单桩负摩阻力计算例题
考虑桩土相对位移的单桩负摩阻力计算
0 科 技论 坛 j
考虑桩土相对位移的单桩负摩阻力计算
李 光字 ( 徽省 宿州市 水利局 安
q Kt 。 ’ = gp c
没有消散完使得有效应力没有达到最大值 ,但是 由于 ‘‘ p 为 土应力 一应变关 系达到峰值时 的峰值有效 内摩擦 角, 因而
式 () 1 中采用 (。 p 的条件是桩土相对位移到达或超过极限位 移值( 当不考虑应变软化时 ) 。 由于从 C截 面到 B截面 , 土相对位移从零逐渐增加 桩
【 摘
陈旭 ・ 宿州 24 0 ) 3 00
要】 单桩 负摩阻力计算有 多种 方法, 中有效应力法能考虑 固结过程 中的 负摩 阻力, 能考虑地面堆 载的影响 , 算结 其 也 计
果较 符合 实 际。
【 关键词】 单桩 负摩阻力 相对位移 极限位移值 极限荷载点
1 前言
单桩负摩 阻力计算主要有齐瓦特公式 、 有效应力方法 、 根据土的试验指标估算及按经验数据估计等方法 。本文主 要 以有效应力法为基础作进一步 的改进 ,以便考虑桩土相
2 .假定摩擦系数从 C截面的 0线性增加到 B截面的 ‘’ .1 2 p
Kgp 主要 由土质 条件决定 , t(’ 同时与桩 型 、 沉桩方 法 、
土铺开 , 必要 时辅 以人工作业 , 以确保土铺得 均匀 。
控制土料 的含水量。 按设计压实参数组织施工 , 在碾压 前, 检测土料水量 , 当在规定范 围时才开始碾 压 , 则适 仅 否 当延长土的晾晒时 间。雨 日过后 的施工则更关注土料含水
关于桥梁桩长计算中的负摩阻力探讨
关于桥梁桩长计算中的负摩阻力探讨摘要当遇到不良地质条件时,桥梁桩基础设计中桩侧负摩阻力对桥梁的安全性、可靠性和经济等方面都有着重要的影响,本文介绍了桩侧负摩阻力产生的原因,影响因素和计算方法。
关键词桩基负摩阻力产生原因计算方法桩基具有承载力高、地质适应性强、施工便捷、沉降小、工期短等优点,采用桩基作为桥梁基础日趋普遍。
桩的承载力是由桩底支承力与桩周土体的侧摩阻力两部分组成的。
当桩底穿过并支承在各种压缩性土层中时,桩主要依靠桩侧土的摩阻力支承竖向荷载。
因此,桩侧摩阻力的大小对结构基础的稳定性起着决定作用。
如果桩周土体与桩身表面发生负摩阻力,使桩侧土一部分重量传递给桩,不但不是桩承载力的一部分,反而变成施加在桩上的外荷载,这是在软弱粘土和湿陷性黄土等地基确定单桩轴向容许承载力时应该注意的。
一、产生负摩阻力的条件和原因在桩顶竖向荷载作用下,当桩相对于桩侧土体向下位移时,桩侧土体对桩产生向上作用的摩擦力,称为正摩阻力(图1a),正摩阻力能抵抗桥梁上部结构及桥墩等产生的荷载。
但是,当桩侧土体因某种原因而下沉,且其下沉量大于桩的沉降(即桩侧土体相对于桩产生向下的位移)时,土对桩产生向下的摩擦力,称为负摩阻力(图1b),负摩阻力变成施加在桩上的外荷载,相当于增加了作用在桩基上的桥梁上部结构及桥墩等产生的荷载。
桩侧负摩阻力问题,本质上和正摩阻力一样,只要得知土与桩之间的相对位移或趋势以及负摩阻力与相对位移之间的关系,就可以了解桩侧负摩阻力的分布和桩身轴力与截面位移了。
产生负摩阻力的情况有多种:(1) 桩穿过欠固结的软粘土或新填土,由于这些土层在重力作用下的压缩固结,产生对桩身侧面的负摩擦力;(2) 在桩侧软土的表面有大面积堆载或新填土(桥头路堤填土),使桩周的土层产生压缩变形;(3) 由于从软弱土层下的透水层中抽水或其它原因,使地下水位下降,土中有效力增大,从而引起桩周土下沉;(4) 桩数很多的密集群桩打桩时,使桩周土产生很大的超空隙水压力,打桩停止后桩周土的再固结作用引起下沉;(5) 在黄土、冻土中的桩基,因黄土湿陷、冻土融化产生地面下沉。
桩侧负摩阻力的计算
桩侧负摩阻力的计算一、 规范对桩侧负摩阻力计算规定符合下列条件之一的桩基,当桩周土层产生的沉降超过基桩的沉降时,在计算基桩承 载力时应计入桩侧负摩阻力:1、 桩穿越较厚松散填土、自重湿陷性黄土、欠固结土、液化土层进入相对较硬土层时;2、 桩周存在软弱土层,邻近桩侧地面承受局部较大的长期荷载,或地面大面积堆载(包括 填土)时;3、 由于降低地下水位,使桩周土有效应力增大,并产生显著压缩沉降时。
4、 桩周土沉降可能引起桩侧负摩阻力时,应根据工程具体情况考虑负摩阻力对桩基承载力 和沉降的影响;当缺乏可参照的工程经验时,可按下列规定验算。
① 对于摩擦型基桩,可取桩身计算中性点以上侧阻力为零,并可按下式验算基桩承载力:N k 乞 R a( 7-9-1)② 对于端承型基桩,除应满足上式要求外,尚应考虑负摩阻力引起基桩的下拉荷载,并 可按下式验算基桩承载力:N k Q g <Ra( 7-9-2)③ 当土层不均匀或建筑物对不均匀沉降较敏感时,尚应将负摩阻力引起的下拉荷载计入 附加荷载验算桩基沉降。
注:本条中基桩的竖向承载力特征值只计中性点以下部分侧阻值及端阻值。
二、 计算方法桩侧负摩阻力及其引起的下拉荷载,当无实测资料时可按下列规定计算: 1、中性点以上单桩桩周第 i 层土负摩阻力标准值,可按下列公式计算:q ?i = ni ;「i( 7-9-3)当填土、自重湿陷性黄土湿陷、欠固结土层产生固结和地下水降低时:i 71ri -mm i 厶i m =2(7-9-3 )〜(7-9-5)式中:q ?i ――第i 层土桩侧负摩阻力标准值;当按式(7-9-3)计算值大于正摩阻力标准值时,取正摩阻力标准值进行设计;-ri ――由土自重引起的桩周第i 层土平均竖向有效应力;桩群外围桩自地面算起,桩群内部桩自承台底算起;当地面分布大面积荷载时:;★二p • c ri(7-9-4) 其中, (7-9-5)Ci ■――桩周第i层土平均竖向有效应力;i, m――分别为第i计算土层和其上第 m土层的重度,地下水位以下取浮重度;.'■■Zi ---- 第 i 层土、第 m层土的厚度;p――地面均布荷载;桩周第i层土负摩阻力系数,可按表 7-9-1取值;表7-9-1 负摩阻力系数匕土类5土类5饱和软土0.15 〜0.25 砂土0.35 〜0.50粘性土、粉土0.25 〜0.40 自重湿陷性黄土0.20 〜0.35②填土按其组成取表中同类土的较大值;2、考虑群桩效应的基桩下拉荷载可按下式计算:nQ f 二n 八側(7-9-6)(7-9-7)式中,n ――中性点以上土层数;l i――中性点以上第i土层的厚度;n ――负摩阻力群桩效应系数;S ax, S ay ――分别为纵横向桩的中心距;q S?――中性点以上桩周土层厚度加权平均负摩阻力标准值;m――中性点以上桩周土层厚度加权平均重度(地下水位以下取浮重度)。
桩侧负摩阻力的计算
桩侧负摩阻力的计算一、规范对桩侧负摩阻力计算规定符合下列条件之一的桩基,当桩周土层产生的沉降超过基桩的沉降时,在计算基桩承载力时应计入桩侧负摩阻力:1、桩穿越较厚松散填土、自重湿陷性黄土、欠固结土、液化土层进入相对较硬土层时;2、桩周存在软弱土层,邻近桩侧地面承受局部较大的长期荷载,或地面大面积堆载(包括填土)时;3、由于降低地下水位,使桩周土有效应力增大,并产生显著压缩沉降时。
4、桩周土沉降可能引起桩侧负摩阻力时,应根据工程具体情况考虑负摩阻力对桩基承载力和沉降的影响;当缺乏可参照的工程经验时,可按下列规定验算。
①对于摩擦型基桩,可取桩身计算中性点以上侧阻力为零,并可按下式验算基桩承载力: a k R N ≤ (7-9-1)②对于端承型基桩,除应满足上式要求外,尚应考虑负摩阻力引起基桩的下拉荷载,并可按下式验算基桩承载力:a ng k R Q N ≤+ (7-9-2)③当土层不均匀或建筑物对不均匀沉降较敏感时,尚应将负摩阻力引起的下拉荷载计入附加荷载验算桩基沉降。
注:本条中基桩的竖向承载力特征值只计中性点以下部分侧阻值及端阻值。
二、计算方法桩侧负摩阻力及其引起的下拉荷载,当无实测资料时可按下列规定计算: 1、中性点以上单桩桩周第 i 层土负摩阻力标准值,可按下列公式计算:i ni nsiq σξ'= (7-9-3) 当填土、自重湿陷性黄土湿陷、欠固结土层产生固结和地下水降低时:ri i σσ'=' 当地面分布大面积荷载时:rii p σσ'+=' (7-9-4) 其中, i i i m m m riz z ∆∑+∆='-=γγσ1121(7-9-5) (7-9-3)~(7-9-5)式中:nsi q ——第i 层土桩侧负摩阻力标准值;当按式(7-9-3)计算值大于正摩阻力标准值时,取正摩阻力标准值进行设计;ri σ'——由土自重引起的桩周第i 层土平均竖向有效应力;桩群外围桩自地面算起,桩群内部桩自承台底算起;i σ'——桩周第i 层土平均竖向有效应力;m i γγ,——分别为第i 计算土层和其上第m 土层的重度,地下水位以下取浮重度;m i z z ∆∆,——第i 层土、第m 层土的厚度;p ——地面均布荷载;ni ξ——桩周第i 层土负摩阻力系数,可按表7-9-1取值;表7-9-1 负摩阻力系数ξ注:①在同一类土中,对于挤土桩,取表中较大值,对于非挤土桩,取表中较小值;②填土按其组成取表中同类土的较大值;2、考虑群桩效应的基桩下拉荷载可按下式计算:∑⋅==ni i nsi n n gl q u Q 1η (7-9-6)⎪⎪⎭⎫ ⎝⎛+⋅=4d q d s s m n s ya x a n γπη (7-9-7)式中,n ——中性点以上土层数; l i ——中性点以上第i 土层的厚度;n η——负摩阻力群桩效应系数;ay ax s s ,——分别为纵横向桩的中心距;ns q ——中性点以上桩周土层厚度加权平均负摩阻力标准值;m γ——中性点以上桩周土层厚度加权平均重度(地下水位以下取浮重度)。
负摩阻力计算
负摩阻力计算5#栋车间基桩负摩阻力计算一、土层信息选取最不利钻孔ZK595计算,钻孔岩土层分布如下:(1)、土层编号1:填土层土层厚度h1= 15.8m;负摩阻力系数ζn=0.30(2)、土层编号2:粉质黏土层土层厚度h2=5.0m;极限侧摩阻力标准值qsk=53Kpa;负摩阻力系数ζn=0.25(3)、土层编号3:全风化花岗岩土层厚度h3=0.5m;极限侧摩阻力标准值qsk=140Kpa;极限端阻力标准值qpk=5000Kpa;(4)、土层编号4:强风化花岗岩土层厚度h4=11m;极限侧摩阻力标准值qsk=220Kpa;极限端阻力标准值qpk=7000Kpa;二、单桩竖向承载力特征值计算桩采用直径为400的预应力混凝土管桩(型号为PHC-500-A-100-H),设计净桩长为9m。
根据《建筑地基基础设计规范》GB 50007-2011第8.5.6.4条,单桩竖向承载力特征值按下式估算:R a=q pa A p+u pΣq sia l i=7000X3.14X0.42/4+3.14X0.4X220X9=879.2+2486.08=3366.08 KN三、基桩负摩阻力计算根据《建筑桩基技术规范》JGJ94-2008第5.4.2条,桩穿越较厚松散填土,计算桩承载力时应计入桩侧负摩阻力。
桩端持力层为强风化花岗岩,按表5.4.4-2,l n/l0=1.0,桩周软弱土层下限深度l0=20.8m,则自桩顶算起的中性点深度为l n=20.8m.桩侧负摩阻力根据勘察报告取值,已知素填土负摩阻力系数ζn=0.30,粉质黏土负摩阻力系数ζn=0.25。
已知地面无堆载(即P=0),地下水位标高为-10.93m(绝对标高265.27)。
第一层素填土自重引起的桩周平均竖向有效应力:地下水位以上:σr10=0.5X18X10.93=98.37Kpa;地下水以下至第二层粉质黏土顶面:σr11=10.93X18+0.5X(18-10)X4.87=216.22Kpa;则σ1=98.37+216.22=314.59Kpa;第二层粉质黏土自重引起的桩周平均竖向有效应力:Σr2=10.93X18+4.87X(18-10)+0.5X(16.8-10)X5.0=252.70Kpa;q s1=ζn1σ1=0.30X314.59=94.38Kpa;q s2=ζn2σ2=0.25X216.22=54.06Kpa;本工程为两桩承台计算,不考虑群桩效应,则ηn=1.0;对于不考虑群桩效应作用,基桩下拉荷载:Qg=ηn uΣq sia l i=1.0X3.14X0.4X(94.38X15.8+54.06X5)=2212.45KN 则估算单桩竖向承载力特征值R a=3366.08 KN-2212.45 KN=1153.63KN 可取R a=900 KN。
单桩承载力验算(计负摩阻力)
单桩承载力验算一、土层分布情况二、单桩竖向承载力特征值桩端持力层为全风化花岗岩,按《建筑桩基技术规范》(JGJ94-2008),中性点深度比l n /l 0=0.75,桩周软弱土层下限深度l 0=28.84m ,则自桩顶算起的中性点深度l n =21.63m 。
根据规范可知,该处承载力特征值只计中性点以下侧阻值及端阻值。
kN l q u A q Q i sik p pk 3976)613021.712(1141600uk =⨯+⨯⨯⨯+⨯⨯=+=∑ππkN Q K R uk a 19883894211=⨯== 三、单桩负摩阻力第一层路堤填土和杂填土自重引起的桩周平均竖向有效应力: 地下水以上部分:Pa k 93.6594.6192111=⨯⨯=σ; 地下水以下部分:Pa k 06.1396.1)1019(2194.61912=⨯-⨯+⨯=σ; 则kPa 20512111=+=σσσ;第二层淤泥自重引起的桩周平均竖向有效应力:kPa 26.182)54.863.21()105.15(216.1)1019(94.6192=-⨯-⨯+⨯-+⨯=σ; ;,故取kPa q kPa kPa q n s n n s 24245.612053.01111=>=⨯==σξ ;,故取kPa q kPa kPa q n s n n s 121245.3626.1822.01222=>=⨯==σξ 对于单桩基础,不考虑群桩效应则1n =η;基桩下拉荷载:kN l q u Q n i i n si n ng1137))54.863.21(1254.824(10.11=-⨯+⨯⨯⨯⨯==∑=πη 四、单桩分担面积上的荷载kN N 720)2520(44k =+⨯⨯=五、验算N R N Q N a n k 1988k 185********g k =<=+=+故单桩承载力满足要求。
按照摩擦性桩验算: kN l q u A q Q i sik p pk 2752)313021.712(1141600uk =⨯+⨯⨯⨯+⨯⨯=+=∑ππkN Q K R uk a 137********=⨯== kN N 720)2520(44k =+⨯⨯= a R N <k故单桩承载力满足要求。
单桩承载力验算
单桩承载力验算一、土层分布情况二、单桩竖向承载力特征值桩端持力层为全风化花岗岩,按《建筑桩基技术规范》(JGJ94-2008),中性点深度比l n /l 0=,桩周软弱土层下限深度l 0=,则自桩顶算起的中性点深度l n =。
根据规范可知,该处承载力特征值只计中性点以下侧阻值及端阻值。
kN l q u A q Q i sik p pk 3976)613021.712(1141600uk =⨯+⨯⨯⨯+⨯⨯=+=∑ππkN Q K R uk a 19883894211=⨯== 三、单桩负摩阻力第一层路堤填土和杂填土自重引起的桩周平均竖向有效应力: 地下水以上部分:Pa k 93.6594.6192111=⨯⨯=σ; 地下水以下部分:Pa k 06.1396.1)1019(2194.61912=⨯-⨯+⨯=σ; 则kPa 20512111=+=σσσ;第二层淤泥自重引起的桩周平均竖向有效应力:kPa 26.182)54.863.21()105.15(216.1)1019(94.6192=-⨯-⨯+⨯-+⨯=σ; ;,故取kPa q kPa kPa q n s n n s 24245.612053.01111=>=⨯==σξ ;,故取kPa q kPa kPa q n s n n s 121245.3626.1822.01222=>=⨯==σξ 对于单桩基础,不考虑群桩效应则1n =η;基桩下拉荷载:kN l q u Q n i i n si n ng1137))54.863.21(1254.824(10.11=-⨯+⨯⨯⨯⨯==∑=πη 四、单桩分担面积上的荷载kN N 720)2520(44k =+⨯⨯=五、验算N R N Q N a n k 1988k 185********g k =<=+=+故单桩承载力满足要求。
按照摩擦性桩验算: kN l q u A q Q i sik p pk 2752)313021.712(1141600uk =⨯+⨯⨯⨯+⨯⨯=+=∑ππkN Q K R uk a 137********=⨯== kN N 720)2520(44k =+⨯⨯= a R N <k故单桩承载力满足要求。
基于抛物线法的桩基负摩阻力估算公式
基于抛物线法的桩基负摩阻力估算公式为进一步探究湿陷性黄土中工程项目的力学特性,快速求得桩基负摩阻力大小,基于抛物线法,假定桩基负摩阻力沿土体深度分布符合二次抛物线函数,推导了基于抛物线法的单桩负摩阻力估算公式,求得了土体对桩基的下拉荷载;设置小于1的修正系数,基于远藤法,推导了群桩负摩阻力估算公式,群桩桩基负摩阻力与桩基半径、分布函数、桩基埋深、修正系数等因素有关。
以陕西某公路桥梁桩基为例,分别采用试坑浸水试验、估算公式计算、有限元仿真计算三种方式,求得桩基最大负摩阻力、下拉荷载、中性点位置三项重点参数,误差在8%之内,表明该桩基负摩阻力估算公式可以在概念设计阶段对工程进行指导。
标签:湿陷性黄土;单桩;群桩;桩基负摩阻力;估算公式【Abstract】In order to further explore the mechanical characteristics of engineering projects in collapsible loess,and quickly get the magnitude of negative friction of pile foundation,based on the parabola method,assuming that the distribution of negative friction of pile foundation along the depth of soil conforms to the quadratic parabola function,the estimation formula of negative friction of single pile is derived,and the pull-down load of soil on pile foundation is obtained. The negative friction of pile group is related to the radius,distribution function,buried depth and correction coefficient of pile group. Taking the pile foundation of a highway bridge in Shaanxi Province as an example,three key parameters of the maximum negative friction resistance,pull-down load and neutral point position of the pile foundation are obtained by means of test pit immersion test,calculation formula and finite element simulation calculation,with an error of less than 8%,indicating that the formula can guide the project in the conceptual design stage.【Key words】collapsible loess; foundation of single pile; foundation of group pile; negative friction of pile foundation; estimation formula随着桩基在湿陷性黄土地区的广泛应用,其负摩阻力取值不当问题日益突出[1-3],由此引发的建筑物沉降、倾斜或开裂事故屡见不鲜,当前湿陷性黄土地区桩基设计时,由室内试验计算确定的负摩阻力取值偏大,造成桩基设计承载力偏低,导致大量基础工程费用浪费。
单桩负摩阻力计算例题
4.2 桩基4.2.1 桩基类型及桩端持力层的选择依据勘察结果分析, 本建筑场地为自重湿陷性黄土场地,(自重湿陷量的计算值为120.5-151.6mm)湿陷等级为Ⅱ级(中等),湿陷性土层为②、③、④、⑤层,湿陷土层厚度为10-15m,湿陷最大深度17m(3#井)。
可采用钻孔灌注桩基础,第⑦层黄土状粉土属中密-密实状态,具低-中压缩性,不具湿陷性,平均层厚4.0m,可做为桩端持力层。
4.2.2 桩基参数的确定根据《建筑地基基础设计规范》(GB50007-2002)、《建筑桩基技术规范》(JGJ94-2008)、《湿陷性黄土地区建筑规范》(GB50025-2004)中的有关规定,结合地区经验,饱和状态下的桩侧阻力特征值qsia(或极限侧阻力标准值qsik)、桩端阻力特征值qpa(或极限端阻力标准值qpk¬)建议采用下列估算值:土层编号土层名称土的状态桩侧阻力特征值qsia(kPa) 极限侧阻力标准值qsik(kPa) 桩端阻力特征值qpa(kPa) 极限端阻力标准值qpk(kPa)②黄土状粉土稍密 11 23③黄土状粉土稍密 12 24④黄土状粉土稍密 12 24⑤黄土状粉土稍密 13 26⑥黄土状粉土中密 18 36⑦黄土状粉土中密183****1000⑧黄土状粉土中密 20 40 600 12004.2.3 单桩承载力的估算依据JGJ94-2008规范,参照《建筑地基基础设计规范》GB50007-2002第8.5.5条,单桩竖向承载力特征值可按下式估算:Ra=qpaAp+up∑qsiaLi式中:Ra——单桩竖向承载力特征值;qpa 、qsia——桩端端阻力、桩侧阻力特征值;Ap——桩底端横截面面积= πd2(圆桩);up——桩身周边长度=πd;Li——第i层岩土的厚度;以3#孔处的地层为例,桩身直径取600mm,以第⑦层黄土状粉土做为桩端持力层,桩入土深度24.0m(桩端进入持力层的深度对于粘性土、粉土应不小于1.5d)。
桩侧负摩阻力
土考虑
负摩阻力系数ξn 0.15~0.25 0.25~0.40 0.35~0.50 0.20~0.35 一类土中,对于挤土桩,取表中 值,对于非挤土桩,取表中较小 值; 按其组成取表中同类土的较大值。
σi (kN/m ) 38 121 201 236 236 236 236 236 236 236 236 236 236
'
2
q s5.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4
n
土类 地面均布荷载(kN/m2) 0 饱和软土 黏性土、粉土 桩身周长(m) 1 砂土 桩侧负摩阻力(kN) 自重湿陷性黄土 324.6 1、在同一类土中,对于挤土桩,取表中 较大值,对于非挤土桩,取表中较小 值; 2、填土按其组成取表中同类土的较大值。
第1层土 第2层土 第3层土 第4层土 第5层土 第6层土 第7层土 第8层土 第9层土 第10层土 第11层土 第12层土 第13层土
负摩阻力系数ξni 土层厚度(m) 土重度(kN/m3) σri'(kN/m2) 0.15 4 19 38 0.15 5 18 121 0.15 7 10 201 0.15 0 10 236 0.15 0 10 236 0.15 0 10 236 0.15 0 10 236 0.15 0 10 236 0.15 0 10 236 0.15 0 10 236 0.15 0 10 236 0.15 0 10 236 0.15 0 10 236 注:地下水位分界线所处土层可按照两层土考虑
桩基础负摩阻计算
桩直径 D 桩面积 A 桩周长 u 地面超载 p 地下水标 高
0.5 m 0.196 m2 1.571 m
5.00 kpa -1.80 m
钻孔 编号
土层
1 填土
2 淤泥质粉质粘土
中性点
层顶标高
厚度(m)
正摩阻力标准 值(Kpa)
2.05 -1.95
4.00 21.30
0.00 7.00
ζn 0.15~0.25 0.25~0.40 0.35~0.50 0.20~0.35
中性点深度ln
表5.4.4-2
持力层性质 黏性土、粉土 中密以上砂 砾石、卵石
中性点深度比 ln/l0
0.5~0.6
0.7~0.8
0.9
基岩 1
中性点深度ln应按桩周 土层沉降与桩沉降相等 的条件计算确定,也可 参照表5.4.4-2 确定。
中性 点深 度由 《建 筑桩 基技 术规 范》 (JGJ9 42008) 表 5.4.4 -2确 定。
本表 格考 虑地 面超 载和 地下 水共 同作 用下 的负 摩阻 力。
负摩阻力系数ζn
表5.4.4-1 土类
饱和软土
黏性土、粉土 砂土
自重湿陷性黄土
注:1、在同一类土 中,对于挤土桩,取表 中较大值 对于非挤土桩,取表中 较小值 2、填土按其组成取表 中同类土的较大值
注: 1 、ln 、l0 — —分别为自桩顶算起的 中性点深度和桩周软弱 土层下限深度; 2、 桩穿过自重湿陷性 黄土层时,ln 可按表 列值增大10%(持力层 为基岩除外);
3 、当桩周土层固结与 桩基固结沉降同时完成 时,取ln= 0 ; 4 、当桩周土层计算沉 降量小于20mm 时,ln 应按表列值乘以 0.4~0.8 折减。
厚软土地区桩侧负摩阻力的计算和过程分析
厚软土地区桩侧负摩阻力的计算和过程分析1 负摩阻力的概念正常情况下,在桩顶荷载作用下,桩侧土相对于桩产生向上的位移,因而土对桩侧产生向上的摩擦力,构成桩承载力的一部分,称为正摩阻力。
但有时候会发生相反的情况,即桩周围的土体由于一些原因发生沉降,且沉降量大于相应深度处桩的沉降量,即桩侧土相对于桩产生向下的位移,土体对桩产生向下的摩擦力,这种摩擦力称为负摩阻力。
负摩阻力对桩是一种不利因素。
它降低了桩的承载力,并可能导致桩发生过大沉降。
实际工程中,因负摩阻力引起的不均匀沉降造成建筑物开裂、倾斜或者因沉降过大而影响正常使用的情况屡有发生。
所以在可能发生负摩擦力的情况下,设计时应考虑其对桩基承载力和沉降的影响。
《建筑桩基技术规范》5.4.2条规定:符合下列条件之一的桩基,当桩周土层产生的沉降超过基桩的沉降时,在计算基桩承载力时应计入桩侧负摩阻力:1 桩穿越较厚松散填土、自重湿陷性黄土、欠固结土、液化土层进入相对较硬土层时;2 桩周存在软弱土层,邻近桩侧地面承受局部较大的长期荷载,或地面大面积堆载(包括填土)时;3 由于降低地下水位,使桩周土有效应力增大,并产生显著压缩沉降时。
2 负摩阻力的特点(1)中性点。
负摩阻力不一定产生于整个软弱土层中,而是在桩周土体下沉大于桩的沉降范围内。
桩的这一范围内为负摩阻力,而下部一般仍为正摩阻力。
正负摩阻力的分界点即为中性点。
在中性点处,正负摩阻力均为零,桩土相对位移也为零,同时下拉荷载在中性点处达到最大值,即在中性点处桩身轴力达到最大值。
桩顶至中性点的深度与桩周土的压缩性和变形条件以及桩的持力层性质等因素有关,理论上应按桩周土沉降与桩沉降相等的条件计算确定,但是,由于桩在荷载作用下的沉降稳定历时、沉降速率等都与桩周围土的沉降情况不同。
一般来说,中性点的位置在初期随着桩的沉降增加而上下移动,当沉降趋于稳定时才会稳定在某一固定的深度处。
所以要准确确定中性点的位置比较困难,一般根据现场试验所得的经验数据近似加以确定,即以与桩周软弱土层下限深度比值的经验数据来确定。
大面积荷载下考虑时间效应的单桩负摩阻力计算方法
大面积荷载下考虑时间效应的单桩负摩阻力计算方法单桩负摩阻力是指桩体在受到上部结构荷载作用下,桩顶失稳前,桩侧及桩底与土壤发生的反向竖向摩阻力。
在实际工程中,随着时间的推移,单桩负摩阻力的计算需要考虑时间效应的影响。
本文将介绍大面积荷载下考虑时间效应的单桩负摩阻力计算方法。
1.负摩阻力的计算原理。
单桩负摩阻力是由于桩周土体在受荷载作用下,由于剪切应变、桩的侧阻力和桩底摩阻力共同作用,发生的反向竖向摩阻力。
采用经典分析法可得出负摩阻力计算公式:Qs = γw 某 A 某某qs + γp 某 A 某某qp。
其中,Qs为负摩土阻力,γw为地基水重,γp为桩周土体重度,A为桩周土体面积,某qs为桩周土体上限密度时的负摩阻力系数,某qp为桩底摩阻力系数。
2.考虑时间效应的计算方法。
在实际工程中,单桩负摩阻力的计算需要考虑时间效应的影响。
时间效应是指在长期荷载作用下,桩周土体发生的初始压缩变形、渐进沉降、松弛等现象。
为了考虑时间效应的影响,可以采用经验公式进行计算。
常用的有Peck、Reese、以及欧洲规范等方法。
其中,欧洲规范采用下列公式计算时间效应系数α:α=1/0.5某(t/T+1)。
其中,t为荷载作用时间(单位:年),T为荷载作用下的桩周(或侧面)变形达到极限值所需的时间(一般为10年左右)。
根据该公式可得出考虑时间效应后的单桩负摩阻力计算公式:Qs(t)=Qs某α。
其中,Qs(t)为考虑时间效应后的单桩负摩阻力值,Qs为经典计算法得出的单桩负摩阻力值,α为时间效应系数。
3.结论。
在实际工程中,单桩负摩阻力的计算需要考虑时间效应的影响。
一般采用经典分析法计算单桩负摩阻力值,再根据经验公式计算时间效应系数,最终得出考虑时间效应后的单桩负摩阻力值。
负摩阻力桩基计算(基本表格)(柱脚内力用标准组合-桩基规范P27)
负摩阻力计算部分
成桩方式选择(周长计算时 挖孔桩含护壁,钻孔桩不含)
钻孔桩
桩号
嵌岩段侧 岩石单轴 椭圆 桩直 扩大头 嵌岩深 阻和端阻 抗压强度 桩基重 桩径 线段 宽度 综合系数 标准值 要性系 度 D(mm) S(mm) (mm) Hr(mm) ξ r frk(Mpa) 数γ 0 1700 1500 1300 1000 1700 1700 1700 1700 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5100 4500 3900 3000 1000 1000 1000 1000 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 5.36 5.36 5.36 5.36 5.36 5.36 5.36 5.36 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
桩基计算表
嵌岩段侧阻和 嵌岩深 端阻综合系数 单轴抗压强度 径比 线性插值计 标准值frk=15 hr/D frk≤15MPa ~30间时填 综合系 15<frk≤30 数ξ r 28.04 frk>30MPa 0.0 0.600 0.470 0.450 0.5 0.800 0.670 0.650 1.0 0.950 0.828 0.810 1.500 1.065 0.882 0.855 2.0 1.180 0.937 0.900 2.500 1.265 0.991 0.950 3.0 1.350 1.046 1.000 3.500 1.415 1.072 1.020 4.0 1.480 1.097 1.040 4.500 1.525 *** *** 5.0 1.57 *** *** 6.0 1.63 *** *** 7.0 1.66 *** *** 8.0 1.70 *** *** 注:a.表中数值适 用于泥浆护壁成 桩;b.对干作业成 桩(清底干净)和泥 浆护壁成桩后注浆 的,ξ r取表中数值 的1.2倍。 考虑负摩 土层有 与填土极 群桩时纵 群桩时横 阻后单桩 考虑负摩阻后 地面均布 正极限阻 效重度 土层 计算负摩 限侧阻力 向桩中心 向桩中心 群桩效 承载力Ra- 桩身承载力 实配 钢筋 配筋率 应系数 下拉荷载 负摩阻力 荷载 力标准值 γ 厚度 阻力值 值比较后 距 距 Qg 1.1Ra-1.2Qg 根数 直径 (%) 系数ξ n p(KN/m2) (Kpa) (KN/m3) (m) qs(KPa) 取值 Sax(mm) Say(mm) η n Qg(KN) (KN) (KN) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 28 28 28 28 28 28 28 28 20 20 20 20 20 20 20 20 10 10 10 10 10 10 10 10 61.4 61.4 61.4 61.4 61.4 61.4 61.4 61.4 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1178.7 1040.0 901.4 693.4 1178.7 1178.7 1178.7 1178.7 7029.3 5350.3 3898.5 2146.8 7029.3 7029.3 7029.3 7029.3 18569.6 14310.5 10604.6 6082.9 18569.6 18569.6 18569.6 18569.6 27 24 20 16 16 16 16 16 16 14 14 12 12 12 12 12 0.239 0.209 0.232 0.230 0.080 0.080 0.080 0.080