供数据支持。

智能计量技术也是智能配电网的关键技术之一。

智能计量技术可以实时监测电能的使用情况,并记录有关数据,包括有功功率、无功功率、功率因数等。

这些数据不仅可以用于计费管理,还可以用于负荷预测和负荷管理,通过合理安排电力供应,优化配电网络的运行。

智能保护技术也是智能配电网的关键技术之一。

智能保护技术可以及时检测电网中的故障信息,并对故障进行分析和判断,自动实施保护措施。

在城市配电网规划中,智能保护技术可以预防故障的发生,缩短故障恢复时间,提高电网的可靠性。

智能配电网还需要借助人工智能技术来处理大量的数据和信息。

人工智能技术可以对电网的数据进行智能化分析和处理,以发现潜在的问题和优化电网的运行策略。

在城市配电网规划中,人工智能技术可以用于负荷预测、电网异常检测、优化线路规划等方面,提高电网的性能和可靠性。

智能配电网的关键技术与挑战

智能配电网的关键技术与挑战

智能配电网的关键技术与挑战在当今社会,电力作为支撑经济发展和人民生活的重要能源,其供应的稳定性、可靠性和高效性至关重要。

随着科技的不断进步,智能配电网应运而生,成为了电力领域的重要发展方向。

智能配电网通过融合先进的信息技术、通信技术和电力技术,实现了对电力系统的智能化监控、管理和优化,为用户提供了更加优质、可靠的电力服务。

然而,智能配电网的发展也面临着诸多技术挑战,需要我们不断地探索和创新。

一、智能配电网的关键技术(一)高级量测体系(AMI)高级量测体系是智能配电网的重要组成部分,它包括智能电表、通信网络和数据管理系统等。

智能电表能够实时测量用户的用电量、功率因数等信息,并通过通信网络将这些数据传输到数据管理系统。

数据管理系统对这些数据进行分析和处理,为电力公司提供用户用电行为的详细洞察,从而实现更精准的负荷预测、需求响应管理和电费计量。

(二)分布式能源接入技术随着可再生能源的快速发展,分布式能源如太阳能光伏发电、风力发电等在配电网中的接入比例不断增加。

为了实现分布式能源的高效接入和管理,需要采用先进的电力电子技术、控制策略和保护装置。

例如,通过逆变器将分布式能源产生的直流电转换为交流电,并实现与电网的同步接入;采用智能控制策略,根据电网的负荷情况和分布式能源的出力情况,实时调整分布式能源的输出功率,以保证电网的稳定运行。

(三)智能变电站技术智能变电站是智能配电网的关键节点,它实现了对电力设备的智能化监测、控制和保护。

智能变电站采用先进的传感器、通信技术和智能控制算法,能够实时获取设备的运行状态信息,如温度、压力、绝缘性能等,并对设备进行故障诊断和预测性维护。

同时,智能变电站还具备灵活的拓扑结构和控制功能,能够实现电网的快速重构和自愈控制,提高电网的供电可靠性。

(四)电力通信技术可靠、高速的通信网络是实现智能配电网的基础。

目前,电力通信技术主要包括光纤通信、无线通信和电力线载波通信等。

光纤通信具有传输速度快、容量大、抗干扰性强等优点,适用于骨干通信网络;无线通信如 5G 通信技术,具有部署灵活、覆盖范围广等特点,适用于终端设备的通信;电力线载波通信则利用电力线路作为通信介质,无需额外铺设通信线路,具有成本低、易于实现等优点。

智能配电网及其关键技术

智能配电网及其关键技术

智能配电网及其关键技术摘要:自十九世纪三四十年代的第二次工业革命以来,电力逐渐走进人们生产生活的各个领域,也逐渐成了国家经济发展、工业建设的重要动力来源。

可以说即便人类历史已经在科技革命后进入科技时代,但电力依旧在人民生产生活中占据着重要地位,是国家繁荣富强,百姓安居乐业的重要保障。

我国电力发展的历史远短于英法等老牌资本主义强国,但是自新中国成立后,党和政府就高度重视电力的生产与供应。

特别是在改革开放以后,我国不断加大与其他国家的电力研究交流,相关电力技术与电力研究取得了极大的进步。

进入新世纪后,随着计算机科学技术与网络技术的发展,电力研究领域也引入了相关的科学技术,我国的配电网建设逐渐朝着智能化方向发展,建立起了智能化配电网。

智能化的配电网凭借自愈控制技术、DG并网消纳技术、高级配电自动化技术等先进的配电网技术逐步提升了我国电网的智能化水平,有利于电力企业更好的进行电力的管理与供应,我国电力供应的质量不断得到提高。

本文即鉴于智能配电网对电力管理与运营的重要作用,对智能配电网中所用到的几种关键技术进行简要的分析。

关键词:智能配电网;自愈控制技术; 高级配电自动化; DG并网消纳技术;供电质量;经过建国七十年来的发展与多年的中国特色社会主义建设,我国的经济水平,城市建设取得令世界瞩目的成绩的同时,我国消灭贫穷人口的速度也是为世界所罕见。

数据显示,十九大以来我国贫困人数数量已经降到历史低值我国社会的主要矛盾也发生了变化,人民对于美好生活的向往更加强烈,急切的希望改变目前发展不平衡不充分的情况。

在这一国情下,作为国家建设发展和人民群众生活质量提高的电力保障,电力就更应该做好电网建设,为人民群众与国际建设发展提供高质量的供电。

在电网建设改革的要求下,配电网作为电网中分配电力的重要组成部分,就应该不断的改进配电技术,对电力分配工作进行科学的管理。

而我国作为一个地域辽阔、人口众多的国家,用电情况复杂,且人们对电力供应的要求越来越高,这就给电力分配带来了一定困难。

柔性互联智能配电网关键技术研究进展与展望

柔性互联智能配电网关键技术研究进展与展望

柔性互联智能配电网关键技术研究进展与展望一、概述随着全球能源互联网的构建和可再生能源的大规模开发利用,配电网作为电力系统的末端环节,其重要性日益凸显。

传统的配电网运行方式以固定网络结构和被动管理方式为主,已难以满足现代电力系统的复杂需求。

柔性互联智能配电网技术应运而生,成为推动现代配电网发展的重要力量。

柔性互联智能配电网以其高度的灵活性、智能化和自适应性,为现代配电网的发展提供了新的方向。

通过采用先进的电力电子技术和信息技术,实现配电网的灵活互联、智能控制和优化配置,提高电网运行效率和稳定性,满足日益增长的电力需求。

柔性互联智能配电网关键技术的研究取得了显著进展。

灵活交流输电系统(FACTS)、分布式电源接入与控制、高级量测体系(AMI)以及配电网自动化等关键技术的应用日益广泛,为配电网的升级改造提供了有力支持。

新型柔性配电装备如智能软开关(SOP)、能量路由器等的发展也为配电网的柔性互联提供了更多可能性。

柔性互联智能配电网技术的发展仍面临诸多挑战。

需要进一步优化和完善关键技术,提高其在实际工程中的应用效果和可靠性;另一方面,还需要加强配电网与可再生能源、电动汽车等新兴产业的深度融合,推动电力系统的整体优化和可持续发展。

柔性互联智能配电网技术将继续发挥重要作用,推动现代配电网向更加智能、高效、绿色的方向发展。

随着新技术的不断涌现和应用场景的不断拓展,柔性互联智能配电网将为电力系统的安全稳定运行和可持续发展做出更大贡献。

1. 柔性互联智能配电网的概念与特点柔性互联智能配电网,作为传统配电网的升级与革新,是在原有配电网基础上融入了智能化、信息化、互联网化等先进技术手段的新型电网体系。

其核心概念在于“柔性”与“智能”,即通过柔性互联技术实现配电网的灵活调节与优化配置,同时借助智能化手段提升配电网的运行效率、安全性和可靠性。

柔性互联技术使得配电网具备了更加灵活的调节能力。

通过采用智能软开关、能量路由器等先进设备,实现对配电网中电能流向和功率分配的精准控制,有效应对分布式新能源接入带来的电能波动问题,确保电网的稳定运行。

智能配电系统的关键技术与系统结构

智能配电系统的关键技术与系统结构

智能配电系统的关键技术与系统结构摘要:智能配电系统是智能电网的重要组成部分,具有人性化、智能化等优点,尤其降低了电网运行的管理难度,减少电网管理工作量,是全面建立智能电网的基础。

我国在智能配电网方面的研究及应用起步较晚,与发达国家存在一定的差距。

尤其近年来,我国经济突飞猛进,推广智能配电网系统,扩大智能配电网在电网中的比率势在必行。

关键词:智能配电系统结构;关键技术;研究一、智能配电网系统结构智能配电网系统结构由内部系统、外部系统两大部分组成,其中内部系统是智能配电网的核心部分,主要由通信系统、配电子站系统、配电主站系统构成。

配电主站系统具有决定配电子站系统与通信系统的作用。

而外部系统组成部分相对较多,包括七大分系统:故障报修系统、企业资源管理系统、地理信息系统、负荷管理系统等。

另外,因智能配电系统允许接入分布式电源,具有一定的自愈功能。

智能配电系统整体架构如图1:图1智能配电系统整体架构1.1配电主站系统配电主站系统是智能配电系统的核心,具有较高的管理要求,尤其在进行硬件与软件的选择时应建立在用电区域综合分析的基础上。

如对配电自动化水平要求不高的情况下可适当降低软件系统配置。

1.2配电子站系统配电子站系统的整体结构为模块化设计,独立性强、安全性高,当发生异常时排除难度较母站难度小。

根据相关规范标准配电子站系统应支持所有接线方式,而且隔离故障时应能相互独立,确保固定地区用电质量。

恢复供电应具有互联性特点,并依据供电方案完成故障区域内的正常供电。

通常情况下,配电子站系统包括通信汇集型子站与监控功能型子站,前者实现配电网相关参数的收集,整合后传送给控制终端,后者负责监控配电网运行情况,及时预警电网故障。

1.3通信系统智能配电网中的通信系统具有明显层级关系,不同层级通信系统功能区别较大。

如配电子站系统与配电主站系统之间的通信要求较高,属于通信系统的骨干层。

而配电子站系统之间的通信要求相对低。

构建通信系统时应充分考虑通信的安全性与稳定性,建议不同系统之间的通信使用专网进行,尤其在要求较高的馈线自动化区域,为保证通信质量可使用光纤专网通行。

2024年配电自动化实用化关键技术及其进展(3篇)

2024年配电自动化实用化关键技术及其进展(3篇)

2024年配电自动化实用化关键技术及其进展随着人们对能源需求的不断增长,配电自动化这项技术显得越来越重要。

在配电自动化的发展过程中,一系列关键技术正在不断取得进展。

本文将重点探讨2024年配电自动化实用化的关键技术及其进展。

1. 智能传感器技术智能传感器是配电自动化系统的核心技术之一。

2024年,智能传感器技术将进一步发展,其主要特点是小型化、低功耗和高可靠性。

智能传感器能够实时监测电流、电压、温度等重要参数,并通过无线通信技术与其他设备进行数据交换。

这些传感器还具备自我诊断和自我修复的功能,可以有效提高配电系统的可靠性和安全性。

2. 大数据分析技术随着配电自动化系统的智能化程度不断提高,配电系统产生的数据量也越来越大。

大数据分析技术可以有效地对这些数据进行处理和分析,提取有价值的信息。

2024年,大数据分析技术将在配电自动化中得到广泛应用。

通过对大数据的分析,可以根据用户的需求和能源的供需情况,实时调整配电系统的运行策略,从而提高能源利用效率。

3. 云计算技术云计算技术的发展为配电自动化带来了新的机遇。

2024年,随着云计算技术的成熟和普及,配电自动化系统将能够更好地利用云计算资源,实现数据的共享和协同处理。

通过云计算技术,配电自动化系统可以实现远程监控和控制,提高运行效率和可靠性。

同时,云计算技术还可以为配电系统提供灵活的资源调度和动态扩展能力,适应不断变化的能源需求。

4. 物联网技术物联网技术能够将各种设备和传感器连接起来,并实现智能化的数据交换和资源管理。

2024年,物联网技术将在配电自动化中得到广泛应用。

通过物联网技术,配电自动化系统可以实现设备的智能监控和故障诊断,提高系统的可靠性和安全性。

同时,物联网技术还可以实现设备之间的协同工作,提高配电系统的运行效率和能源利用效率。

5. 虚拟现实与增强现实技术虚拟现实与增强现实技术可以为配电自动化系统提供更直观、更直观的操作界面。

通过虚拟现实与增强现实技术,操作人员可以更方便地对配电系统进行监控和控制,提高操作的准确性和效率。

智能配电网关键技术

智能配电网关键技术

未来展望
随着科技的不断进步,智能配电网关键技术的发展前景广阔。在未来,智能配 电网将更加注重与各类技术的融合创新,如5G通信、物联网、人工智能等,实 现更高效、更安全、更智能的运行。同时,智能配电网将积极参与电力市场的 运营,通过市场机制实现能源资源的优化配置。此外,智能配电网还将大力推 动绿色发展,通过优化能源结构、提高能源利用效率等方式,助力实现碳中和 目标。
智能配电网是指通过应用先进的传感器、通信、计算机等技术的配电网络系统。 相较于传统配电网,智能配电网具有自动化、互动化、信息化等优势,能够更 好地满足用户对于电力供应的需求。同时,智能配电网还可以实现对于分布式 能源、储能系统的有机整合,提高能源的利用效率。
在智能配电网中,分布式控制技术可以应用于多个领域。其中,智能家居和智 慧城市是两个重要的应用领域。在智能家居领域,分布式控制技术可以实现对 于家庭用电设备的智能控制,提高家居的舒适度和节能效果。在智慧城市领域, 分布式控制技术可以应用于城市照明、交通信号控制等领域,提高城市的智能 化水平和能源利用效率。
(1)电流传感器:用于监测配电网的电流情况,为系统的稳定运行提供保障。 (2)电压传感器:用于监测配电网的电压情况,保证电能质量符合标准。
(3)温度传感器:用于监测配电设备的温度,及时发现设备异常。 (4)环境传感器:用于监测配电网所在的环境参数,如温度、湿度、气压等。
2、通信技术
通信技术在智能配电网中发挥着信息传递和交互的关键作用。在智能配电网中, 常见的通信技术包括:
(1)有线通信:利用光纤、双绞线等有线介质进行通信,具有传输速率快、 稳定性高的优点。
(2)无线通信:利用无线电波进行通信,包括Zigbee、LoRa、NB-IoT等低功 耗广域网(LPWAN)技术。

智能配电网关键技术在电网规划中的应用

智能配电网关键技术在电网规划中的应用

智能配电网关键技术在电网规划中的应用摘要:随着我国智能化技术的快速发展,智能配电网技术快速的在电网规划中应用,以保障城市配网安全,提高城市配网整体性能。

研究表明,为了增加供电等级并缩短城市配网停电时间,避免城市配网在正常运行过程中发生意外事故,城市配网建设人员必须根据本地区情况合理运用智能配网技术,并科学合理地进行城市配网建设。

关键词:智能配电网技术;电网规划;应用引言随着城市化进程的加速,城市电力系统的规模和复杂性都在不断增加。

传统的配电网已经难以满足城市的电力需求,因为它们面临许多挑战,如负荷增长、配电网老化、可再生能源的接入、电力质量保证以及电网安全等。

为了解决这些问题,配电网规划已经成为了城市发展的重要组成部分。

智能配电网,作为现代电力系统的重要组成部分,正在逐渐改变我们对配电网规划和运行的理解。

智能配电网利用先进的信息通信技术、传感器技术、数据分析以及人工智能等技术,实现了配电网的实时监控、故障快速定位和服务恢复,从而提高了电力系统的运行效率和可靠性。

1智能配电网概述智能配电网是一项高度集成的新兴网络,依托高速双向通信网络、先进数字技术,将物理电网、传感测量技术、通信技术、信息化技术、控制技术、设备互动技术、决策支持系统技术、计算机技术集成在一起。

智能配电网是智能电网的重要组成部分,包括三个部分,即智能表计、智能网络、智能运行。

其中,智能表计起到的作用是利用高级量测体系,在网络中对数据进行测量、收集、存储、分析、双向传输,赋予系统可观性,为实现电网智能化打好基础。

从智能网络的层面来说,其他形式的智能能源网将是其未来发展趋势。

智能表计获取到的量测数据为智能运行提供了计算、分析的功能支持。

智能决策用于统一控制智能配电网,以此来增强系统运行的安全性,促使运行效率得到进一步优化,切实满足个性化的商业需求。

智能运行是智能配电网的核心部分,技术难度较大,所以输电网、配电网二者的功能需求存在差异,智能配电网可以通过与用户互动的方式,衍生出诸多全新产品、配套服务,能够产生极大的商业价值。

2024年智能电网

2024年智能电网

智能电网智能电网:迈向未来电力系统的关键技术随着全球能源需求的不断增长和环境保护的日益重视,传统的电力系统正面临着巨大的挑战。

为了应对这些挑战,智能电网作为一种新兴的电力系统,正逐渐成为电力行业的重要发展趋势。

本文将详细介绍智能电网的概念、关键技术及其在我国的应用现状和前景。

一、智能电网的概念智能电网,又称智能电力系统,是指利用现代信息技术、通信技术、自动控制技术、传感器技术等手段,对电力系统的各个环节进行智能化升级和优化,实现电力系统的安全、高效、清洁、互动和自愈能力。

智能电网不仅包括传统的发电、输电、变电、配电和用电等环节,还包括了能源管理、信息通信、用户互动等多个方面。

二、智能电网的关键技术1.信息化技术:智能电网通过信息化技术实现电力系统各个环节的信息采集、传输、处理和应用,为电力系统的运行和管理提供数据支持。

信息化技术包括传感器技术、通信技术、数据处理技术等。

2.自动化技术:智能电网通过自动化技术实现电力系统的自动化运行和调度,提高电力系统的运行效率和可靠性。

自动化技术包括自动发电控制、自动电压控制、自动负荷控制等。

3.互动化技术:智能电网通过互动化技术实现电力系统与用户之间的信息互动和能量互动,促进电力系统的供需平衡和能源利用效率。

互动化技术包括需求响应、分布式发电、电动汽车等。

4.自愈化技术:智能电网通过自愈化技术实现电力系统的自我检测、自我诊断和自我恢复,提高电力系统的抗干扰能力和可靠性。

自愈化技术包括故障检测、故障隔离、故障恢复等。

三、我国智能电网的应用现状和前景1.应用现状:我国智能电网建设已经取得了显著成果。

在发电环节,我国已经建成了世界上最大的风电和太阳能发电基地;在输电环节,我国已经建成了世界上电压等级最高、输送容量最大的特高压输电线路;在配电环节,我国已经实现了配电网的自动化运行和调度;在用电环节,我国已经推广了智能电表和智能家居等应用。

2.前景展望:未来,我国智能电网将继续向更高水平发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智能配电网建设及其关键技术
智能配电网主要由主站系统、子站系统、通信系统、配电远方终端组成,通过对配电网各个环节、模块和设备的智能化,同时结合地理信息系统应用,实现正常情况下配电网与电力系统各个环节的协调和优化运行以及故障情况下的快速定位、隔离、恢复、负荷转移等功能,从而为用户提供优质可靠的电能,为电力企业提供便捷、高效的管理平台和途径,进而实现电力企业管理者、电力用户、系统运行操作的协调和统一。

标签:智能配电网;建设;关键技术
前言:
智能配网作为重要的现代化网络系统,实际运行中发挥着非常重要的作用,同传统电网相比,智能配网体现出多方面的优势功能,得益于多重技术的支持,配网能够高效、安全、持续地运转,提高供电服务水平,确保用户安全用电。

基于此,本文从智能电网概述入手,并对建设智能配电网的作用与意义进行了总结,昀后对智能配电网建设的关键技术进行了分析,一起为我国智能配电网的发展起到一定的推动作用。

1.智能电网概述
智能配网是在智能化技术的支持下逐渐形成的配网系统,内部包括以下系统:主站与子站系统、通信系统、配网远程终端等。

凭借对配网不同环节、模块以及设备等的智能化优化,再配合GIS技术,达到配网同电力系统不同环节之间的协作配合,不断地优化配网的运行,当配网系统出现故障问题时,能够高效、及时地锁定故障位置,并及时隔离、解除故障,以此为基础来为用户供应高质量的供电服务。

能够昀大程度地实现用户,供电企业与智能配网系统间的协作。

2.建设智能配电网的作用与意义
我国智能电网建成后,将形成结构性较强电网,其电力承载能力显著加强,形成“强交、强直”的特高压输电网络,实现大水电、大煤电、大核电、大规模可再生能源的跨区域、远距离、容量、低损耗、高效率输送,区域间电力交换能力明显提升。

电网的安全稳定性和供电可靠性将大幅提升,电网各级防线之间紧密协调,具备抵御突发性事件和严重故障的能力,能够有效避免大范围连锁故障的发生,显著提高供电可靠性,减少停电损失。

全面建成横向集成、纵向贯通的智能电网调度技术支持系统,实现电网在线智能分析、预警和决策,以及各类新型发输电技术设备的高效调控和交直流混合电网的精益化控制。

实现电网设施全寿命周期内的统筹管理。

通过智能电网调度和需求侧管理,电网资产利用小时数大幅提升,电网资产利用效率显著提高。

实现电力用户与电网之间的便捷互动:将形成智能用电互动平台,完善需求侧管理,为用户提供优质的电力服务。

同时,电网可综合利用分布式电源、智能电能表、分时电价政策以及电动汽车充放电机
制,有效平衡電网负荷,降低负荷峰谷差,减少电网及电源建设成本。

建设智能电网,有利于促进装备制造和通信信息等行业的技术升级,为我国占领世界电力装备制造领域的制高点奠定基础。

智能配电网建设的关键技术
1配电网结构及运行研究
1.1结构方面
首先,在分析制约配电网智能化的政策及技术因素基础上,规划配电网走向智能的策略与步骤,其中,需要结合经济、环境、技术等约束,分析系统长期供需状况,目的是确保资金投入和新产品、技术有序进入,并考虑如何构建基于互联网的电子商务式的未来电网;其次,进行分散电源规划研究,包括准入条件(地点、费用)分析,采用含成本、可靠性等多种因素的多目标规划技术进行投资规划及其影响因子分析,含有分散电源的配电网新型潮流、GIS及可靠性分析,分散电源运行管理、风险及DR对运行影响分析等。

3.1.2运行方面
为实现完美电力目标,支持系统应包含自动仪表测量、用户用电管理、配电网运营优化、设备故障预测、停电管理及恢复、峰荷管理等功能模块。

2分散电源、分布存储及DR研究
2.1DR市场建设
首先,提出包括智能仪表、智能电器、智能楼宇、分散电源、分布存储、热电联产、市场交易平台、用户管理、用户分析及决策、数据管理、结算及账单管理、争议处理、通讯等各种要素在内的DR技术标准;其次,针对不同用户,分别确定参与DR的运作模式、容量以及评价体系;昀后,应适时建设示范小区。

3.2.2分布存储设备设计
首先,需确定它与电网间的接口,包括安装地点、数据流及其控制、管理系统;其次,进行技术与经济性分析,并实施现场测试;昀后,需研究存储设备提供辅助服务的能力及其实时性能。

值得一提的是,电动汽车近年来得到广泛应用,它一般选择在负荷低谷时段进行快速充电,这类负荷十分分散,且随机性强,如果大量存在,将对电网的控制及电能质量带来新的挑战,同时,它也是一个移动电源,用户可以选择在负荷高峰,实时电价高的时段向电网注入多余电能以获取利润,这对未来市场的运行也必将产生巨大的影响,以上两方面的问题都需要做深入研究。

3.2.3智能仪表选择
DR离不开间断式测量且提供双向信息服务的自动智能仪表及其开放式管理系统,需要定义其通讯网关、系统原型、数据格式与功能模块。

此外,众多智能仪表的产品供应商多来自IT领域,其更新换代速度快,会带来相互间不兼容、系统更换频繁的问题,需要采取统一模型和标准以及模块化设计生产等措施。

3.2.4运行分析
一是能根据电价及天气情况实时预测分散电源的电量输出;二是在市场环境下,进行包括随机潮流及短路电流等在内的稳态分析;三是考虑分散电源运行间断性的经济调度和机组组合;四是包括分散电源、DR用户、分布存储设备、电力电子元件及其控制系统的暂态时域及频域分析,以确保系统运行的安全可靠;昀后,由于分散电源通常由电力电子元件接入电网,因此,需要研究电力电子设备及通讯系统的可用性及其可能的运行模式。

3.2.5开发基于分散电源、DR用户、分布存储设备
等元素在内的新型能量管理系统。

这需要有崭新的理念、工具和技术保证手段,重点是研究如何利用这些元素建立自愈网络、如何利用远方控制协调这些分散元素以及如何确保电网电能质量等。

3.3配电设备优化管理
首先,研究设备实时状态监视及诊断的高级模型、算法与工具;其次,从可靠性、电能质量、网络支撑等方面进行设备管理风险及社会、经济效益分析;再次,大力研究如何应用新型导体及绝缘材料提高线路热极限,如何更好地实现网间互联,如何进一步发挥超导等在控制潮流和预防阻塞方面的作用,如何充分应用可视化系统、安全限制下的昀优潮流等分析工具,使配电设备更具使用效率。

3.4不同类型能源间的相互作用研究
除电力外,还包括天然气、供热、水等其他形式的能源系统,它们相互作用,需要建立互联模型,并进行规划及运行层面上的全局优化,以减少彼此冗余度,进而提高整体效率,达到技术、经济、环境上的昀佳状态。

结束语
综上所述,智能配电网是建设有中国特色坚强智能电网的重要组成部分,同时也是应对我国未来能源危机、环境污染、气候变化等问题的重要措施,是提升配电网运营指标、提高配电自动化水平、解决分布式电源大量接入对电网造成的负面影响、增强用户与电网的互动能力及电网的运掌控能力的有效手段。

参考文献
[1]何光宇,孙英云,梅生伟.多指标自趋优的智能电网[J].电力系统自动化,2009,33(17):1-5.
[2]常康,薛峰,杨卫东.中国智能电网基本特征及其技术进展评述[J].电力系统自动化,2009,33(17):10-15.
[3]李振杰,袁越.智能微网―未来智能配电网新的组织形式[J].电力系统自动化,2009,33(17):42-48.。

相关文档
最新文档