一元二次方程解法说课稿PPT课件

合集下载

21-2 解一元二次方程 课件(共33张PPT)

21-2 解一元二次方程 课件(共33张PPT)
2×2 2
小练习
用公式法解下列一元二次方程:
(3)5x2-3x=x+1
(4)x2+17x=8x
解:方程化为5x2-4x-1=0
解:方程化为x2-8x+17=0
a=5,b=-4,c=-1.
a=1,b=-8,c=17.
Δ=b2-4ac=(-4)2-4×5×(-1)=36>0. Δ=b2-4ac=(-8)2-4×1×17=-4<0.
因式分解,可以考虑配方法;
(4)三项都有,且二次项系数不为1时的,一般可以用公式法。
小练习
例 3:解方程:x2-6x-16=0。
解:原方程变形为(x-8)(x+2)=0。
于是,得x-8=0或x+2=0
∴x1=8,x2=-2
解析:一元二次方程的解法有:配方法,公式法和因式分解法,解题时要
注意选择合适的解题方法。解此一元二次方程选择因式分解法最简单,因
(3)求解b2-4ac的值,如果b2-4ac≥0;
−± 2−4
(4)代入公式x=
,即可求出一元二次方程的根。
2
知识梳理
例 2:用公式法解方程x2-3x-1=0正确的解为( D )
−3± 13
A. x1,2=
2
3± 5
C.x1,2=
2
B.
D.
−3± 5
x1,2=
2
3± 13
x1,2=
2
解析:x2-3x-1=0。这里a=1,b=-3,c=-1。
Δ=b2-4ac=(-4)2-4×1×(-7)=44>0. Δ=b2-4ac=(-2 2)2-4×2×1=0.
−± 2−4
方程有两个不等的实数根x=
2

《解一元二次方程》一元二次方程PPT课件(公式法)

《解一元二次方程》一元二次方程PPT课件(公式法)

C.a=3,b=2,c=-3
D.a=3,b=-2,c=3
2. 关于x的一元二次方程(m-1)x2-2x-1=0有两个实数根,则实数m的取值
范围是( C )
A.m≥0
B.m>0
C.m≥0且m≠1
D.m>0且m≠1
3. 若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y
=kx+b的大致图象可能是(B )

将 ax2+bx+c=0 (a≠0)配方成 x 2a 4a 2 后,可以看出只


2
有当b2-4ac≥0时,方程才有实数根,这样b2-4ac的值就决定着一元
二次方程根的情况.
一般地,式子b2-4ac叫做一元二次方程ax2+bx+c=0根的判别式,
通常用希腊字母“ ∆ ”表示它,即 ∆= b2-4ac.
3 x 2 6 x 5 0;
(1)
(2)
4 x 2 -x-9 0.
2、用配方法解方程的一般步骤有哪些?
一般步骤
方法
一移
移项
将常数项移到右边,含未知数的项移到左边
二化
二次项系数化为1
左、右两边同时除以二次项系数
三配
配方
左、右两边同时加上一次项系数一半的平方
四开
开平方
利用平方根的意义直接开平方
4a2>0,
当b2-4ac≥0时,
b 2 4ac
0,
2
4a
b
b 2 4ac
x

,
2a
2a
b b 2 4ac
即x
.
2a
b b 2 4ac

一元二次方程的解法-公式法》PPT课件

一元二次方程的解法-公式法》PPT课件
解:化简为一般形式:x 2 3 x 3 0
2
a 1、 b -2 3、 c 3 2 2 b 4ac ( 2 3 ) 4 1 3 0
(- 2 3 ) 0 2 3 x 3 21 2 ∴ x1 x2 3
结论:当b2-4ac=0时,一元二次方程有两 个相等 的实数根.
一个直角三角形三边的长为三个连续偶数, 求这个三角形的三边长.
解 : 设这三个连续偶数中间的一个为x, 根据题意得
x x 2 x 2 .
2 2 2
即x 8x 0.
2
B
解这个方程 ,得
x1 8, x2 0(不合题意 , 舍去).
x 2 6, x 2 10.
用公式法解下列方程:
1、x2 +2x =5
2、 6t2 -5 =13t
例4
解方程:
x2 3 2 3 x
解: 原方程化为:x 2 2 3 x 3 0
a 1 ,b 2 3,c 3
b 4ac 2 3 4 1 3 0
2


2
( 2 3) 0 2 3 x 3 21 2 x1 x2 3
二、用配方解一元二次方程的步骤是什么? 1.化1:把二次项系数化为1(方程两边都除以二次项系 数); 2.移项:把常数项移到方程的右边; 3.配方:方程两边都加上一次项系数绝对值一半的平方; 4.变形:方程左边分解因式,右边合并同类; 5.开方:根据平方根意义,方程两边开平方; 6.求解:解一元一次方程; 7.定解:写出原方程的解.
用配方法解一般形式的一元二次方程
ax bx c 0
2
(a≠0)

《解一元二次方程》一元二次方程PPT课件9

《解一元二次方程》一元二次方程PPT课件9
(3).横向写出两因式; (x+6)和(x-3)
例2把 x2 2x 15分解因式;
解: 原式 (x+3)(x-5)
x
3
x
-5
-5x+3x=-2x
例3把a2 7a 10分解因式;
解:原式= (a+5) (a+2)
a
5
a
2
5a+2a=7a
练习一选择题:
1. 分解a 2 a 12的结果为( B )
即x1 0,x2 1.
1.解下列方程: .
(2)x2 2 3x 0, 提公因式x(x 2 3) 0, 所以有x 0或x 2 3 0, 即x1 0,x2 2 3.
(3)3x2 6x 3, 移项,得:3x2 6x 3 0, 提公因式得:3(x2 2x 1) 0, 所以3(x 1)2 0, 有(x 1)2 0, 所以x1 x2 1.
回顾与复习 1
我们已经学过了几种解一元二次方程的方法?
(1)直接开平方法:
x2=a (a≥0)或 (mx+n)2=a (a≥0)
(2)配方法: (x+h)2=k (k≥0)
(3)公式法: x b b2 4ac . b2 4ac 0 . 2a
我思 我进步
分解因式的方法有那些?
(1)提取公因式法: am+bm+cm=m(a+b+c).
A. (a - 3)(a 4); B. a 3a 4; C. a 6a 2; D. a 6a 2;
2. 分解x 2 2x 8的结果为 ( A )
A. a 4a 2; B. a 4a 2; C. a 4a 2; D. a - 4a 2;
3. 若 多项项M分解的因式是(x - 2)(x - 3),则M是(C)

一元二次方程的解法直接开平方法PPT课件

一元二次方程的解法直接开平方法PPT课件

2
2 ,x2=-1- 2
例2解下列方程: ⑵ ( x - 1) 2 - 4 = 0 ⑶ 12(3-2x)2-3 = 0 分析:第2小题先将-4移到方程的右边,再同 第1小题一样地解; 解:(2)移项,得(x-1)2=4 ∵x-1是4的平方根 ∴x-1=±2
典型例题
即x1=3,x2=-1
典型例题 例2解下列方程:
⑶ 12(3-2x)2-3 = 0 分析:第3小题先将-3移到方程的右边,再 两边都除以12,再同第1小题一样地去解,然后 两边都除以-2即可。 解:(3)移项,得12(3-2x)2=3 两边都除以12,得(3-2x)2=0.25 ∵3-2x是0.25的平方根 ∴3-2x=±0.5 即3-2x=0.5,3-2x=-0.5
首先将一元二次方程化为左边是含有未 知数的一个完全平方式,右边是非负数的形式, 然后用平方根的概念求解
3.任意一个一元二次方程都能用直接开平 方法求解吗?请举例说明
1、下列解方程的过程中,正确的是(D ) (A)x2=-2,解方程,得x=±
练一练
2
(B)(x-2)2=4,解方程,得x-2=2,x=4
试一试:
已知一元二次方程mx2+n=0(m≠0),若方 程可以用直接开平方法求解,且有两个实数根, 则m、n必须满足的条件是( B ) A.n=0 C.n是m的整数倍 B.m、n异号 D.m、n同号
例1解下列方程 (1)x2-1.21=0
典型例题
(2)4x2-1=0
解(1)移项,得x2=1.21 ∵x是1.21的平方根 ∴x=±1.1 即 x1=1.1,x2=-1.1 (2)移项,得4x2=1 1 2 两边都除以4,得x = 1 4 ∵x是 4 的平方根 ∴x=

人教版数学九年级上册21.1 一元二次方程课件(共24张PPT)

人教版数学九年级上册21.1 一元二次方程课件(共24张PPT)
解:设小道的宽度为x米,得(20-2x)(10-x)=120整理得x2-要建造一个长10m,宽5m玻璃顶观景亭,如图所示在它的四角建造四个截面为正方形的承重柱. 已知需要用到玻璃的面积为45m2,那么承重柱的宽度多少?
解:设承重柱的宽度为x米,得(10-x)(5-x)=45整理得x2-15x+5=0.
等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
ax2 称为二次项, a 称为二次项系数, bx 称为一次项, b 称为一次项系数, c 称为常数项.
为什么一般形式 ax2 + bx + c = 0 中要限制 a ≠ 0?b,c 可以为 0 吗?
21.1 一元二次方程
1.能根据具体问题中的数量关系列出一元二次方程(2022年版课标调整为“能根据现实情境理解方程的意义,能针对具体问题列出一元二次方程”)2.理解一元二次方程的概念及一元二次方程根的意义;3.理解并灵活运用一元二次方程概念解决有关问题.
某社区按照“崇尚自然、接近自然、回归自然”的原则,打造独具特色的“幸福林”,要对社区公园景观化进行改造.任务1 打造“郁金香”观赏带为了增加观赏性,要在一个占地面积为10000km2的正方形郁金香观赏园,求郁金香种植园的边长是多少呢?
例1 根据问题列出方程,判断是否为一元二次方程,若是请指出二次项系数,一次项系数和常数项
解:根据题意列方程为4x(x+2)=100去括号化为一般式为x2+2x-25=0该方程是一元二次方程二次项系数为1,一次项系数为2,常数项为-25
(2)若公园的长比宽长2,周长为100,求公园边长x;
解:根据题意列方程为2x+(x+2)=100去括号得3x-98=0该方程不是一元二次方程

一元二次方程的解法ppt课件

一元二次方程的解法ppt课件
的各项系数a、b、c确定的,当 2 -4ac≥0时,它的实数根

公式法推导过程
这叫做一元二次方程的求根公式,解一元二次方程时,
2
把各项系数的值直接代入这个公式,若 -4ac≥0就可以
求得方程的根,这种解一元二次方程的方法叫做公式法.
尝试与交流
2
2
在一元二次方程 +bx+c=0(a≠0)中,如果 -4ac<0那
解:原方程可变形为(2x-1+x)(2x-1-x)=0
即(3x-1)(x-1)=0
3x-1=0或x-1=0
所以x1=

,x
2=1

观察与思考
2=4(x+2)
(x+2)
解方程
小丽、小明的解法如下:
小丽、小明的解法,哪个正确?
因式分解法练习
1.用因式分解法解下列方程
①x2-3x=0
② 3x2= x
③2( x-1 ) + x ( x-1 ) =0
叫做因式分解法
例题8
解下列方程
① = −
② + − + =
原方程可变形为x2+4x=0
原方程可变形为
x(x+4)=0
(x+3)(1-x)=0
x=0或x+4=0
x+3=0或1-x=0.
所以x1=0,x2=-4
所以x1=-3,x2=1
例题9
解方程
(2x-1)2-x2=0
的矩形割补成一个正方形
数学实验室
一个矩形通过割、拼、补,成为一个正方形的过程配方
的过程
数学实验室
数学实验室
数学实验室
数学实验室

解一元二次方程ppt课件

解一元二次方程ppt课件

21.2 解一元二次方程

难 ■题型二 利用根的判别式判断三角形的形状
题 型
例 2 已知△ABC 中,a,b,c 分别是∠A,∠B,∠C 的对边,且关于 x
突 的一元二次方程 b(x2-1)-2ax+c(x2+1)=0 有两个相等的实数根.判断
破 △ABC 的形状.
[解析] 根据已知条件得出 Δ=0,将等式变形,利用勾股定理的逆定理
B. 只有一个实数根

C. 有两个不相等的实数根
D. 没有实数根
[解题思路]
原方程
x(x-2)=1
化为一般形式
x2-2x-1=0
确定 a,b,c 的值
a=1,b=-2,c=-1
代入判别式 Δ
b2-4ac=8>0
判断根的情况
[答案] C
有两个不相等的实数根
方法点拨 应用根的判别式时要准确确定 a,b,c 的值,代入时要注意不 要丢掉各项系数的符号.
清 单
(1)x2-4x-3=0; (2)2x2-6x=1; (3)(t+3)(t-1)=12.

[解题思路] 按照下面的顺序进行求解.

[答案] 解:(1)移项,得 x2-4x=3,配方,得 x2-4x+4=3+4,即(x-
2)2=7,开方,得 x-2=±
,所以 x1=2+
,x2=2-

(2)二次项系数化为 1,得 x2-3x= ,配方,得 x2-3x+
21.2 解一元二次方程


21.2.1 配 方 法

单 ■考点一 直接开平方法


原理 根据平方根的意义进行“降次”,转化为一元一次方程求解

一元二次方程课件ppt

一元二次方程课件ppt

• 问题1、绿苑小区住宅设计,准备在每两幢楼 房之间,开辟面积为900平方米的一块长方 形绿地,并且长比宽多10米,那么绿地的长 和宽各为多少?
(x+10)
x
问题1、绿苑小区住宅设计,准备在每两幢楼房之间, 开辟面积为900平方米的一块长方形绿地,并且 长比宽多10米,那么绿地的长和宽各为多少?
例1.将方程(8-2x)(5-2x)=18化成一元二次 方程的一般形式,并写出其中的二次项系数、一次
项系数及常数项.
• 分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此, 方程(8-2x) (•5-2x)=18必须运用整式运算进行整理,包括 去括号、移项等.
• 解:去括号,得: • 40-16x-10x+4x2=18 • 移项,得:4x2-26x+22=0 • 其中二次项系数为4,一次项系数为-26,常数项为22.
3
你会用描点法画二次函数y=x2的图象吗?
观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10
y=x2
8
6
4
2
?
-4 -3 -2 -1 0 1 2 3 4 x -2
二次函数 y=x2的图象 形如物体抛 射时所经过 的路线,我们 把它叫做抛 物线
方程
二次项 一次项 常数 系数 系数 项
2x2 x 3 0 2
1
-3
3x2 5 0
3
0
-5
x2 3x 0 1
-3
0
2、将下列一元二次方程化为一般形式,并分别 指出它们的二次项系数、一次项系数和常数项:

一元二次方程的解法ppt课件

一元二次方程的解法ppt课件

谢谢!
Sometimes all a person needs is a hand to hold and a heart to understand. 有时候,一个人想要的只是一只可握的手和一颗感知的心. Love ,not time,heals all wounds. 治愈一切创伤的并非时间,而是爱. Life is tough,but I'm tougher. 生活是艰苦的,但我应更坚强.
励志名言
The best classroom in the world is at the feet of an elderly person.
世界上最好的课堂在老人的脚下. Having a child fall asleep in your arms is one of the most peaceful feeling in the world. 让一个孩子在你的臂弯入睡,你会体会到世间最安宁的感觉. Being kind is more important than being right. 善良比真理更重要. You should never say no to a gift from a child. 永远不要拒绝孩子送给你的礼物.
一元二次方程的解法 专题复习
授课教师:唐晓庆
(1)直接开平方法 (2)因式分解法 (3) 配方法 (4)公式法
直接开平方法
形如: ax2 c 0(a 0)
例如:9x2 27
(2x 1)2 5 0
因式分解法
提公因式法:
ax2 bx 0(a 0)
3x(x 2) 5(x 2) 0
因式分解法
提公因式法:
ax2 bx 0(a 0)
3x(x 2) 5(x 2) 0

解一元二次方程课件PPT

解一元二次方程课件PPT
(1)一个正数有两个平方根,这两个平方根是互为相反 数的;(2)零的平方根是零; (3)负数没有平方根。
问题3 :什么叫做开平方运算?
求一个数平方根的运算叫做开平方运算。
问题4.根据平方根的意义你能解下列方程吗?
如何解方程(1)x2=4,(2)x2-2=0呢?
解(1)∵x是4的平方根 ∴x=±2
即此一元二次方程的解(或根)为: x1=2,x2 =-2

(x 3)2 5
变成了(x+h)2=k

开平方 的形式

x3 5
想 得: x1 3 5, x2 3 5
把一元二次方程的左边配成一 个完全平方式,然后用直接开平方法 求解,这种解一元二次方程的方法叫 做配方法.
(x
p
__2 __)2
对于x2+px,再添上一次项系数一 半的平方,就能配出一个含未知数的 一次式的完全平方式.
体现了从特殊到一般的数学思想方法
体 x2 6x 4 0

移项
了 转
x2 6x 4
两边加上32,使左边配 成完全平方式
化 x2 6x 32 4 32

左边写成完全平方的形式
(1)9x2 5 3
(2)3x 12 6 0
3 x2 4x 4 5
解下列方程:
(1)9x2 5 3
解:移项 9x2 8,
得 x2 8 , 9
注意:二次 根式必须化 成最简二次 根式。
xx
28 2 33
,
方程的两根为:
x1
22 3
x2
22 3
.
(2)3x 12 6 0
难点: 探究( x-m)2=a的解的情况,具有分类 讨论的意识.

2 解一元二次方程 公式法PPT课件(人教版)

2 解一元二次方程 公式法PPT课件(人教版)

12.已知关于x的一元二次方程x2+bx+b-1=0有两个相等的实数 根,则b 的值是__2__.
13.关于x 的方程(a+1)x2-4x-1=0有实数根,则a满足的条件是 _a_≥_-__5_____.
14.用公式法解下列方程: (1)x(2x-4)=5-8x;
解:原方程整理为 2x2+4x-5=0,∴b2-4ac=16+4×2×5= 56,∴x=-24×±256,即 x1=-2+2 14,x2=-2-2 14
练习1:对一元二次方程x2-2x=1,b2-4ac=__8__. 2.式子____b_2_-__4_a_c___叫做一元二次方程ax2+bx+c=0根的判别 式,常用Δ表示,Δ>0⇔ax2+bx+c=0(a≠0)有 __有__两__个__不__等__的__实__数__根_______;Δ=0⇔ax2+bx+c=0(a≠0)有 __两__个__相__等__的__实__数__根___;Δ<0⇔ax2+bx+c=0(a≠0)____无__实__数__根__. 练习2:(202X·长沙)若关于x的一元二次方程x2-4x-m=0有两个 不相等的实数根,则实数m的取值范围是_____m_>__-__4____.
8.一元二次方程x2-x-6=0中,b2-4ac=__2_5___,可得x1= __3__,x2=__-__2__.
(91.)x用2-公3x式-法2=解0下;列方解程::x1=3+2 17,x2=3-2 17 (2)8x2-8x+1=0;
解:x1=2+4 2,x2=2-4 2
(3)2x2-2x=5. 解:x1=1+2 11,x2=1-2 11
知识点1:根的判别式 1.(202X·邵阳)一元二次方程2x2-3x+1=0的根的情况是( B ) A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根 2.(202X·丽水)下列一元二次方程没有实数根的是( B ) A.x2+2x+1=0 B.x2+x+2=0 C.x2-1=0 D.x2-2x-1=0

解一元二次方程-公式法 ppt课件

解一元二次方程-公式法  ppt课件

利用公式法解一元二次方程
例题
解析
解方程:x²−4x=7
一般步骤
化为一般式得:x²−4x-7=0

∵ = 1,b=−4,c=−7.

∴△= 2 − 4 =16−(−28)=44>0.
∴方程有两个不相等的实数根
∴ =
−± 2 −4
2
=
4± 44
2
= 2 ± 11

 = 2 + 11, = 2 − 11.
x



2a
25
5
1
即 x1 1, x2 5 .
典型例题
用公式法解下列方程:
(1) x2 4 x 7 0
(3) 5x 2 3x x+1
(2) 2x2 2 2 x+1 0
(4) x2 17 8x
解: (4) 方程化为一般式 x2 8x 17 0
解析
意.
练习
练习
若关于 x 的一元二次方程 (k-1)x2+2x-2=0 有不相
等实数根,求 k的取值范围.
不解方,判断关于 x 的方程 x²-kx+k-2=0的根的
情况.
练习
若关于 x 的一元二次方程 (k-1)x2+2x-2=0 有不相
等实数根,求 k的取值范围.
k
练习
1
的取值范围为:k>2且 k

=
=
2
2
2 −4
判别式的应用
例题
关于x的一元二次方程:(m-3)x²-4x-1=0,有
实数根,求m的取值范围?
依题可得


2.1.2一元二次方程的解 课件(共20张PPT)

2.1.2一元二次方程的解 课件(共20张PPT)

如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端距地
面的垂直距离为8 m,如果梯子的顶端下滑1 m,那么梯子的底
端滑动多少米?
在上一课中,我们知道四周未铺地毯部分的宽度x满足方程(8-2x)
(5-2x)=18,
你能求出这个宽度吗?
(1)x可能小于0吗?可能大于4吗?可能大于2.5吗?说说你的理由;
例 4:已知方程² + − = 的解是 = , = − ,那么方
程 ( + )² + ( + ) − = 的解是( )
A. = −, =
. = , =
C. = , = −
D. = −, = −
例 5:若关于x的一元二次方程² + − = ( ≠ )有一个
等,则这个未知数的值就是方程的根)
(3)在估算一元二次方程的解时,若在 x的取值范围内取整数值,
没有一个整数能够使方程左边等于0怎么办?
(若在x的取值范围内没有一个整数能够使方程的左边为0,
则找出值最接近 0 的近似解满足什么条件? 它与方程的解有什么
A.8
B.4
C.2
D.1
变式: 若关于x的一元二次方程(a-1)x²-x+a²-1=0的一个根是0,则
a的值为( )
A.1或-1
B.-1
C.1

D.

典例精讲
【题型二】求一元二次方程的近似解
例2:在估算一元二次方程x²+2x-4=0的根时,小晗列表如下:
由此可估算方程x²+2x-4=0的一个根x的范围是( C )
告诉B,最后由B说出方程的解的取值范围并猜解.
0,则找出值最接近于0的两个数(一正一负)对应的两个x值,以这两个x值

《解一元二次方程公式法》PPT课件

《解一元二次方程公式法》PPT课件

第二十四章 解一元二次方程
24.2 解一元二次方程
第3课时 因式分解法
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.回顾因式分解的相关知识. 2.学会用因式分解法解一元二次方程. (重点、难点)
导入新课
观察与思考
问题 一元二次方程的一般式是怎样的?常用的求一元二次 方程的解的方法有哪些?
ax2 bx c 0(a≠0)
24.2 解一元二次方程 公式法
12.已知一个直角三角形的两条直角边的长恰好是2x2-8x+7=
0的两个实数根,则这个直角三角形的斜边长是( B )
A. 3 B.3 C.6
D.9
13.已知x=1是方程x2+bx-2=0的一个根,则方程的另一个根
是( C )
A.1 B.2 C.-2 D.-1
24.2 解一元二次方程 公式法
适合运用公式法 ① ⑦ ⑧

适合运用配方法 ④
.
2.解下列一元二次方程: (1)(x-5) (3x-2)=10; (2) (3x-4)2=(4x-3)2.
解: (1) 化简方程,得 3x2-17x=0.
将方程的左边分解因式,得 x(3x-17)=0,
∴x=0 或3x-17=0
解得
x1=0,

x2=
17 3
则x=0,或x-3=0,解得x1=0,x2=3.
(2)同上可得x1=0.8,x2=-0.8. 像上面这种利用因式分解解一元二次方程的方法叫做因式 分解法.
归纳 因式分解法的基本步骤是: 若方程的右边不是零,则先移项,使方程的右边为零; 将方程的左边分解因式; 根据若A·B=0,则A=0或B=0,将解一元二次方程转化为解两 个一元一次方程.

《解一元二次方程》一元二次方程PPT课件

《解一元二次方程》一元二次方程PPT课件
解一元二次方程
直接开平方法
1、一元二次方程的概念
等号两边都是整式,只含有一个未知数 (一元),并且未知数的最高次数是2 (二次)的方程,叫做一元二次方程.
2、一元二次方程的一般形式
ax2 bx c 0 (a 0)
1、判断下面哪些方程是一元二次方程
(1)x2 3x 4 x2 7 ×
首先将一元二次方程化为左边是含有未知数的一个 完全平方式,右边是非负数的形式,然后用平方根的 概念求解 .
3.任意一个一元二次方程都能用直接开平方法求解吗? 请举例说明.
练一练
1、下列解方程的过程中,正确的是( D )
(A)x2=-2,解方程,得x=± 2
(B)(x-2)2=4,解方程,得x-2=2,x=4
●学习目标
• 1.理解解一元二次方程降次的转化思想; • 2.会利用直接开平方法解形如x2=p或(mx
+n)2=p(p≥0)的一元二次方程; • 3.体会类比的思想;
重点: 能够熟练而准确的运用直接开平方法 求一元二次方程的解.
难点: 探究( x-m)2=a的解的情况,具有分类 讨论的意识.
知识回顾
问题1.什么叫做平方根?用式子如何表示? 如果一个数的平方等于a,那么这个数就叫
做a的平方根。
若x2=a,则x叫做a的平方根。记作x=
即x= a 或x= a
问题如2:.9平的方平根方根有是哪_些_±__性_3_质2?45 的平方根是______
(1)一个正数有两个平方根,这两个平方根是互为相反 数的;(2)零的平方根是零; (3)负数没有平方根。
例1、解下列方程
(1)x2-1.21=0
(2)4x2-1=0
解:(1)移项,得x2=1.21

一元二次方程的解法—公式法ppt课件

一元二次方程的解法—公式法ppt课件

k≠0
k≠0
归纳 当一元二次方程二次项系数是字母时,一定要注意二次项 系数不为 0,再根据“Δ”求字母的取值范围.
【变式题】删除限制条件“二次”
若关于 x 的方程 kx2 − 2x −1 = 0 有实数根,则 k 的取值范围是
( A)
A. k≥ −1
B. k≥ −1且 k≠0
C. k < 1
D. k < 1 且 k≠0
第二十一章 一元二次方程
21.2 解一元二次方程
21.2.2 公式法
学习目标
1. 了解求根公式的推导过程;(难点) 2. 掌握用公式法解一元二次方程;(重点) 3. 会用判别式判断一元二次方程的根的情况.
知识回顾
用配方法解一元二次方程的步骤有哪些?
一“化”:将方程化为一般形式,且把二次项系数化为1; 二“移”:将常数项移到方程的右边; 三“配”:方程方左程边两配边成同完时全加平上方一的次形项式系;数一半的平方,将
练一练
不解方程,判断下列方程的根的情况.
(1)3x2+x-1=0;
(2)2x2+6=3x;
方法归纳
判断一元二次方程根的情况的方法:
将方程整理 为一般形式 ax2+bx+c=0
Δ= b2 − 4ac > 0 Δ= b2 − 4ac = 0 Δ= b2 − 4ac < 0
有两个不等的实数根 有两个相等的实数根 没有实数根
Δ= b2-4ac = (− )2-4×2×1 = 0. 方程有两个相等的实数根
x1 = x2
(3) 5x2-3x = x + 1; 解:方程化为 5x2-4x-1 = 0.
±-
a = 5,b = -4,c = -1. Δ= b2-4ac = (-4)2-4×5×(-1) = 36>0.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 学法:
利用学生的好奇心设疑、解疑,组织互动、有效的教学活动,鼓动 学生积极参与,大胆猜想,使学生在自主探索和合作交流中, 观察 猜测 交流讨论 分析推理 归纳总结,理解和掌握本节课的内容。
7ห้องสมุดไป่ตู้
六、教学过程
❖ (一)创设情境,提出问题 ❖ (二)对比探究,解决问题 ❖ (三)随堂练习,巩固深化 ❖ (四)小结梳理,分层作业
❖ 问题(3):探索的求程解两过边都程加和上一方次法项系。数
一半的平方。
❖ 问题(4):配方的目的是什么?配方时应注意
什么?
(三)随堂练习,巩固深化(教科书25页1题 2题)
10
解一元二次方程的步骤
❖ 1.化 1: 把二次项系数化为1; ❖ 2.移项: 把常数项移到方程的右边; ❖ 3.配方: 方程两边都加上一次项系数一半的平方; ❖ 4.变形: 方程左边分解因式,右边合并同类项; ❖ 5.开方: 方程两边开平方; ❖ 6.求解: 解一元一次方程; ❖ 7.定解: 写出原方程的解
4
三、教学重难点
❖ 重点: 会用配方法解数字系数为1的一元二次方 程
❖ 难点: 熟练进行配方.
5
四、学情分析
经过初中两年的学习,他们已经具备了 一 的定习的惯探。索大能 多力 数, 学因 认 调此 识 动也 生在 规 学教 律 生初 的,学 的步 好由过 积浅程 极养 胜入中 性成 心深应 ,,遵 并了比适循 适时学当合较引生地作强导的给,交,流性 格比较活泼,他们予 的希表 自望扬 信和 心有鼓。励展,现借此自增我强他才们华的机 会,但是对于九年级的农村中学的学生来 说,他们独立分析问题的能力和灵活应用 的能力还有待提高,很多时候还需要教师 的点拨和引导。
❖ (1)基础题:教科书28页,练习(1)、31页2(2) 及x^2+10x+9=0
❖ (2)思考题:用配方法解方程 2x2 3x 1 0
12
8
(一)创设情境,提出问题
❖ 首先以实际问题引入:要使一块矩形场地的长
比宽多6m,并且面积为16m2,场地的长和宽应
各是多少?将学生放置于实际问题的背景下, 有助于激发学生的主动性和求知欲。 ❖ x2 6x16 0 ,学生发现这个方程暂时不会解,感 受到问题的存在。 ❖ 这时我将会引导学生思考如何解所列方程?怎 样把它转化为我们已经会解的方程?”
作意识。
3
二、教学目标
❖ 1.知识目标: (1).了解配方法的定义,掌握配方法解一元二次方程的 步骤; (2).会用配方法解数字系数为1的一元二次方程;
❖ 2.能力目标: 提高自学能力、归纳能力、交流能力,增强思维能力。
❖ 3.情感态度: 通过学生间交流、探索,进一步激发学生的学习热情,
求知欲望,同时提高小组合作意识和一丝不苟的精神。
9
(二)对比探究,解决问题
❖ 问题(1):我们会解用什问么题唤样起的学生一的元记忆二,明次确方现 程?
举例说明。
在会求解的方程的特点是:等号 一明边确是配完方全的平目方的式是,通另过一配边是一
❖ 问题(2):把你得出个成的非完负方全常平程数方的和形形式式会来,解解运方用的程直。方接开程进行
对比,你能得到什么启平化对次方的发二方可目次程以标?项配求,系方解也数时。是是要这对注1是比的意后研一在面究元方配的二方基转础。
11
(四)小结梳理,分层作业
❖ 用你的语言描述一下配方法解一元二次方程的基本步 骤和需注意的问题。
❖ 最后我将引导学生进行反思、归纳配方法解一元二次 方程的基本思路、步骤及注意事项。巩固对课堂知识 的理解和掌握,同时进一步体会解一元二次方程时降 次的基本策略和转化的思想。
❖ 为了加深学生对本节课的知识理解和掌握我跟他们的 课后作业是:
6
五、教法学法分析
❖ 教学方法:
采用引导探索法,整个探索学习的过程充满了师生之间,生生之间的 交流和互动,体现了教师是教学活动的组织者、引导者、合作者, 学生才是数学学习的主人。
❖ 教学手段:
我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识, 增强直观效果,提高课堂效率。 启发、引导、点拔、评价
班级: 说课人: 学号:
1



——


配 方 法
程 的 解 法
教材分析 教学目标 教学重难点 学情分析 教法学法分析
教学过程
2
一、教材分析
一元二次方程的解法是本章的重点内容, 其中包括配方法、公式法和因式分解法, “配方法”是学生接触到的的第二种一元 二次方程的解法,它是以直接开方法为基 础的一次深入探究,是由特殊到一般的一 个拓展过通过程这节,课又的学对习,继不但续可以学使习学生后掌握面一种的基公本的式运 法 有着指导算方和法,铺还垫可以,培养具学生有探索承与上归纳启能力下,提的高作小组用合 。
相关文档
最新文档