风力发电机组选型方案选择分解
新能源发电工程中的风力发电机组组件选型指南

新能源发电工程中的风力发电机组组件选型指南风力发电是一种利用风能将其转化为电能的可再生能源技术。
随着全球对于可再生能源的需求不断增加,风力发电作为一种清洁、可持续的能源形式,受到了越来越多的关注和应用。
在新能源发电工程中,选择合适的风力发电机组组件至关重要,不仅关系到发电效率和系统可靠性,还直接影响到项目的经济效益。
本文将为您提供一份风力发电机组组件选型指南,以帮助您在新能源发电工程中做出明智的选择。
1. 风力发电机组组件的种类在风力发电系统中,常见的组件包括风轮、塔筒、机舱和变桨系统等。
在选型过程中,需要考虑以下几个方面:- 风轮:风轮是风力发电机组的核心部件,主要负责将风能转化为机械能。
在选择风轮时,需要考虑其直径、材质、质量、叶片数量等参数。
通常情况下,直径越大、材质越轻、质量越均衡的风轮,能够更有效地转化风能,并提高整个系统的发电效率。
- 塔筒:塔筒是风力发电机组的支撑结构,需要选择合适的材质和高度。
一般来说,塔筒的高度越高,能够获取的风能就越多,但也需要考虑到制造成本、施工难度等因素。
- 机舱:机舱是风力发电机组的核心部件,内部包含了发电机、变速器、控制系统等设备。
在选型时,需要考虑这些设备的性能、可靠性和维护成本等因素。
同时,也需要关注机舱的外观设计和整体尺寸,以便于安装和维护。
- 变桨系统:变桨系统用于调整叶片的角度,以适应风力的变化。
在选型时,需要选择可靠的变桨系统,并考虑其响应速度、精度和控制策略等因素。
此外,也需要考虑变桨系统的维护成本和可靠性。
2. 选型指南在选型过程中,需要综合考虑以下几个因素:- 地理环境:不同地区的风力资源、气候条件和地形地貌等因素会对风力发电机组的性能和选择产生影响。
因此,需要对目标工程的地理环境进行充分了解,并选择适合的机组组件进行匹配。
- 发电需求:根据项目的发电需求来选择机组组件。
例如,如果需要大量的发电量,则可以选择具有较大直径的风轮和较高的塔筒。
风力发电机组电机选型及效率分析

风力发电机组电机选型及效率分析风力发电机组是一种利用风能转换为电能的设备,其中的关键部件之一就是电机。
在风力发电机组中,电机的选型和效率具有至关重要的作用。
本文将就风力发电机组电机选型及效率进行分析。
一、电机选型在选择风力发电机组的电机时,需要考虑以下几个关键因素:1. 功率大小:根据风力发电机组的功率需求,选择合适的电机功率大小。
电机功率需与整个系统的设计功率匹配,过大或过小都会影响系统的性能。
2. 转速匹配:风力发电机组的转子转速与电机的转速需匹配,以确保电机能够正常工作并实现高效转换风能。
3. 高效率:选择高效率的电机可以减少能源损耗,提高系统的整体效率。
4. 质量可靠:选用质量可靠的电机可以降低日常维护和故障率,延长系统的使用寿命。
综合考虑以上因素,可以选择具有适当功率、转速匹配、高效率和质量可靠的电机作为风力发电机组的关键组成部分。
二、电机效率分析电机的效率是指输入电能与输出机械功的比值,是评价电机能量转换效率的重要指标。
对于风力发电机组的电机来说,效率的高低直接影响着系统的整体性能。
1. 提高效率的途径:(1)选用高效率电机:选择高效率的电机能够减少能源损耗,提高系统的转换效率。
(2)降低转速损失:减少电机转速过高导致的机械损耗,可以提高系统的效率。
(3)优化匹配:电机与风力发电机组的其他部件之间的匹配要合理,避免能量损失,提高系统的整体效率。
2. 电机效率测试与分析:(1)静态测试:通过负载测试等方法,对电机的效率进行静态测试,得到电机在不同负载下的效率曲线。
(2)动态测试:通过监测电机在实际运行中的效率表现,结合实际数据分析,可以对电机的效率进行动态测试和分析。
(3)优化调整:根据效率测试结果,对电机参数进行优化调整,提高电机效率和系统的整体性能。
通过电机选型的合理选择和效率分析的测试与优化,可以提高风力发电机组的整体性能,实现更高效的能源转换和利用,为清洁能源发展做出贡献。
风力发电机组选型与性能分析

风力发电机组选型与性能分析随着科技的不断发展和环境保护意识的提高,可再生能源发电逐渐成为解决能源需求和减少碳排放的重要途径之一。
风力发电作为可再生能源的重要组成部分,具有清洁、环保、可持续等特点,得到了广泛的关注和应用。
本文将对风力发电机组的选型与性能进行分析,为相关研究和应用提供参考。
一、选型要素在选择适合的风力发电机组之前,需要考虑以下几个重要要素:1. 风能资源:风能资源是风力发电的基础,对机组选型有着重要的影响。
一般来说,风能资源丰富的地区更适合安装大型风力发电机组,而风能资源较弱的地区则应选择小型或中型机组。
2. 功率需求:根据发电需求和电网接受能力,选择适当的机组功率。
过大的机组可能无法充分利用风资源,而过小的机组则无法满足发电需求。
3. 地理条件:包括地形、气候等因素。
复杂的地形和恶劣的气候条件会对机组选型产生重要影响,需要选择抗风、抗腐蚀等性能良好的机组。
4. 经济性:机组的选型还需要考虑投资成本、运维成本以及发电收益等经济性因素。
经济性评估可以通过计算投资回收期、内部收益率等指标来综合考虑。
二、机组类型风力发电机组可以分为水平轴风力发电机组和垂直轴风力发电机组两大类。
1. 水平轴风力发电机组:水平轴风力发电机组是目前应用最广泛的风力发电机组类型。
根据叶片数目的不同,水平轴风力发电机组又可分为单叶片、双叶片和多叶片机组。
该类型机组结构简单、转速恒定,利用高效气动外形设计和智能控制系统,能够更好地适应风能资源的变化。
2. 垂直轴风力发电机组:垂直轴风力发电机组的叶片安装在垂直方向上,相对于水平轴机组具有更大的进风角度范围,因此适应性更强。
垂直轴机组通常由直升机翼型和椭圆翼型组成,能够更好地抵抗强风和恶劣气候条件的影响。
三、性能分析风力发电机组的性能主要包括转速特性、输出功率特性、启动速度、阵风适应性等。
1. 转速特性:转速特性是描述风力发电机组输出功率与转速之间关系的重要指标。
转速特性曲线的陡峭程度与发电机组对风能变化的适应性有关,通常希望机组在较宽的转速范围内输出稳定的功率。
风力发电机组选型方法及流程分析

风力发电机组选型方法及流程分析
风机选型要结合当地风能资源、气候特征、地形条件、地貌特征等,选择性价比最高的机型,使风电场在全寿命期内发电量最优,效益最好。
在技术先进、运行可靠的前提下,选择经济上切实可行的风力发电机组,需要根据风场的风能资源状况和所选的风力发电机组,测算风场的年发电量,选择综合指标最佳的风力发电机组。
1.机型选择的原则
选择适用安全等级机组
表中:各种参数值是指轮毂高度的数值
vref:表示50 年一遇参考风速10 分钟平均值,我们通常称最大风
速。
A:表示较高湍流强度特征值
B:表示中等湍流强度特征值
C:表示较低湍流强度特征值
选择可靠机组
设计可靠性,制造可靠性,运维的可靠性
1)设计及设计计算,是否标准,如性能计算,载荷计算,疲劳寿命等,通常应有设计认证证书。
2)制造工艺,产品试验。
尤其是静动试验结果通常要有产品认证证书。
风电机组选型

5 风电机组选型、布置及风电场发电量估算5.1 风电机组选型5.1.1 单机容量范围及方案的拟定5.1.1.1 风电机组发电机类型的确定风电场机型选择应考虑适合风电场场址的风资源条件,有利于提高风电场的发电效益。
随着国内外风力发电设备制造技术日趋成熟,针对不同区域风资源条件,各风机设备制造厂家已经开发出不同结构型式、不同控制调节方式的风力发电机组可供选择。
按照IEC61400-1标准(风电机组设计要求),风电场机组按50年一遇极大风速可分为I、II、III三个标准等级,每个等级按15m/s风速区间的湍流强度可分为A、B、C三个标准等级,为特殊风况和外部条件设计的为S级。
因此,根据怀宁风电场场址的地形、交通运输情况、风资源条件和风况特征,结合国内外商品化风电机组的制造水平、技术成熟程度以及风电机组本地化率的要求,进行风电场机组型式选择。
风力发电机组选型应考虑的几种因素(1) 风电机组应满足一定的安全等级要求表5.1.1.1-1 IEC61400-1各等级WTGS基本参数上表中各数据应用于轮毂高度,其中V ref为10min平均参考风速,A 表示较高湍流特性,B表示中等湍流特性,C表示较低湍流特性,Iref为湍流强度15m/s时的特性。
在轮毂高度处,15m/s风速区间的湍流强度值不大于0.12,极大风速为28.2m/s。
根据国际电工协会IEC61400-1(2005)标准判定本风电场工程70~90m轮毂高度适宜选择IECⅢC及以上等级的风力发电机组。
(2) 风轮输出功率控制方式风轮输出功率控制方式分为失速调节和变桨距调节两种。
两种控制方式各有利弊,各自适应不同的运行环境和运行要求。
从目前市场情况看,采用变桨距调节方式的风电机组居多。
(3) 风电机组的运行方式风电机组的运行方式分为变速运行与恒速运行。
恒速运行的风力机的好处是控制简单,可靠性好。
缺点是由于转速基本恒定,而风速经常变化,因此风力发电机组经常工作在风能利用系数(Cp)较低的点上,风能得不到充分利用。
风力发电机组选型方案选择

机型选择方法
不同高度的年平均风速、平均风功率密度表 轮毂高度 年平均风速 平均风功率密度 50年一遇极大风速
60m 7.27m/s 372W/m2 47.4m/s
61.5m 7.31m/s 377W/m2 47.4m/s
65m 7.32m/s 380W/m2 47.4m/s
理论产量的修正
理论产量是理想条件下的产量,计算实际产量时需对理论产
量进行修正
修正时考虑的因素: 1.风机排布的尾流影响;
2.空气湍流强的影响
3.空气密度对产量的影响; 4.风电机组可利用率的影响;
5.风电机组叶片污染对气动性能的影响场内输变电线路的线
损及场用电
实际上网电量计算
综合折减系数=空气密度折减系数×(1-尾流折减
系数)×(1-湍流折减系数) ×(1-叶片污染折
减系数)× (1-场用电及线损率)×风电机组可利 用率 实际产量=理论产量×综合折减系数
机型选择方法
5.根据市场成熟的商品化风电机组技术规格,结合风电 机组本地化率的要求进行选择。
对单机容量为850KW以上的风电机组进行初选。初选
的机型有Vestas公司的V52/850KW、华锐风电科技公 司的SL1500KW、东方电汽的FD77A /1500KW、湘潭 电机的Z72/2000KW风机。机型特征参数如下:
机型选择方法
该风场风功率等级为3级,风能资源丰富,年有效风
速(3.0m/s-20.0m/s)时数为7893h,占全年的90.1%,
11m/s-20m/s时数为1663h,占全年的18.65%,<3m/s的 时段占全年的8.80%,>20m/s的时段占全年的0.086%,有 效风速时段长,无效风速时段较短,全年均可发电,无破坏性 风速。
基于风力资源评估的风力发电机组选型与配置策略

基于风力资源评估的风力发电机组选型与配置策略风能是一种清洁、可再生的能源形式,广泛应用于风力发电系统中。
为了充分利用风能资源,确保风力发电机组的高效运行和长期可靠性,风力资源评估是非常重要的。
本文将介绍基于风力资源评估的风力发电机组的选型与配置策略,以帮助您更好地了解如何选择适合的风力发电机组。
首先,进行风力资源评估是选择合适的风力发电机组的基础。
在评估中,需要考虑以下几个关键因素:1. 风力资源的测量与分析:通过安装风速测量设备,对区域内的风力资源进行实时监测和数据采集。
通过对数据的统计分析,确定平均风速、风向变化等参数,评估该地区的风能资源潜力。
2. 地形因素的影响:地形对风力资源的分布和利用有重要影响。
通过数值模型或实地观测,分析地形起伏、地表覆盖等因素对风力资源的影响,并结合地形因素进行风力发电机组选址。
3. 潜在风力发电机组容量的确定:根据风能资源评估结果,结合电网需求和投资预算,确定所需的风力发电机组容量。
这将决定选型的关键参数,如机组风轮直径、额定功率等。
在了解风力资源的基础上,接下来是风力发电机组的选型与配置策略。
以下是一些建议:1. 选择适当的风力发电技术:根据风能资源和现有技术,选择合适的风力发电技术。
常见的技术包括水平轴风力发电机组和垂直轴风力发电机组。
水平轴风力发电机组在市场上更为成熟和广泛应用,但垂直轴风力发电机组在特定环境下可能有优势。
2. 确定风力发电机组布局:风力发电机组的布局对发电效率和运行可靠性至关重要。
要考虑机组之间的最佳距离,以避免阻挡风能资源,同时优化发电效率。
3. 考虑环境条件对选型的影响:根据安装地的环境条件,如气温、海拔等,选择适合的风力发电机组。
高温和高海拔环境下,机组的风冷系统和散热系统需要特别考虑。
4. 关注风力发电机组的可靠性和维护成本:选型时需考虑风力发电机组的可靠性和维护成本。
经过对多种机型的评估和比较,选择具有较高可靠性和较低维护成本的机组。
风力发电机组选型

■ 型式认证 ❏ 通过设计评估、型式试验、生产质量控制审核等工作,就新型号的风力 发电设备对规范、标准的符合性进行评价 ❏ 目的是确认风力发电机组是按设计条件、指定标准和其它技术要求进行 设计、验证和制造的,证明风力发电机组是可以按照设计文件要求进行 安装、运行和维护的
■ 项目认证 ❏ 目的是评估已通过型式认证的风力发电机组和对应的塔基设计是否能与 外界条件、可适用的构造物和电力参数适应,以及是否满足与指定场地 有关的其它要求 ❏ 认证机构应评估场地的风资源条件、其它环境条件、电网条件以及土壤 特性是否和风力发电机组设计文件和塔架设计文件中确定的参数相一致
❏ 我国风电场多处于大电网的末端,拟选风力发 电机组的电能质量和电气运行参数应尽量与电 网条件相匹配,如电压波动、频率波动、三相 不平衡、低电压穿越能力、无功补偿要求等, 以保证机组不会因为电网的原因停机造成电量 损失
选型的方法步骤
■ 1、根据交通运输条件和安装条件,结合 当前市场的主流,确定单机容量的范围
■ 能否合理地进行风力发电机组的选型将直接决定风电场的发 电量以及项目在整个运行期(一般为20年)的经济效益
选型的基本原则
■1、质量认证
❏ 最重要的一个方面,保证机组正常运行及维护最根本的保障体系 ❏ 风力发电机组制造都必须具备ISO9000系列的质量保证体系的认 证
❏ Germanischer Lloyd Wind Wnergie GmbH(简称GL)于1986 年出台了第一套针对风力发电机组的设计准则并随后进行了几次补充 和完善 ❏ 国际电工委员会(IEC)于1994年出版了《风力发电机组——第 一部分 安全要求》(IEC61400-1),此后IEC又先后出台了多个 IEC61400标准,对涉及风力发电的11个不同领域进行了规范 ❏ DNV(挪威船级社)、Lloyd、Risoe、德国风能研究所、荷兰能 源研究中心等,国内的中国船级社(CCS)也已组织建立了中国的风 电质量认证体系
论风电场风力发电机组选型

论风电场风力发电机组选型摘要:风电场建设中风力发电机组设备的投资在建设投资中占有相当大的比重,因此,风力发电机组选型是风电场建设至关重要的问题。
风力发电机组选型的合适与否直接关系到项目的投资效益,甚至关系到项目投资的成败。
因此,优选出技术经济条件最好的风力发电机组是构成一个优秀风电场的基础。
关键词:风力发电机组;选型;技术经济目前风电场风力发电机组选型的思路和步骤大致如下:第一,根据风电场主要风况参数,确定风电机组安全等级;第二,根据风电机组安全等级、机型成熟度、单机容量等,初步选定若干机型;第三,进行不同风电机组生产企业、不同单机容量的技术经济比选,最终确定适宜机型;第四,针对选定机型,进行不同轮毂高度比选,确定最佳轮毂高度。
1确定风电机组安全等级如果风电机组安全等级确定过高,会造成风能资源利用的浪费,而如果定的过低,则会影响风电机组的安全和寿命。
风电机组安全等级主要通过分析平均风速、50年一遇10min最大风速、湍流强度三项参数来确定。
(1)年平均风速年平均风速的大小将主要影响风力发电机组的疲劳载荷。
机组选型时,应采用多个软件进行风电场的风速模拟,并进行相互对比;同时,在补图和多塔利用的基础上,考虑周围风电场的风机点位,将其加入模型中进行计算,来综合确定风电场各机位处的风速大小。
(2)50年一遇10min最大风速受极端气候因素影响,有些年份会出现极端风况,其风速远远大于正常的风速,将可能带来破坏性影响。
在风力发电机组选型过程中,最大风速是必须考虑的因素。
首先,我们根据测风塔实测数据,通过采用相应方法,推算出了各测风塔处高层的50年一遇最大或极大风速,从而对整个风电场的极端风速有一个整体掌握。
测风塔处50年一遇最大风速计算主要采用以下方法:a.采用附近气象站的长期历年最大风速资料进行频率计算,并通过风电场现场实测资料与气象站资料的相关关系推算风电场的50年一遇最大或极大风速。
b.利用WindPRO进行50年一遇极大风速计算。
低风速风力发电机组选型导则

低风速风力发电机组选型导则低风速风力发电机组选型导则随着可再生能源的发展,风力发电作为其中的重要组成部分,在全球范围内得到了广泛应用。
然而,传统的风力发电机组往往需要较高的风速才能有效发电,这限制了其在低风速地区的应用。
为了克服这一限制,低风速风力发电机组应运而生。
低风速风力发电机组是专门设计用于在风速较低的地区进行发电的设备。
它们在设计上具有一些独特的特点,可以充分利用低风速下的风能资源进行发电。
下面是一些选型导则,可帮助您选择适合低风速地区的风力发电机组。
1. 风速范围:选择适合低风速地区的风力发电机组时,首先要考虑其适用的风速范围。
一般来说,低风速风力发电机组适用于风速在2-4米/秒的地区。
因此,在选型过程中,要确保机组能够在这个风速范围内高效发电。
2. 功率输出:除了风速范围,还需考虑风力发电机组的功率输出。
根据实际需求,选择合适的功率输出,以满足所需的电力供应。
3. 耐风性能:由于低风速地区往往伴随着较弱的风力,所以选择耐风性能较好的风力发电机组非常重要。
确保机组在恶劣天气条件下仍能正常运行,提高发电效率和设备的可靠性。
4. 噪音水平:低风速地区往往与人口密集的地方相邻,因此,选择噪音水平较低的风力发电机组可以减少对周围居民的干扰,避免引发争议。
5. 维护和保养:考虑到低风速风力发电机组在设计上的特点,选择易于维护和保养的机组也是很重要的。
简化设备维护过程可以降低运营成本,延长机组寿命。
6. 成本效益:最后,要综合考虑机组的成本效益。
除了机组的购买成本外,还要考虑其运营和维护成本,以确保选择的机组能够在长期运行中实现良好的经济效益。
综上所述,低风速风力发电机组选型时需要考虑风速范围、功率输出、耐风性能、噪音水平、维护和保养以及成本效益等因素。
通过合理选择适合低风速地区的风力发电机组,可以充分利用低风速下的风能资源,实现可持续的能源供应。
低风速风力发电机组选型导则

低风速风力发电机组选型导则一、引言低风速风力发电机组的选型是确保发电系统高效运行的关键步骤。
在选择适合低风速条件下使用的风力发电机组时,需要考虑多种因素,如风机的额定功率、转子直径、切入风速、发电机效率等。
本文将探讨低风速风力发电机组的选型导则。
二、低风速风力发电机组的特点低风速风力发电机组与传统风力发电机组相比,主要具有以下特点: - 適性強:适用于低风速地区,发电能力高于传统风力发电机组; - 音级低:低风速风力发电机组通常噪音较小,不会对周边环境和居民生活造成过多干扰; - 维护成本低:低风速风力发电机组通常具有较长的使用寿命和稳定的性能,其维修和保养成本相对较低; - 可靠性强:低风速风力发电机组通常采用先进的技术和材料,具有较高的可靠性和抗风能力。
三、低风速风力发电机组的选型指南在选型低风速风力发电机组时,可以根据以下几个方面进行评估和决策:1. 风机额定功率风机额定功率是选择低风速风力发电机组的关键指标。
在低风速条件下,发电机组的额定功率应足够高,以保证发电效率和产量。
根据实际需求和风能资源的特点,选择适合的额定功率。
2. 转子直径转子直径是影响低风速风力发电机组发电能力的重要因素。
较大的转子直径可以增加风机的截面积,提高碰到风能的可能性。
根据实际情况选择转子直径,以确保发电机组在低风速条件下能够获得更多的风能。
3. 切入风速切入风速是指风力发电机组开始发电的最低风速。
在低风速地区,选择具有较低切入风速的风力发电机组很重要,以确保在较弱的风能条件下也能够开始发电。
4. 发电机效率发电机效率是评价低风速风力发电机组性能的关键指标。
高效的发电机能够将风能转化为电能的比例提高,增加发电量。
在选型时,应选择具有较高发电机效率的风力发电机组。
5. 风机控制系统风机控制系统是保证低风速风力发电机组安全运行的重要组成部分。
选择具有先进、智能化风机控制系统的风力发电机组,能够提高发电系统的稳定性和安全性。
风电机组结构及选型

第一节风电机组结构1.外部条件根据最大抗风能力和工作环境的恶劣程度,按强度变化的程度对风电机组进行分级。
根据IEC61400设计标准,共分为4级。
一类风场I:参考风速为50m/s,年平均风速为10m/s,50年一遇极限风速为70m/s,一年一遇极限风速为52.5m/s;二类风场II:参考风速为42.5m/s,年平均风速为8.5m/s,50年一遇极限风速为59.5m/s,一年一遇极限风速为44.6m/s;三类风场III:参考风速为37.5m/s,年平均风速为7.5m/s,50年一遇极限风速为52.5m/s,一年一遇极限风速为39.4m/s;四类风场IV:低于三类风场风速,属低风速区,鲜有商业风电场开发。
对电网的要求:电压波动为额定值±10%,频率波动为额定值±5%。
2.机械结构2.1总体描述整机是建立在钢结构底座上,该结构应具有很大的强韧度,底部由坚固底法兰组成,风电机组所有的主要部件都连接于其上。
发电机固定位置与机舱轴线偏离,以使得风电机组在满载运行时,整机质心与塔架和基础中心相一致。
偏航机构直接安装在机舱底部,机舱通过偏航轴承与偏航机构连接,并安装在塔架上,整个机舱底部对叶轮转子到塔架造成的动力负载和疲劳负荷有很强的吸收作用。
机舱座上覆盖有机舱罩,材料是玻璃钢,具有轻质高强的特点,有效地密封,以防止外界侵蚀,如雨、潮湿、盐雾、风砂等。
产品生产采用多种工艺,包括:滚涂、轻质RTM、真空灌注等,机舱罩主体部分设置PVC泡沫夹层,以增加强度。
内层设置消音海绵,以降低主机噪声。
机舱上安装有散热器,用于齿轮箱和发电机的冷却;同时,在机舱内还安装有加热器,使得风电机组在冬季寒冷的环境下,机舱内保持在10℃以上的温度。
2.2载荷情况- 启动:从任一静止位置或空转状态到发电过渡期间,对风电机组产生的载荷。
- 发电:风电机组处于运行状态,有电负荷。
- 正常关机:从发电工况到静止或空转状态的正常过渡期间,对风电机组产生的载荷。
风力发电建筑工程的风机选型与布局

风力发电建筑工程的风机选型与布局随着可再生能源的不断发展和应用,风力发电作为一种清洁、可持续的能源形式得到了越来越广泛的应用。
在风力发电建筑工程中,风机的选型与布局是整个工程的关键环节,对于风力发电的效率和可靠性起着至关重要的作用。
一、风机选型1. 风机类型风力发电工程中常用的风机类型包括水平轴风机和垂直轴风机。
水平轴风机是目前应用较广泛的类型,其风机叶片与地面平行,转动方向垂直于风向。
水平轴风机具有高效率、稳定性好等优点,适用于较大的风力发电场。
而垂直轴风机则相对较小,可以适应不同的风向,但其效率相对较低。
根据具体的工程需求和场地条件,选择合适的风机类型是十分重要的。
2. 风机尺寸风机的尺寸主要考虑到风轮直径、塔架高度以及整个风机系统的稳定性与可靠性。
较大的风轮直径能够捕捉更多的风能,提高发电效率,但同时也增加了系统的成本和复杂性。
塔架高度的选择需要考虑到风的高度分布、环境景观等因素,同时也需要满足相关的建筑标准和安全要求。
综合考虑风能资源、工程成本以及可靠性,合理选择风机尺寸是确保风力发电工程运行和发电效果的关键因素。
3. 风机技术在风机的选型过程中,还需要考虑到风机的技术特点和性能参数。
其中包括风机的额定功率、功率曲线、启动风速、切入风速、切出风速等。
额定功率决定了风机的最大发电能力,而功率曲线则描述了风速和风机功率之间的关系。
启动风速和切入风速是风机启动和停机的两个关键参数,而切出风速则表示在这个风速下风机停机以保护设备安全。
根据具体的风能资源和工程需求,选择适当的风机技术是保证风力发电系统高效运行的关键。
二、风机布局1. 距离和间距风机的布局需要考虑到风能资源的利用和布局之间的距离。
通常情况下,风机之间的布局距离应该足够,以避免相互干扰和影响风能的捕捉。
根据经验,风机之间的间距应至少为风轮直径的1-1.5倍。
此外,布局之间的距离也要考虑到土地利用和环境影响等因素。
2. 相互影响风机的布局还需要考虑到相互之间的影响。
风力发电机组类型选择

风力发电机组类型选择1.风力发电机组类型选择根据目前世界风力发电机组的发展状况了解到,目前各种机型风力发电机组均采用了上风向、水平轴、三叶片结构,该种类型的机组其技术成熟,可靠性较高,在世界各地得到了广泛的运用。
为适应各种风况条件,在机型方面又划分为中低风速区型、内陆型和高风速区型机组以及变桨、变速、变桨变速等不同类型,其单机容量范围从几十千瓦到数兆瓦,选择范围较大。
根据风电场的风能资源状况,地区属于m级风场,70米高度年平均风速7.2米/秒,适宜选择中低风速区型风电机组;根据推算的风场不同高度实测年历时风速资料,按不同风电机组功率曲线,对各类机组的理论发电量和理论利用小时数进行了初步估算,推荐选择叶轮直径较大的风电机组。
2.风力发电机组单机容量选择目前风电机组单机容量最大已可达到3兆瓦以上,如东特许权项目要求设备国产化率达到50% ,在与各设备供应商咨询了解后,初步确定4种可满足国产化率要求的风电机组,其单机容量分别为850千瓦、1000千瓦、1250千瓦和2000千瓦,在选定风场场址内进行排列布置。
根据初步布局结果和招标文件提供的资料,从风电机组布置角度,在如东风电场单机容量在600千瓦以上的机组均可实现理想布置。
其中选择较大机组容量时,机组布置更为灵活,占地面积小,配套工程(基础、塔架、输电电缆)少。
3.风力发电机组的对比选择经过初步选择,从多种侯选机型中初步选择出三种机型进行详细的技术指标比较,三种机型的主要参数的对比(仅列出四者之间的主要区别)见表6-l o表6-1 :侯选风力发电机组技术指标对比表名称WTG1 型WTG2 型WTG3 型WTG4额定功率(千瓦)850100012502000功率调节速变桨变定桨距变桨距变桨变速叶轮直径(米)5254.26680额定风速(米/ 秒)15151215停机风速(米/ 秒)25252525叶轮额定转速(转14. 6-15/2213. 9/20. 89-19/分)30.8运行温(℃)度范围-20〜+50-30〜+25-20〜+50-20-+50机舱重量(吨)23304461叶轮重量(吨)1016.519.834塔架高度(米)65656560塔架重量(吨)1068598100从上表中可以看出,WTG1与WTG3、WTG4型机组均采用变桨功率调节方式,在高风速区段,叶轮保持较高的效率,对风能资源的利用效率高,WTG4机组采用全变速运行,为目前较新发展的技术。
风电机组的选型

风电机组低电压穿越(LVRT)要求 示意图
1.2 1.1 1.0 0.9 电网故障
0.8
并网点电压(pu) 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 -1.00
要求风电机组不间断并网运行
风电机组可以从电网切除
0.00
0.625 1.00 时间(s)
2.00
3.00
4.00
当并网点电压在图中电压轮廓线以上时,风电机组必须保证不间断并网运行; 当并网点电压在图中电压轮廓线以下时,风电机组允许从电网切出。
中国的风资源及风电发展
风资源
•
东北地区,西北地区,华北地区及 东南沿海风资源较丰富。 2010年风电发展目标提前实现, 2020年目标会调整。
风电发展规划
•
电网情况
•
风资源丰富的“三北地区”电网相 对薄弱,风电远离负荷中心。
沿海风电场受土地资源的限制。
中国风资源分布图
•
1.1 中国风电情况介绍
潮流方向
ChangLing 174(9.35MW)
Nongan
223MW
ChangLing Hexin Xijiao ChangLing Wangzi (49.5MW)
234kV
38Mvar 电容器组
Jiiutai
500kV Substation 220kV Substation Thermal Power Wind Farm
ChaGan (30MW)
71km
0MW
Taonan Datong (49.5+49.3MW)
37km 19km Yuanqu Baicheng 35km Taonan
236kV
风力发电场设备选型与采购指南

风力发电场设备选型与采购指南近年来,随着环保理念的普及,风力发电成为了一种受人们欢迎的清洁能源。
风力发电场设备的选型与采购对于风电发电场的建设至关重要。
选用合适的设备不仅能让风力发电机组的使用寿命更长,还能在一定程度上提高发电效率。
在进行风力发电场设备选型与采购时,可遵循以下指南:第一、从经济性出发选择最佳方案风力发电场设备的选型与采购,首先要从经济角度考虑,选择最划算的设备方案。
经济性包括设备的成本、使用寿命、维护费用等因素。
选购设备时,应严格控制成本,确保设备选型符合当地风能资源,且使用寿命尽量长,维护费用相对较低。
第二、考虑设备的适用性随着新能源行业的发展,风力发电场设备的种类越来越多,如风力发电机组、变压器、接地装置等,令人眼花缭乱。
但并不是所有设备都适用于所有场合。
因此,选购设备时,需要根据当地的气候、地理环境、设计负荷等因素,选择适合的设备类型和型号,以确保设备的适用性。
第三、注重设备质量和安全性风力发电场设备的选型与采购还需要注重设备的质量和安全性。
一方面,应选购质量可靠、品质上乘、工艺过关的设备,并尽量减少采购次数;另一方面,还应注意设备特性与本地气象特点的匹配,避免因选型不当造成的安全事故。
第四、关注环境保护环保是新能源行业的一个重要关键词。
在进行风力发电场设备选型与采购时,应注重保护当地的自然环境和生态系统。
选购设备时,应选择环保材料和技术,并严格控制环境污染。
第五、维护保养工作风力发电场设备在运行中需进行一定维护保养工作,以确保设备的正常运转和延长使用寿命。
因此,在进行设备选型与采购时,应考虑设备的可维护性和易修复性等方面。
同时,还应建立完善的维护保养体系,确保设备的安全、稳定、高效运行。
以上指南只是进行风力发电场设备选型与采购的基本原则,选购设备时还需根据具体情况综合考虑。
在选型和采购时,应以经济性、适用性、质量和安全性、环保和维护保养等方面为基础,权衡各种因素,最终选定适合自己的设备方案,才能让风力发电场运转更加顺畅、高效。
中国风力发电机组选型手册

《中国风力发电机组选型手册》是一本关于风力发电机组选型的权威指南。
该手册提供了以下方面的信息:
1.风力发电机组的基本原理和特点:介绍了风力发电机组的基本工作原理、特点以及适用范围,帮助读者了解不同类型风力发电机组的优缺点。
2.风能资源评估:重点讲述了风能资源的评估方法,包括风速、风向、风能密度等参数的测量和计算,为风力发电机组的选型提供依据。
3.风力发电机组类型及特点:详细介绍了不同类型风力发电机组的特点、性能参数、适用场景等,包括大型风力发电机组、中小型风力发电机组、直驱式风力发电机组、双馈式风力发电机组等。
4.风力发电机组选型原则和方法:给出了风力发电机组选型的原则和方法,包括单机容量选择、桨叶选择、塔筒高度设计、控制系统配置等,帮助读者根据实际情况选择最适合的风力发电机组。
5.风力发电机组的安装和维护:介绍了风力发电机组的安装和维护要求,包括基础施工、机组安装、电缆连接、运行调试等,为读者提供相关指导和建议。
6.案例分析:通过实际案例的分析,帮助读者更好地理解风力发电机组选型的实际应用和效果。
总之,《中国风力发电机组选型手册》是-本非常有价值的工具书,适合风电行业的从业者、研究人员、企业领导等阅读和使用。
通过该手册,读者可以全面了解风力发电机组的选型方法和原则,为风电项目的成功实施提供有力支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初选机型特征参数
叶片数:3片
额定功率:850KW、1500KW、2000KW 风轮直径:52-77m 切入风速:3-4m/s 切出风速:20-25m/s 额定风速:11-16m/s 安全风速:50.1-70m/s
61. 565m Φ52 -77m
点,按照行距9D、列距5D的 原则分别布置不同类型的风电机组,按风机厂提供的 标准状态下的(即空气密度1.225kg/m3状况下)功率 曲线采用WAsP9.0软件分别计算各风电机组理论发电 量。并参照市场大致价格,对初选的机组分别进行投 资估算和财务分析。
发电量的计算原理
基本参数:风频分布曲线;风电机组功率曲线。
计算方法:拟合风频分布曲线和风电机组功率曲线
发电量的计算原理
计算公式: W= (P3 × T3 × 8760+ P3 × T3 × 8760+ + P25× T25× 8760) W: Pi: Ti: 单台风电机组理论年发电量 在风速¡的时候风电机组对应的功率输出值 风速¡出现的频率 1年共计8760小时
速,平均风功率密度如下表
机型选择方法
不同高度的年平均风速、平均风功率密度表 轮毂高度 年平均风速 平均风功率密度 50年一遇极大风速
60m 7.27m/s 372W/m2 47.4m/s
61.5m 7.31m/s 377W/m2 47.4m/s
65m 7.32m/s 380W/m2 47.4m/s
系数)×(1-湍流折减系数) ×(1-叶片污染折
减系数)× (1-场用电及线损率)×风电机组可利 用率 实际产量=理论产量×综合折减系数
机型选择方法
5.根据市场成熟的商品化风电机组技术规格,结合风电 机组本地化率的要求进行选择。
对单机容量为850KW以上的风电机组进行初选。初选
的机型有Vestas公司的V52/850KW、华锐风电科技公 司的SL1500KW、东方电汽的FD77A /1500KW、湘潭 电机的Z72/2000KW风机。机型特征参数如下:
机型选择
以某风电场为例来选择机型。 要求该风电场工程装机容量约49.5MW。根据风资源评
估结果,该风场主风向和主风能方向一致,以西(W)和东
东北(ENE)风的风速、风能最大和频次最高,盛行风向稳 定。风速冬春季大,夏季小,白天大,晚上小。65m高度风 速频率主要集中在3.0m/s-11.0m/s,3.0m/s以下和20.0m/s以 上的无效风速和破坏性风速极少。(风功率密度分布等图)。
机型选择方法
该风场风功率等级为3级,风能资源丰富,年有效风
速(3.0m/s-20.0m/s)时数为7893h,占全年的90.1%,
11m/s-20m/s时数为1663h,占全年的18.65%,<3m/s的 时段占全年的8.80%,>20m/s的时段占全年的0.086%,有 效风速时段长,无效风速时段较短,全年均可发电,无破坏性 风速。
机型选择方法
1.风功率密度分布图
从本风电场风功率密度图上可以看出,本风电场场 址比较开阔,地形起伏较小,相对比较平坦,风能指 标基本一致。 2.风能评价 根据风能资源评估,本风场主风向和主风能方向一 致,以ENE风和W风的风速、风能最大和频次最高。
用WAsP9.0软件计算风电机组各轮毂高度的年平均风
机型选择方法
3.该风场50年一遇极大风速小于52.5m/s。60m-70m高 度15m/s风速湍流强度0.07左右,小于0.1,湍流强度 小。根据国际电工协会IEC61400-1(2005)标准判定 该风场属IECIII类风场。
机型选择方法
4.根据该地区冬季低温统计,历年最低气温为-280C, 近五年低于-150C的平均小时数为390-475h,低于200C的平均小时数为240-310h,低于-200C的时间约 占全年的2.7%-3.5%。故该地区风场应选用低温型风机。
理论产量的修正
理论产量是理想条件下的产量,计算实际产量时需对理论产
量进行修正
修正时考虑的因素: 1.风机排布的尾流影响;
2.空气湍流强的影响
3.空气密度对产量的影响; 4.风电机组可利用率的影响;
5.风电机组叶片污染对气动性能的影响场内输变电线路的线
损及场用电
实际上网电量计算
综合折减系数=空气密度折减系数×(1-尾流折减