2020年春 浙教版 八年级下册数学 第3章 数据分析初步 单元测试卷 (解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教新版八年级(下)数学第3章数据分析初步
单元测试卷
一.选择题(共10小题)
1.某校开展了“空中云班会”的满意度调查,其中九年级各班满意的人数分别为27,28,28,29,29,30.下列关于这组数据描述正确的是()
A.中位数是29B.众数是28
C.平均数为28.5D.方差是2
2.老师要分析小刚的5次数学模拟考试成绩是否稳定,她需要统计小刚这5次成绩的()A.平均数B.方差或标准差
C.众数D.中位数
3.据调查,某班40名学生所穿校服尺码统计如表:
尺码150155160165170175180
频数18615442则该班40名学生所穿校服尺码的众数是()
A.4B.15C.170D.165
4.若1,4,m,7,8的平均数是5,则1,4,m+10,7,8的平均数是()A.5B.6C.7D.8
5.某校为了解学生在校一周体育锻炼时间,随机调查了35名学生,调查结果列表如下:锻炼时间/h5678人数615104则这35名学生在校一周体育锻炼时间的中位数和众数分别为()
A.6h,6h B.6h,15h C.6.5h,6h D.6.5h,15h
6.烹饪大赛的菜品的评价按味道,外形,色泽三个方面进行评价(评价的满分均为100分),三个方面的重要性之比依次为7:2:1.某位厨师的菜所得的分数依次为92分、88分、80分,那么这位厨师的最后得分是()
A.90分B.87分C.89分D.86分
7.某商店选用20元/千克的A型糖x千克,12元/千克的B型糖5千克,混合成什锦糖后出售,这种什锦糖平均每千克的售价为15元/千克,则x的值为()
A.3B.4C.5D.6
8.某工厂生产质量为1克,5克,10克,25克四种规格的球,现从中取x个球装到一个空箱子里,这时箱子里球的平均质量为20克,若再放入一个25克的球,则箱子里球的平均质量变为21克,则x的值为()
A.3B.4C.5D.6
9.小红同学对数据24,48,23,24,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()
A.平均数B.中位数C.方差D.众数
10.某中学篮球队12名队员的年龄如表所示:
年龄(岁)13141516
人数1542
关于这12名队员的年龄,下列说法错误的是()
A.众数是14岁
B.最大值与最小值的差是3岁
C.中位数是14.5岁
D.平均数是14.8岁
二.填空题(共10小题)
11.数据3,4,5,1,3,6,3,3的众数是.
12.今年3月份某周,我市每天的最高气温(单位:℃)12,11,10,15,16,15,12,若这组数据的中位数是.
13.若一组数据1,2,3,x的平均数是2,则这组数据的方差是.
14.如表是某所学校一个学习小组一次数学测验的成绩统计表,已知该小组本次数学测验的平均分是86分,那么表中的x的值是.
分数708090100
人数13x1
15.现有相同个数的甲、乙两组数据,经计算得:x甲=x乙,且S甲2=0.35,S乙2=0.25,比较这两组数据的稳定性,组比较稳定.
16.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数是,标准差是.
17.某景区在“春节”假期间,每天接待的游客人数统计如下:(单位:万人)农历十二月三十正月初一正月初二正月初三正月初四正月初五正月初六人数 1.2 2.32 2.3 1.2 2.30.6表中表示人数的一组数据中,众数和中位数分别是和.
18.小明本学期平时测验,期中考试和期末考试的数学成绩分别是135分、135分、122分.如果这3项成绩分别按30%、30%、40%的比例计算,那么小明本学期的数学平均分是.
19.10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是分.20.已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是.
三.解答题(共8小题)
21.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,两人成绩如下(单位:环):
甲:2,4,6,8,7,7,8,9,9,10
乙:9,6,7,6,2,7,7,a,8,9
(1)求甲的平均数;
(2)已知=7,求乙的中位数;
(3)已知S甲2=5.4,请通过计算说明谁的成绩较稳定?
22.甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分)
数与代数空间与图形统计与概率综合与实践学生甲90948690
学生乙94829391(1)分别计算甲、乙成绩的平均数和方差;
(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3:3:2:2计算,那么甲、乙的数学综合素质成绩分别为多少分?
23.在“2019慈善一日捐”活动中,某校八年级(1)班40名同学的捐款情况如下表:
捐款金(元)203050A80100
人数(人)2816x47根据表中提供的信息回答下列问题:
(1)x的值为,捐款金额的众数为元,中位数为元;
(2)已知全班平均每人捐款57元,求a的值.
24.停课不停学,疫情期间,九(1)班30位同学参加运动线上打卡,张老师为了鼓励同学们积极锻炼,统计了这30人15天的打卡次数如下:
打卡次数4567891011131415人数11236511145(1)求所有同学打卡次数的平均数,并直接写出中位数和众数;
(2)为了调动同学们锻炼的积极性,张老师决定制定一个打卡奖励标准,凡打卡次数达到或超过这个标准的同学将获得奖励﹒请你根据(1)中所求的统计量,帮助张老师制定一个较为合理的打卡奖励标准,并说明理由﹒
25.某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,数据如下(单位:分)
甲9582888193798478
乙8375808090859295
(1)请你计算这两组数据的平均数、中位数;
(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.
26.某校八年级(1)班甲、乙两男生在5次引体向上测试中有效次数如下:甲:8,8,7,8,9;乙:5,9,7,10,9;
甲乙两同学引体向上的平均数、众数、中位数、方差如下:
平均数众数中位数方差甲8b80.4
乙a9c 3.2根据以上信息,回答下列问题:
(1)表格是a=,b=,c=.(填数值)
(2)体育老师根据这5次的成绩,决定选择甲同学代表班级参加年级引体向上比赛,选择甲的理由是.班主任李老师根据去年比赛的成绩(至少9次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛,选择乙的理由是.
(3)如果乙同学再做一次引体向上,有效次数为8,那么乙同学6次引体向上成绩的平均数,中位数,方差.(填“变大”、“变小”或“不变”)27.某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.
(1)根据图示填写下表;
班级平均数(分)中位数(分)众数(分)
九(1)85
九(2)85100
(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;
(3)计算两班复赛成绩的方差.
28.为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”
新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:
(1)该班级女生人数是,女生收看“两会”新闻次数的中位数是;
(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”
新闻的“关注指数”比女生低5%,试求该班级男生人数;
(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).
统计量平均数(次)中位数(次)众数(次)方差…
该班级男生3342…
根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.
参考答案
一.选择题(共10小题)
1.某校开展了“空中云班会”的满意度调查,其中九年级各班满意的人数分别为27,28,28,29,29,30.下列关于这组数据描述正确的是()
A.中位数是29B.众数是28
C.平均数为28.5D.方差是2
【解答】解:A、中位数是,选项错误;
B、众数是28和29,选项错误;
C、平均数为,选项正确;
D、方差为≈
0.58,选项错误;
故选:C.
2.老师要分析小刚的5次数学模拟考试成绩是否稳定,她需要统计小刚这5次成绩的()A.平均数B.方差或标准差
C.众数D.中位数
【解答】解:根据方差和标准差的意义可知:
老师要分析小刚的5次数学模拟考试成绩是否稳定,她需要统计小刚这5次成绩的方差和标准差.
故选:B.
3.据调查,某班40名学生所穿校服尺码统计如表:
尺码150155160165170175180
频数18615442则该班40名学生所穿校服尺码的众数是()
A.4B.15C.170D.165
【解答】解:因为165号码是频数是15,
所以该班40名学生所穿校服尺码的众数是165,
4.若1,4,m,7,8的平均数是5,则1,4,m+10,7,8的平均数是()A.5B.6C.7D.8
【解答】解:∵1,4,m,7,8的平均数是5,
∴1+4+m+7+8=5×5,
解得:m=5,
则所求数据为1,4,7,8,15,
其平均数为=7,
故选:C.
5.某校为了解学生在校一周体育锻炼时间,随机调查了35名学生,调查结果列表如下:锻炼时间/h5678人数615104则这35名学生在校一周体育锻炼时间的中位数和众数分别为()
A.6h,6h B.6h,15h C.6.5h,6h D.6.5h,15h
【解答】解:这组数据的众数为6h,中位数为第18个数据,即中位数为6h,
故选:A.
6.烹饪大赛的菜品的评价按味道,外形,色泽三个方面进行评价(评价的满分均为100分),三个方面的重要性之比依次为7:2:1.某位厨师的菜所得的分数依次为92分、88分、80分,那么这位厨师的最后得分是()
A.90分B.87分C.89分D.86分
【解答】解:这位厨师的最后得分为:=90(分).
故选:A.
7.某商店选用20元/千克的A型糖x千克,12元/千克的B型糖5千克,混合成什锦糖后出售,这种什锦糖平均每千克的售价为15元/千克,则x的值为()
A.3B.4C.5D.6
【解答】解:由题意得,
=15,
解得,x=3,
8.某工厂生产质量为1克,5克,10克,25克四种规格的球,现从中取x个球装到一个空箱子里,这时箱子里球的平均质量为20克,若再放入一个25克的球,则箱子里球的平均质量变为21克,则x的值为()
A.3B.4C.5D.6
【解答】解:根据题意,得:=21,
解得x=4,
经检验:x=4是原分式方程的解,
故选:B.
9.小红同学对数据24,48,23,24,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()
A.平均数B.中位数C.方差D.众数
【解答】解:这组数据的平均数、方差和众数都与被涂污数字有关,而这组数据的中位数为24与48的平均数,与被涂污数字无关.
故选:B.
10.某中学篮球队12名队员的年龄如表所示:
年龄(岁)13141516
人数1542
关于这12名队员的年龄,下列说法错误的是()
A.众数是14岁
B.最大值与最小值的差是3岁
C.中位数是14.5岁
D.平均数是14.8岁
【解答】解:这12名队员的众数是14岁,
最大值与最小值的差是16﹣13=3(岁),
中位数是(14+15)÷2=14.5(岁),
平均数是≈14.6(岁).
故说法错误的是选项D.
故选:D.
二.填空题(共10小题)
11.数据3,4,5,1,3,6,3,3的众数是3.
【解答】解:数据3,4,5,1,3,6,3,3的众数是3,
故答案为:3.
12.今年3月份某周,我市每天的最高气温(单位:℃)12,11,10,15,16,15,12,若这组数据的中位数是12℃.
【解答】解:将这组数据重新排列为:10,11,12,12,15,15,16,
∴这组数据的中位数为12℃,
故答案为:12℃.
13.若一组数据1,2,3,x的平均数是2,则这组数据的方差是.【解答】解:∵数据1,2,3,x的平均数是2,
∴(1+2+3+x)÷4=2,
∴x=2,
∴这组数据的方差是:[(1﹣2)2+(2﹣2)2+(3﹣2)2+(2﹣2)2]=;
故答案为:.
14.如表是某所学校一个学习小组一次数学测验的成绩统计表,已知该小组本次数学测验的平均分是86分,那么表中的x的值是5.
分数708090100
人数13x1【解答】解:由题意和图表我们可列出方程
70+80×3+90x+100=86×(1+3+x+1)
解得x=5.
故答案为:5.
15.现有相同个数的甲、乙两组数据,经计算得:x甲=x乙,且S甲2=0.35,S乙2=0.25,比较这两组数据的稳定性,乙组比较稳定.
【解答】解:∵S甲2>S乙2,
∴乙比较稳定,
故答案为:乙
16.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数是6,标准差是.
【解答】解:由题意得,x1+x2+x3=5×3=15,[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2]=2,∴(x1+1+x2+1+x3+1)÷3=(x1+x2+x3)+1=5+1=6,
∴S2=[(x1+1﹣6)2+(x2+1﹣6)2+(x3+1﹣5)2]=[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2]=2,
∴S=
因此可得,数据x1+1,x2+1,x3+1的平均数是5+1=6,标准差差为,
故答案为:6,.
17.某景区在“春节”假期间,每天接待的游客人数统计如下:(单位:万人)农历十二月三十正月初一正月初二正月初三正月初四正月初五正月初六人数 1.2 2.32 2.3 1.2 2.30.6表中表示人数的一组数据中,众数和中位数分别是 2.3和2.
【解答】解:将这组数据重新排列为0.6,1.2,1.2,2,2.3,2.3,2.3,
∴这组数据的众数为2.3,中位数为2,
故答案为:2.3,2.
18.小明本学期平时测验,期中考试和期末考试的数学成绩分别是135分、135分、122分.如果这3项成绩分别按30%、30%、40%的比例计算,那么小明本学期的数学平均分是129.8.
【解答】解:小明本学期的数学学习成绩=135×30%+135×30%+122×40%=129.8(分).故答案为:129.8.
19.10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是9.38分.【解答】解:用四舍五入取近似值的方法精确到一位小数能得到9.4的数值范围是:(大于等于9.35和小于9.45之间)
∴10个裁判去掉最高和最低得分后,实际取值就是8个人的分数.
∴该运动员的有效总得分在大于或等于9.35×8=74.8分和小于9.45×8=75.6之间.
∵每个裁判给的分数都是整数,
∴得分总和也是整数,
在74.8和75.6之间只有75是整数,
∴该运动员的有效总得分是75分.
∴得分为:75÷8≈9.375,
精确到两位小数就是9.38.
故答案是:9.38.
20.已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是4.
【解答】解:一组数据x1,x2,x3,x4,x5的平均数是2,有(x1+x2+x3+x4+x5)=2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是(3x1﹣2+3x2﹣2+3x3﹣2+3x4﹣2+3x5﹣2)=4.
故答案为:4.
三.解答题(共8小题)
21.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,两人成绩如下(单位:环):
甲:2,4,6,8,7,7,8,9,9,10
乙:9,6,7,6,2,7,7,a,8,9
(1)求甲的平均数;
(2)已知=7,求乙的中位数;
(3)已知S甲2=5.4,请通过计算说明谁的成绩较稳定?
【解答】解:(1)==7环,
(2)a=7×10﹣(9×2+8+7×3+6×2+2)=9,
将这组数据从小到大排列为:2,6,6,7,7,7,8,9,9,9,处在第5、6位的两个数都是7,因此中位数是7环,
(3)S乙2=[(2﹣7)2+(6﹣7)2×2+(8﹣7)2+(9﹣7)2×3]=4,
∵5.4>4,
∴乙比较稳定,
答:甲的平均数为7环,乙的中位数是7环,乙比较稳定.
22.甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分)
数与代数空间与图形统计与概率综合与实践学生甲90948690
学生乙94829391(1)分别计算甲、乙成绩的平均数和方差;
(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3:3:2:2计算,那么甲、乙的数学综合素质成绩分别为多少分?
【解答】解:(1)甲的平均数为×(90+94+86+90)=90(分),
则甲方差为×[(90﹣90)2×2+(94﹣90)2+(86﹣90)2]=8;
乙的平均成绩为×(94+82+93+91)=90(分)
则乙的方差为×[(94﹣90)2+(82﹣90)2+(93﹣90)2+(91﹣90)2]=22.5;
(2)甲的综合成绩为×(90×3+94×3+86×2+90×2)=90.4(分),
乙的综合成绩为×(94×3+82×3+93×2+91×2)=89.6(分).
23.在“2019慈善一日捐”活动中,某校八年级(1)班40名同学的捐款情况如下表:捐款金(元)203050A80100
人数(人)2816x47根据表中提供的信息回答下列问题:
(1)x的值为3,捐款金额的众数为50元,中位数为50元;
(2)已知全班平均每人捐款57元,求a的值.
【解答】解:(1)x=40﹣2﹣8﹣16﹣4﹣7=3,捐款数共有40个数,处在第20、21位的两个数都是50元,因此中位数是50元,捐款50元的有16人,50元出现次数最多,因此众数是50元,
故答案为:3,50,50,
(2)由题意得:20×2+30×8+50×16+3a+80×4+100×7=57×40,
解得:a=60,
答:a的值为60元.
24.停课不停学,疫情期间,九(1)班30位同学参加运动线上打卡,张老师为了鼓励同学们积极锻炼,统计了这30人15天的打卡次数如下:
打卡次数4567891011131415人数11236511145(1)求所有同学打卡次数的平均数,并直接写出中位数和众数;
(2)为了调动同学们锻炼的积极性,张老师决定制定一个打卡奖励标准,凡打卡次数达到或超过这个标准的同学将获得奖励﹒请你根据(1)中所求的统计量,帮助张老师制定一个较为合理的打卡奖励标准,并说明理由﹒
【解答】解:(1)平均数为(4×1+5×1+6×2+7×3+8×6+9×5+10×1+11×1+13×1+14×4+15×5)÷30=10;
共30人,所有同学打卡次数从小到大排列第15个、第16个数都为9次,
中位数为9次;
8出现了6次,次数最多,众数为8次;
(2)为了调动同学们锻炼的积极性,打卡奖励标准可以定为所有同学打卡次数的中位数.因为共有30人,9次以上(含9次)的有17人,超过总数的一半.
25.某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,数据如下(单位:分)
甲9582888193798478
乙8375808090859295
(1)请你计算这两组数据的平均数、中位数;
(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.
【解答】解:(分),
(分).
将甲工人成绩从小到大排序处在第4、5位的平均数为(82+84)÷2=83分,因此甲的中位数是83分,
将乙工人成绩从小到大排序处在第4、5位的平均数为(83+85)÷2=84分,因此乙的中位数是84分,
答:甲、乙两组数据的平均数都是85分,中位数分别为83分、84分.
(2),
.
①从平均数看,甲、乙均为85分,平均水平相同;
②从中位数看,乙的中位数大于甲,乙的成绩好于甲;
③从方差来看,因为,所以甲的成绩较稳定;
④从数据特点看,获得85分以上(含85分)的次数,甲有3次,而乙有4次,故乙的
成绩好些;
⑤从数据的变化趋势看,乙后几次的成绩均高于甲,且呈上升趋势,因此乙更具潜力.
综上分析可知,甲的成绩虽然比乙稳定,但从中位数、获得好成绩的次数及发展势头等方面分析,乙具有明显优势,所以应派乙参赛更有望取得成绩.
26.某校八年级(1)班甲、乙两男生在5次引体向上测试中有效次数如下:甲:8,8,7,8,9;乙:5,9,7,10,9;
甲乙两同学引体向上的平均数、众数、中位数、方差如下:
平均数众数中位数方差甲8b80.4
乙a9c 3.2根据以上信息,回答下列问题:
(1)表格是a=8,b=8,c=9.(填数值)
(2)体育老师根据这5次的成绩,决定选择甲同学代表班级参加年级引体向上比赛,选择甲的理由是甲的方差较小,比较稳定.班主任李老师根据去年比赛的成绩(至少9次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛,选择乙的理由是乙的中位数是9,众数是9,获奖次数较多.
(3)如果乙同学再做一次引体向上,有效次数为8,那么乙同学6次引体向上成绩的平均数不变,中位数变小,方差变小.(填“变大”、“变小”或“不变”)【解答】解:(1)甲的成绩中,8出现的次数最多,因此甲的众数是8,即b=8,
(5+9+7+9+10)÷5=8.即a=8,
将乙的成绩从小到大排列为5,7,9,9,10,处在第3位的数是9,因此中位数是9,即c=9,
故答案为:8,8,9.
(2)甲的方差较小,比较稳定,乙的中位数是9,众数是9,获奖次数较多,
(3)原平均数是8,增加一次是8,因此6次的平均数还是8,不变,
六次成绩排序为5,7,8,9,9,10,中位数是8.5,比原来变小,方差变小,
故答案为:不变,变小,变小.
27.某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.
(1)根据图示填写下表;
班级平均数(分)中位数(分)众数(分)
九(1)85
九(2)85100
(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;
(3)计算两班复赛成绩的方差.
【解答】解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100,九(2)班5名选手的复赛成绩为:70、100、100、75、80,
∴九(1)的平均数为(75+80+85+85+100)÷5=85,
九(1)的中位数为85,
九(1)的众数为85,
把九(2)的成绩按从小到大的顺序排列为:70、75、80、100、100,
∴九(2)班的中位数是80;
班级平均数(分)中位数(分)众数(分)
九(1)858585
九(2)8580100(2)九(1)班成绩好些.因为九(1)班的中位数高,所以九(1)班成绩好些.(回答合理即可给分)
(3),
.
28.为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”
新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:
(1)该班级女生人数是20,女生收看“两会”新闻次数的中位数是3;
(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”
新闻的“关注指数”比女生低5%,试求该班级男生人数;
(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).
统计量平均数(次)中位数(次)众数(次)方差…
该班级男生3342…
根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.
【解答】解:(1)20,3;
(2)由题意:该班女生对“两会”新闻的“关注指数”为
所以,男生对“两会”新闻的“关注指数”为60%
设该班的男生有x人
则,解得:x=25
答:该班级男生有25人.
(3)该班级女生收看“两会”新闻次数的平均数为,女生收看“两会”新闻次数的方差为:
因为2>,所以男生比女生的波动幅度大.。