材料科学基础第六章总结与思考题

合集下载

材料科学基础_艾云龙_习题

材料科学基础_艾云龙_习题

※<第一章>一、复习思考题1.空间点阵与晶体点阵有何区别?试举例说明。

2.为什么说密排六方点阵不是一种空间点阵?3.作图表示出立方晶系的(123)、(0)、(421)晶面和[02]、[11]、[346]晶向。

4.试计算体心立方晶格的{100}、{110}、{111}晶面的原子面密度和<100>、<110>、<111>晶向的原子线密度,并指出其中最密面和最密方向。

5.作图表示出六方晶系的{101}和{110}晶面族所包括的晶面。

6.立方晶系的各{111}晶面构成一个八面体,试作图画出该八面体,并注出这些具体晶面的指数。

7.已知面心立方晶格的晶格常数为a,试求出(100)、(110)和(111)晶面的面间距,并指出面间距最大的晶面。

8.体心立方晶格的晶格常数为a,试求出(100)、(110)和(111)晶面的面间距,并指出面间距最大的面。

9.一克铁在室温和1000℃时各有多少个晶胞?10.说明间隙固溶体和间隙化合物的异同点。

11.常见的金属化合物有哪几类?它们各有何特点?Mg2Si、MnS、Fe3C、VC、Cu31Sn8等是哪种类型的化合物?12.碳可以溶入铁中而形成间隙固溶体,试分析是α-Fe还是γ-Fe能溶入较多的碳,为什么?13.作图说明一个面心立方结构相当于体心正方结构。

14.作图说明一个面心立方结构相当于棱方结构。

15.银和铝都具有面心立方点阵,且原子尺寸很接近(dAg=2.882?,dAl=2.856?),但他们在固态下却不能无限互溶,试解释其原因。

16.在一个简单立方的二维晶体中,画出一个正刃型位错和一个负刃型位错,并(1)用柏氏回路求出正、负刃型位错的柏氏矢量;(2)若将正、负刃型位错反向时,其柏氏矢量是否也随之反向;(3)具体写出该柏氏矢量的大小和方向;(4)求出此两位错的柏氏矢量和。

17.用作图法证明柏氏矢量与回路起点的选择及回路的具体途径无关。

无机材料科学基础答案第六,七,九,十章习题答案

无机材料科学基础答案第六,七,九,十章习题答案

6-1 略。

6-2 什么是吉布斯相律?它有什么实际意义?解:相律是吉布斯根据热力学原理得出的相平衡基本定律,又称吉布斯相律,用于描述达到相平衡时系统中自由度数与组分数和相数之间的关系。

一般形式的数学表达式为F=C-P+2。

其中F为自由度数,C为组分数,P为相数,2代表温度和压力两个变量。

应用相率可以很方便地确定平衡体系的自由度数。

6-3 固体硫有两种晶型,即单斜硫、斜方硫,因此,硫系统可能有四个相,如果某人实验得到这四个相平衡共存,试判断这个实验有无问题?解:有问题,根据相律,F=C-P+2=1-P+2=3-P,系统平衡时,F=0 ,则P=3 ,硫系统只能是三相平衡系统。

图6-1 图6-26-4 如图6-1是钙长石(CaAl2Si2O)的单元系统相图,请根据相图回解:(1)六方、正交和三斜钙长石的熔点各是多少?(2)三斜和六方晶型的转变是可逆的还是不可逆的?你是如何判断出来的?(3)正交晶型是热力学稳定态?还是介稳态?解:(1)六方钙长石熔点约1300℃(B点),正钙长石熔点约1180℃(C点),三斜钙长石的熔点约为1750℃(A点)。

(2)三斜与六方晶型的转变是可逆的。

因为六方晶型加热到转变温度会转变成三斜晶型,而高温稳定的三斜晶型冷却到转变温度又会转变成六方晶型。

(3)正交晶型是介稳态。

6-5 图6-2是具有多晶转变的某物质的相图,其中DEF线是熔体的蒸发曲线。

KE是晶型 I的升华曲线;GF是晶型II的升华曲线;JG是晶型III的升华曲线,回答下列问题:(1)在图中标明各相的相区,并写出图中各无变量点的相平衡关系;(2)系统中哪种晶型为稳定相?哪种晶型为介稳相?(3)各晶型之间的转变是可逆转变还是不可逆转变?解:(1)KEC为晶型Ⅰ的相区,EFBC 过冷液体的介稳区,AGFB晶型Ⅱ的介稳区, JGA晶型Ⅲ的介稳区,CED是液相区,KED是气相区;(2)晶型Ⅰ为稳定相,晶型Ⅱ、Ⅲ为介稳相;因为晶型Ⅱ、Ⅲ的蒸汽压高于晶型Ⅰ的,即它们的自由能较高,有自发转变为自由能较低的晶型Ⅰ的趋势;(3)晶型Ⅰ转变为晶型Ⅱ、Ⅲ是单向的,不可逆的,多晶转变点的温度高于两种晶型的熔点;晶型Ⅱ、Ⅲ之间的转变是可逆的,双向的,多晶转变点温度低于Ⅱ、Ⅲ的熔点。

材料科学基础(各章总结)讲诉

材料科学基础(各章总结)讲诉

第一章:结晶学基础一、晶体的基本概念晶体:晶体是内部质点在三维空间按周期性重复排列的固体。

晶胞:是指晶体结构中的平行六面体单位,其形状大小与对应的空间格子中的平行六面体一致。

晶体的基本性质:晶体均一性、各向异性、自限性、对称性、最想内能性。

等同点:晶体结构中物质环境和几何环境完全相同的点。

空间格子:联结分布在三维空间内的结点就构成了空间格子。

单位平行六面体:在空间格子中,所选取的平行六面体的对称性符合整个空间点阵的对称性;棱与棱之间的直角应力求最多;在遵循上两个条件的前提下,所选取的平行六面体的体积应最小。

考虑到对称性不能为直角时,选结点间距最小的行列做平行六面体的棱,棱间交角接近直角。

按照上述选择原则选取的平行六面体称为单位平行六面体。

点群(对称型):结晶多面体中全部对称要素的组合,称为该结晶多面体的对称型。

由于在结晶多面体中,全部对称要素相交于一点(晶体几何中心),在进行对称操作时该点不移动,所以对称型也称为点群。

平移群:晶体结构中所有平移轴的结合。

空间群:在一个晶体结构中所存在的一切对称要素的集合。

二、晶体的对称要素对称中心(符号C):假想的几何点,相应的对称变换是对于这个点的倒反。

对称面(符号P):假想的平面,相应的对称变换是对此平面的反映。

对称轴(符号L n):假想的直线,相应的对称变换是绕此直线的旋转。

倒转轴(符号L i n):一种复合对称要素,由一根假想的直线和此直线上的一个定点构成。

相应的对称变换是绕此直线旋转一定角度以及对此定点的倒反。

映转轴(符号L s n):一种复合对称要素,由一根假想的直线和垂直此直线的一个平面构成。

相应的对称变换是绕此直线旋转一定角度以及对此平面的反映。

三、晶体的对称分类七个晶系包括:三斜晶系、单斜晶系、正交(斜方)、三方晶系、四方(正方)晶系、六方晶系和等轴(立方)晶系四、各晶系的几何常数五、结晶符号1、晶面符号(米氏符号也称晶面符号):(hkl)表示2、晶棱符号::[uvw]表示六、晶体的微观对称要素(1)平移轴:是一直线方向,相应的对称变换为沿此直线方向平移一定的距离。

材料科学基础6习题and答案资料

材料科学基础6习题and答案资料

第六章相平衡和相图6-1名词解释略6-2什么是吉布斯相律?它有什么实际意义?略去6-3固体硫有两种晶型,即单斜硫、斜方硫,因此,硫系统可能有四个相,如果某人实验得到这四个相平衡共存,试判断这个实验有无问题?图6-1 图6-26-4如图6-1是钙长石(CaAl2Si2O)的单元系统相图,请根据相图回答:(1)六方、正交和三斜钙长石的熔点各是多少?(2)三斜和六方晶型的转变是可逆的还是不可逆的?你是如何判断出来的?(3)正交晶型是热力学稳定态?还是介稳态?6-5图6-2是具有多晶转变的某物质的相图,其中DEF线是熔体的蒸发曲线。

KE是晶型I的升华曲线;GF是晶型II的升华曲线;JG是晶型III的升华曲线,回答下列问题:(1)在图中标明各相的相区,并写出图中各无变量点的相平衡关系;(2)系统中哪种晶型为稳定相?哪种晶型为介稳相?(3)各晶型之间的转变是可逆转变还是不可逆转变?6-6在SiO2系统相图中,找出两个可逆多晶转变和两个不可逆多晶转变的例子。

6 -7 C2S有哪几种晶型?在加热和冷却过程中它们如何转变?β-C2S为什么能自发地转变成γ-C2S?在生产中如何防止β-C2S 转变为γ-C2S?6-8今通过实验测得如图6-3所示的各相图,试判断这些相图的正确性。

如果有错,请指出错在何处?并说明理由。

图6-36-9根据图6-4所示的二元系统相图回答:(1)注明各相区;(2)写出无变量点的性质及其相平衡关系;(3)写出M1和M2熔体的平衡冷却析晶过程;(4)计算从熔体刚冷至T P温度及离开T P温度时系统中存在各相的百分含量。

6-10图6-5为具有一个不一致熔融化合物的二元系统,在低共熔点E发生如下析晶的过程:L A+A m B n。

E点B含量为20%,化合物A m B n含B量为64%,今有C1和C2两种配料,其配料点分置于E点两侧。

已知C1中B含量是C2中B含量的1.5倍,且在达低共熔点温度前的冷却析晶过程中,从该二配料中析出的初晶相含量相等。

《材料科学基础》复习思考题

《材料科学基础》复习思考题

《材料科学基础》复习思考题第一章:材料的结构一、解释以下基本概念空间点阵、晶格、晶胞、配位数、致密度、共价键、离子键、金属键、组元、合金、相、固溶体、中间相、间隙固溶体、置换固溶体、固溶强化、第二相强化。

二、填空题1、材料的键合方式有四类,分别是(),(),(),()。

2、金属原子的特点是最外层电子数(),且与原子核引力(),因此这些电子极容易脱离原子核的束缚而变成()。

3、我们把原子在物质内部呈()排列的固体物质称为晶体,晶体物质具有以下三个特点,分别是(),(),()。

4、三种常见的金属晶格分别为(),()和()。

5、体心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有体心立方晶格的常见金属有()。

6、面心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有面心立方晶格的常见金属有()。

7、密排六方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),具有密排六方晶格的常见金属有()。

8、合金的相结构分为两大类,分别是()和()。

9、固溶体按照溶质原子在晶格中所占的位置分为()和(),按照固溶度分为()和(),按照溶质原子与溶剂原子相对分布分为()和()。

10、影响固溶体结构形式和溶解度的因素主要有()、()、()、()。

11、金属化合物(中间相)分为以下四类,分别是(),(),(),()。

12、金属化合物(中间相)的性能特点是:熔点()、硬度()、脆性(),因此在合金中不作为()相,而是少量存在起到第二相()作用。

13、CuZn、Cu5Zn8、Cu3Sn的电子浓度分别为(),(),()。

材料科学基础课后习题答案讲解

材料科学基础课后习题答案讲解

《材料科学基础》课后习题答案第一章材料结构的基本知识4. 简述一次键和二次键区别答:根据结合力的强弱可把结合键分成一次键和二次键两大类。

其中一次键的结合力较强,包括离子键、共价键和金属键。

一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。

二次键的结合力较弱,包括范德瓦耳斯键和氢键。

二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。

6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高?答:材料的密度与结合键类型有关。

一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。

相反,对于离子键或共价键结合的材料,原子排列不可能很致密。

共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。

9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。

答:单相组织,顾名思义是具有单一相的组织。

即所有晶粒的化学组成相同,晶体结构也相同。

两相组织是指具有两相的组织。

单相组织特征的主要有晶粒尺寸及形状。

晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。

单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。

等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。

对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。

如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。

如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。

材料科学基础第六章总结与思考题

材料科学基础第六章总结与思考题

第6、7章总结、思考题与作业题一、本章总结1、凝固与结晶、相变、固态相变、组元、系、相图、单元相图、相平衡、相律(及表达式)及应用2、纯金属凝固的过程和现象;过冷度对结晶过程和结晶组织的影响;3、结晶的热力学条件、动力学条件、能量条件和结构条件;包括:一些更要的公式,以其应用4、过冷现象、过冷度、理论凝固温度、实际凝固温度、临界过冷度、有效过冷度、动态过冷度;5、均匀形核与非均匀形核,二者有何异同点。

结构起伏(相起伏)、能量起伏、浓度起伏、晶胚、晶核、临界晶核、临界晶核半径、临界形核功,临界晶核半径、临界形核功的计算。

形核率及影响因素、变质处理。

非均匀形核时影响接触角θ的因素有哪些?选择什么样的异相质点可以大大促进结晶过程。

6、光滑界面、粗糙界面;正温度梯度、负温度梯度;平面长大、树枝长大。

晶体长大的条件和长大的机制。

界面的生长形态与L/S前沿的温度梯度有何关系?7、能用结晶理论说明实际生产问题。

如:变质处理和其它细化晶粒的工艺;单晶的制取和定向凝固技术。

(1).凝固理论的主要应用;(2).控制结晶组织的措施。

二、本章重要知识点1. 金属结晶的过程;结晶的热力学条件、动力学条件、能量条件和结构条件;2. 界面的生长形态与L/S前沿的温度梯度的关系。

三、思考题1. 简述金属结晶过程的热力学条件、动力学条件、能量条件和结构条件。

为什么需要这些条件?冷却速度与过冷度的关系是什么?能否说过冷度越大,形核率越高,为什么?2. 何谓正温度梯度和负温度梯度。

何谓粗糙界面和光滑界面。

分析纯金属生长形态与温度梯度的关系。

(简述纯金属枝晶的形成条件和长大过程。

)3. 在同样的负温度梯度下,为什么Pb结晶出树状晶,而Si结晶平面却是平整的?4. 何谓均匀形核?何谓非均匀形核(异质形核)?试比较二者有何异同?叙述异质形核的必要条件。

选择什么样的异相质点可以大大促进结晶过程?5. 指出形核过程的驱动力和阻力分别是什么?比较均匀形核和非均匀形核的临界形核功大小和形核率的大小,说明造成两者差异的原因。

材料科学基础学习知识课后复习解答

材料科学基础学习知识课后复习解答

材料科学基础学习知识课后复习解答第⼀章1.简述⼀次键与⼆次键各包括哪些结合键?这些结合键各⾃特点如何?答:⼀次键——结合⼒较强,包括离⼦键、共价键和⾦属键。

⼆次键——结合⼒较弱,包括范德⽡⽿斯键和氢键。

①离⼦键:由于正、负离⼦间的库仑(静电)引⼒⽽形成。

特点:1)正负离⼦相间排列,正负电荷数相等;2)键能最⾼,结合⼒很⼤;②共价键:是由于相邻原⼦共⽤其外部价电⼦,形成稳定的电⼦满壳层结构⽽形成。

特点:结合⼒很⼤,硬度⾼、强度⼤、熔点⾼,延展性和导电性都很差,具有很好的绝缘性能。

③⾦属键:贡献出价电⼦的原⼦成为正离⼦,与公有化的⾃由电⼦间产⽣静电作⽤⽽结合的⽅式。

特点:它没有饱和性和⽅向性;具有良好的塑性;良好的导电性、导热性、正的电阻温度系数。

④范德⽡⽿斯键:⼀个分⼦的正电荷部位和另⼀个分⼦的负电荷部位间的微弱静电吸引⼒将两个分⼦结合在⼀起的⽅式。

也称为分⼦键。

特点:键合较弱,易断裂,可在很⼤程度上改变材料的性能;低熔点、⾼塑性。

2.⽐较⾦属材料、陶瓷材料、⾼分⼦材料在结合键上的差别。

答:①⾦属材料:简单⾦属(指元素周期表上主族元素)的结合键完全为⾦属键,过渡族⾦属的结合键为⾦属键和共价键的混合,但以⾦属键为主。

②陶瓷材料:陶瓷材料是⼀种或多种⾦属同⼀种⾮⾦属(通常为氧)相结合的化合物,其主要结合⽅式为离⼦键,也有⼀定成分的共价键。

③⾼分⼦材料:⾼分⼦材料中,⼤分⼦内的原⼦之间结合⽅式为共价键,⽽⼤分⼦与⼤分⼦之间的结合⽅式为分⼦键和氢键。

④复合材料:复合材料是由⼆种或者⼆种以上的材料组合⽽成的物质,因⽽其结合键⾮常复杂,不能⼀概⽽论。

3. 晶体与⾮晶体的区别?稳态与亚稳态结构的区别?晶体与⾮晶体区别:答:性质上,(1)晶体有整齐规则的⼏何外形;(2)晶体有固定的熔点,在熔化过程中,温度始终保持不变;(3)晶体有各向异性的特点。

结构上,晶体原⼦排列有序,⾮晶体排列长程⽆序。

稳态与亚稳态结构的区别同种材料在不同条件下可以得到不同的结构,其中能量最低的结构称为稳态结构。

材料科学基础课后习题答案讲解

材料科学基础课后习题答案讲解

《材料科学基础》课后习题答案第一章材料结构的基本知识4. 简述一次键和二次键区别答:根据结合力的强弱可把结合键分成一次键和二次键两大类。

其中一次键的结合力较强,包括离子键、共价键和金属键。

一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。

二次键的结合力较弱,包括范德瓦耳斯键和氢键。

二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。

6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高?答:材料的密度与结合键类型有关。

一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。

相反,对于离子键或共价键结合的材料,原子排列不可能很致密。

共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。

9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。

答:单相组织,顾名思义是具有单一相的组织。

即所有晶粒的化学组成相同,晶体结构也相同。

两相组织是指具有两相的组织。

单相组织特征的主要有晶粒尺寸及形状。

晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。

单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。

等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。

对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。

如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。

如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。

武汉理工大学材料科学基础(第2版)课后习题和答案

武汉理工大学材料科学基础(第2版)课后习题和答案

武汉理工大学材料科学基础(第2版)课后习题和答案第一章绪论1、仔细观察一下白炽灯泡,会发现有多少种不同的材料?每种材料需要何种热学、电学性质?2、为什么金属具有良好的导电性和导热性?3、为什么陶瓷、聚合物通常是绝缘体?4、铝原子的质量是多少?若铝的密度为2.7g/cm3,计算1mm3中有多少原子?5、为了防止碰撞造成纽折,汽车的挡板可有装甲制造,但实际应用中为何不如此设计?说出至少三种理由。

6、描述不同材料常用的加工方法。

7、叙述金属材料的类型及其分类依据。

8、试将下列材料按金属、陶瓷、聚合物或复合材料进行分类:黄铜钢筋混凝土橡胶氯化钠铅-锡焊料沥青环氧树脂镁合金碳化硅混凝土石墨玻璃钢9、Al2O3陶瓷既牢固又坚硬且耐磨,为什么不用Al2O3制造铁锤?第二章晶体结构1、解释下列概念晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、配位数、离子极化、同质多晶与类质同晶、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应.2、(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求出该晶面的米勒指数;(2)一晶面在x、y、z 轴上的截距分别为a/3、b/2、c,求出该晶面的米勒指数。

3、在立方晶系的晶胞中画出下列米勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与[111],(322)与[236],(257)与[111],(123)与[121],(102),(112),(213),[110],[111],[120],[321]4、写出面心立方格子的单位平行六面体上所有结点的坐标。

5、已知Mg2+半径为0.072nm,O2-半径为0.140nm,计算MgO晶体结构的堆积系数与密度。

6、计算体心立方、面心立方、密排六方晶胞中的原子数、配位数、堆积系数。

7、从理论计算公式计算NaC1与MgO的晶格能。

MgO的熔点为2800℃,NaC1为80l℃, 请说明这种差别的原因。

《材料科学基础》习题及参考答案

《材料科学基础》习题及参考答案

形核功,还是可以成核的。
答案
(7)测定某纯金属铸件结晶时的最大过冷度,其实测
值与用公式ΔT=0.2Tm计算值基本一致。
答案
(8) 某些铸件结晶时,由于冷却较快,均匀形核率N1
提高,非均匀形核率N2也提高,故总的形核率为N=
N1 +N2。
答案
返回
53
(9) 若在过冷液体中,外加10 000颗形核剂,则结晶
❖ ②比较Cu-10% Sn合金铸件和Cu-30%合金铸件的铸造性能 及铸造组织,说明Cu-10% Sn合金铸件中有许多分散砂眼的 原因。
③ω(Sn}分别为2%,11%和15%的青铜合金,哪一种可进行 压力加工?哪种可利用铸造法来制造机件?
答案
返7回8
❖ 9.如下图所示,已知A,B,C三组元固态完全不互溶,质量 分数分别84%A,,10%B,10%C的O合金在冷却过程中将进 行二元共晶反应和三元共晶反应,在二元共晶反应开始时, 该合金液相成分(a点)为60%A,20%B,20%C,而三元共 晶反应开始时的液相成分(E点)为50%A,10%B,40%C。
答案
返回
6
❖ 6.位错受力后运动方向处处垂直于位错线,在运动
过程中是可变的,晶体作相对滑动的方向应是什么
方向?
答案
❖ 7.位错线上的割阶一般如何形成?
答案
❖ 8.界面能最低的界面是什么界面?
答案
❖ 9. “小角度晶界都是由刃型位错排成墙而构成的”这
种说法对吗?
答案
返回
7
三、综合题
❖ 1. 作图表示立方晶体的(123)(0 -1 -2) (421)晶面及[-102][-211][346]晶向。 答案
❖ 9. 在Fe中形成1mol 空位的能量为104. 67kJ,

第三版胡赓祥材料科学基础的知识点总结及课后答案

第三版胡赓祥材料科学基础的知识点总结及课后答案

第三版胡赓祥材料科学基础的知识点总结及课后答案第一章材料科学基础概念知识点总结1. 材料的定义与分类:材料是制造各种结构和器件的物质基础,可分为金属材料、无机非金属材料、有机高分子材料和复合材料等。

2. 材料的性能:包括力学性能、热性能、电性能、磁性能等,是评价材料性能好坏的重要指标。

3. 晶体结构:晶体是由原子、离子或分子按照一定的空间点阵排列成的周期性结构,常见的晶体结构有金属晶体、离子晶体、共价晶体和分子晶体等。

4. 材料的制备方法:包括合成、加工、处理等,如熔炼、铸造、轧制、挤压、拉伸、热处理、腐蚀等。

5. 材料的设计与性能调控:根据材料的使用性能要求,进行结构、组成和制备工艺的设计,以实现性能的优化。

课后答案1. 材料是什么?请举例说明。

答案:材料是制造各种结构和器件的物质基础,如钢铁、水泥、塑料、玻璃等。

2. 材料的性能有哪些?它们对材料的用途有何影响?答案:材料的性能包括力学性能、热性能、电性能、磁性能等,不同的性能影响材料在不同领域的应用。

例如,塑料的具有良好的柔韧性和耐腐蚀性,广泛应用于包装、建筑等领域;金属材料具有良好的导电性和导热性,广泛应用于电子、能源等领域。

3. 晶体结构有哪些类型?请简要介绍。

答案:晶体结构有金属晶体、离子晶体、共价晶体和分子晶体等类型。

金属晶体是由金属原子按照一定的空间点阵排列成的结构,具有较高的强度和韧性;离子晶体是由正负离子按照一定的空间点阵排列成的结构,具有较高的熔点和硬度;共价晶体是由共价键连接的原子按照一定的空间点阵排列成的结构,具有较高的硬度和脆性;分子晶体是由分子按照一定的空间点阵排列成的结构,具有较低的熔点和脆性。

4. 材料的制备方法有哪些?它们对材料性能有何影响?答案:材料的制备方法包括合成、加工、处理等,如熔炼、铸造、轧制、挤压、拉伸、热处理、腐蚀等。

不同的制备方法对材料的性能有不同的影响。

例如,熔炼法制备的金属材料具有较高的纯度和均匀性;热处理工艺可以改变金属材料的组织结构和性能,如提高硬度和强度等。

材料科学基础(武汉理工大学_张联盟版)课后习题及答案 第六章

材料科学基础(武汉理工大学_张联盟版)课后习题及答案 第六章

第六章答案6-1略。

6-2什么是吉布斯相律?它有什么实际意义?解:相律是吉布斯根据热力学原理得出的相平衡基本定律,又称吉布斯相律,用于描述达到相平衡时系统中自由度数与组分数和相数之间的关系。

一般形式的数学表达式为F=C-P+2。

其中F为自由度数,C为组分数,P为相数,2代表温度和压力两个变量。

应用相率可以很方便地确定平衡体系的自由度数。

6-3固体硫有两种晶型,即单斜硫、斜方硫,因此,硫系统可能有四个相,如果某人实验得到这四个相平衡共存,试判断这个实验有无问题?解:有问题,根据相律,F=C-P+2=1-P+2=3-P,系统平衡时,F=0,则P=3,硫系统只能是三相平衡系统。

图6-1 图6-26-4如图6-1是钙长石(CaAl2Si2O)的单元系统相图,请根据相图回解:(1)六方、正交和三斜钙长石的熔点各是多少?(2)三斜和六方晶型的转变是可逆的还是不可逆的?你是如何判断出来的?(3)正交晶型是热力学稳定态?还是介稳态?解:(1)六方钙长石熔点约1300℃(B点),正钙长石熔点约1180℃(C点),三斜钙长石的熔点约为1750℃(A点)。

(2)三斜与六方晶型的转变是可逆的。

因为六方晶型加热到转变温度会转变成三斜晶型,而高温稳定的三斜晶型冷却到转变温度又会转变成六方晶型。

(3)正交晶型是介稳态。

6-5图6-2是具有多晶转变的某物质的相图,其中DEF线是熔体的蒸发曲线。

KE是晶型I 的升华曲线;GF是晶型II的升华曲线;JG是晶型III的升华曲线,回答下列问题:(1)在图中标明各相的相区,并写出图中各无变量点的相平衡关系;(2)系统中哪种晶型为稳定相?哪种晶型为介稳相?(3)各晶型之间的转变是可逆转变还是不可逆转变?解:(1)KEC为晶型Ⅰ的相区,EFBC过冷液体的介稳区,AGFB晶型Ⅱ的介稳区,JGA晶型Ⅲ的介稳区,CED是液相区,KED是气相区;(2)晶型Ⅰ为稳定相,晶型Ⅱ、Ⅲ为介稳相;因为晶型Ⅱ、Ⅲ的蒸汽压高于晶型Ⅰ的,即它们的自由能较高,有自发转变为自由能较低的晶型Ⅰ的趋势;(3)晶型Ⅰ转变为晶型Ⅱ、Ⅲ是单向的,不可逆的,多晶转变点的温度高于两种晶型的熔点;晶型Ⅱ、Ⅲ之间的转变是可逆的,双向的,多晶转变点温度低于Ⅱ、Ⅲ的熔点。

材料科学基础习题答案

材料科学基础习题答案

材料科学基础习题答案《材料科学基础》习题参考答案第一章原子结构与键合★考前复习范围概念:4个量子数、3个准则、金属键、离子键、共价键1.原子中一个电子的空间位置和能量可用哪四个量子数来决定?在多电子的原子中,核外电子的排布应遵循哪些原则?答:1).主量子数n=1、2、3、4(K、L、M、N)决定原子中电子能量以及与核的平均距离,即电子所处的量子壳层。

2).轨道角量子数li=0~(n-1),(s,p,d,f,g)给出电子在同一量子壳层内所处的能级。

(亚层)3).磁量子数mi,给出每个轨道角动量量子数的轨道数或能级数,每个li下的磁量子总数为2li+1。

(能级)4).自旋角量子数si=±1/2, 反映电子不同的自旋方向。

(电子数)Pauli不相容原理:在同一个原子中没有四个量子数完全相同的电子。

能量最低原理:电子在原子中所处的状态,总是尽可能分布到能量最低的轨道上。

Hund规则:电子分布到能量相同的等价轨道上时,总是尽先以自旋相同的方向,单独占据能量相同的轨道。

2.在元素周期表中,同一周期或同一主族元素原子结构有什么共同特点?从左到右或从上到下元素结构有什么区别?性质如何递变?答:同一周期元素具有相同原子核外电子层数,但从左到右,核电荷依次增多,原子半径逐渐减小,电离能增加,失电子能力降低,得电子能力增加,金属性减弱,非金属性增强;同一主族元素核外电子数相同,但从上到下,电子层数增多,原子半径增大,电离能降低,失电子能力增加,得电子能力降低,金属性增加,非金属性降低。

3.何谓同位素?为什么元素的相对原子质量不总为正整数?答:在元素周期表中占据同一位置,尽管它们的质量不同,然它们的化学性质相同的物质称为同位素。

由于各同位素的含中子量不同(质子数相同),故具有不同含量同位素的元素总的相对原子质量不为正整数。

4.铬的原子序数为24,它共有四种同位素:4.31%的Cr原子含有26个中子,83.76%含28个中子,9.55%含有29个中子,且2.38%含有30个中子。

材料科学基础-6-高分子材料的结构

材料科学基础-6-高分子材料的结构

第六章 高分子材料的结构1.高分子结构的基本概念2.高分子的结构第六章 高分子材料的结构高分子材料(高聚物材料)是以高分子化合物为主要成分,与各种添加剂配合而形成的材料。

常见高分子材料的相对分子量在104~106之间。

天然:淀粉、羊毛、纤维素、天然橡胶等人工合成:塑料、合成橡胶及合成纤维等(合成高分子)§6.1高分子结构的基本概念一、单体组成高分子化合物的低分子化合物称为单体。

例如,聚乙烯(PE)是由多个乙烯分子组成,一个乙烯分子就是组成聚乙烯的单体。

烯类聚合物的单体是靠碳双键结合而成的,如氯乙烯的单体CH2=CH2。

二、链节高分子化合物的相对分子质量很大,呈长链型,称为大分子链(分子链)聚乙烯大分子链……—CH2—CH2—CH2—CH2—CH2—……大分子链中的重复单元称为链节: —CH2—CH2—就是聚乙烯的链节。

链节的结构和成分代表了高分子化合物的结构和成分。

两种或两种以上结构单元:例如尼龙-66—CO—(CH2)4—CO— ; — NH—(CH2)6 — NH—尼龙-66的结构单元:—[CO—(CH2)4—CO— NH—(CH2)6 — NH]—分子链中,结构相同的单位称为重复单元。

三、聚合度n大分子链中链节的重复数目称为聚合度—n。

……—CH2—CH2—CH2—CH2—CH2—……简写为—[CH2—CH2]—n结构式n高压法→ 低密度聚乙烯→ n小;n低压法→ 高密度聚乙烯→ n大四、相对分子质量M(分子量)n一个大分子链的相对分子质量为M(平均分子量),等于它的链节的相对分子质量Mo和聚合度n乘积,即M= Mo ×nn分子量可在几百(n<10=至26万(n=2600)之间变动,此现象称为高分子分子量的多分散性。

n分子量高,高分子的熔体粘度大,加工成型困难,强度和硬度高,而塑性、弹性和韧性低。

n对具有相同平均分子量的两个高分子试样来说,分子量分布宽,材料流动性好,易于加工,制品表面光滑;分子量分布窄,则机械强度高,力学性能好。

王永欣材料科学基础思考题第六章

王永欣材料科学基础思考题第六章

王永欣材料科学基础思考题第六章引言第六章主要讨论了材料的热性质和热传导,通过研究材料在不同温度下的性能变化,我们可以更好地理解材料的热传导机制和应用。

热性质的基本概念热性质是指材料在受热或冷却过程中所表现出的性能。

其中,比热容、热膨胀系数和导热系数是研究材料热性质的重要参数。

比热容比热容是指单位质量的物质在单位温度变化下所吸收或释放的热量。

它反映了材料对热能的吸附能力,其公式为:c=q m⋅ΔT其中,c代表比热容,q代表吸收或释放的热量,m代表物质的质量,ΔT代表温度变化。

热膨胀系数热膨胀系数是指材料在温度变化下的体积膨胀或收缩程度。

它描述了材料对温度变化的敏感程度,其公式为:α=ΔL L0⋅ΔT其中,α代表热膨胀系数,ΔL代表长度变化,L0代表初始长度,ΔT代表温度变化。

导热系数导热系数是指材料传导热量的能力。

它反映了材料对热流的导透能力,较高的导热系数代表材料导热性能较好,其公式为:k=q⋅l A⋅ΔT其中,k代表导热系数,q代表传导的热流,l代表热传导的长度,A代表热传导的横截面积,ΔT代表温度差。

热传导机制热传导是指热能从高温区域传递到低温区域的过程。

材料的导热性能与其内部的热传导机制密切相关。

分子导热分子导热是固体材料中常见的热传导机制。

固体材料中的分子在受热后会发生振动,并将热能通过碰撞传递给周围的分子,从而实现热传导。

辐射传热辐射传热是指通过电磁波辐射的方式进行热传导。

所有物体在温度大于绝对零度时都会发射热辐射,热辐射的能量可以传递给其他物体。

对流传热对流传热是指流体中的热能通过流动传递的过程。

通过流体的流动,热能可以迅速传递到其他地方,加快了热传导的速度。

热传导的应用热传导的特性广泛应用于许多工程和科学领域。

热散热器热散热器利用材料的导热性能,将电子设备等高温部件产生的热量传递到空气中,以保持设备的正常运行温度。

热工艺在一些金属和合金的热处理过程中,通过控制材料的热传导性能,可以实现对材料的结构和性能的调控。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6、7章总结、思考题与作业题
一、本章总结
1、凝固与结晶、相变、固态相变、组元、系、相图、单元相图、相平衡、相律(及表达式)及应用
2、纯金属凝固的过程和现象;过冷度对结晶过程和结晶组织的影响;
3、结晶的热力学条件、动力学条件、能量条件和结构条件;包括:一些更要的公式,以其应用
4、过冷现象、过冷度、理论凝固温度、实际凝固温度、临界过冷度、有效过冷度、动态过冷度;
5、均匀形核与非均匀形核,二者有何异同点。

结构起伏(相起伏)、能量起伏、浓度起伏、晶胚、晶核、临界晶核、临界晶核半径、临界形核功,临界晶核半径、临界形核功的计算。

形核率及影响因素、变质处理。

非均匀形核时影响接触角θ的因素有哪些?选择什么样的异相质点可以大大促进结晶过程。

6、光滑界面、粗糙界面;正温度梯度、负温度梯度;平面长大、树枝长大。

晶体长大的条件和长大的机制。

界面的生长形态与L/S前沿的温度梯度有何关系?
7、能用结晶理论说明实际生产问题。

如:变质处理和其它细化晶粒的工艺;单晶的制取和定向凝固技术。

(1).凝固理论的主要应用;(2).控制结晶组织的措施。

二、本章重要知识点
1. 金属结晶的过程;结晶的热力学条件、动力学条件、能量条件和结构条件;
2. 界面的生长形态与L/S前沿的温度梯度的关系。

三、思考题
1. 简述金属结晶过程的热力学条件、动力学条件、能量条件和结构条件。

为什么需要这些条件?冷却速度与过冷度的关系是什么?能否说过冷度越大,形核率越高,为什么?
2. 何谓正温度梯度和负温度梯度。

何谓粗糙界面和光滑界面。

分析纯金属生长形态与温度梯度的关系。

(简述纯金属枝晶的形成条件和长大过程。


3. 在同样的负温度梯度下,为什么Pb结晶出树状晶,而Si结晶平面却是平整的?
4. 何谓均匀形核?何谓非均匀形核(异质形核)?试比较二者有何异同?
叙述异质形核的必要条件。

选择什么样的异相质点可以大大促进结晶过程?
5. 指出形核过程的驱动力和阻力分别是什么?比较均匀形核和非均匀形核的临界形核功大小和形核率的大小,说明造成两者差异的原因。

6. 液态金属凝固时都需要过冷,为什么?那么固态金属熔化是否会出现过热?为什么?
7. 固、液界面的微观结构有哪些类型?用什么判据来判断固、液界面的性质?金属的液、固界面属于哪类?对其凝固过程有何影响?
8. 为什么要生产合金?与纯金属相比,合金有哪些优越性?
9. 根据凝固理论,试述工业中细化铸件晶粒有哪些途径(措施)?简要细化晶粒的机理。

10. 区别概念:
●均匀形核与非均匀形核
●热过冷和成分过冷
●结构起伏(相起伏)、能量起伏和浓
度起伏●晶胚和晶核
●光滑界面和粗糙界面
●正温度梯度和负温度梯度●平面长大和树枝长大。

相关文档
最新文档