高分子材料分析测试方法

合集下载

高分子材料分析与测试

高分子材料分析与测试

高分子材料分析与测试引言高分子材料是一类重要的工程材料,在各个领域有着广泛的应用。

为了确保高分子材料的质量和性能,对其进行准确的分析与测试是至关重要的。

本文将介绍高分子材料分析与测试的基本原理、常用方法和技术,并对其在实际应用中的重要性进行讨论。

1. 高分子材料的特性分析高分子材料具有许多特殊的性质,如高分子链结构、长链分子的柔性和高分子材料的热性能等。

为了准确分析和测试高分子材料的特性,我们需要运用一些常用的分析方法。

下面介绍几种常用的高分子材料特性分析方法:•红外光谱分析:红外光谱是一种常见的高分子材料分析方法,通过对材料吸收、发射或散射红外辐射进行分析,可以确定材料的化学成分和结构。

•热分析:热分析是一种通过加热样品并监测其温度和质量变化来分析材料热性能的方法。

常见的热分析方法包括热重分析(TGA)和差热分析(DSC)等。

•X射线衍射(XRD):XRD是一种通过测量材料对入射X射线的衍射情况来分析其晶体结构的方法。

通过XRD可以确定高分子材料的结晶性质和晶格参数。

•核磁共振(NMR):核磁共振是一种通过测量材料中核自旋的共振现象来分析材料结构和化学环境的方法。

在高分子材料分析中,NMR可以提供关于材料分子结构、分子量和链结构等信息。

2. 高分子材料的力学性能测试高分子材料的力学性能是评价其质量和使用性能的关键指标之一。

为了准确测试高分子材料的力学性能,常用的测试方法包括:•拉伸测试:拉伸测试是一种通过施加拉伸力来测量材料在拉伸过程中的力学性能的方法。

通过拉伸测试可以确定高分子材料的强度、延展性和弹性模量等指标。

•弯曲测试:弯曲测试是一种通过施加弯曲力来测量材料在弯曲过程中的力学性能的方法。

通过弯曲测试可以确定高分子材料的弯曲强度和弯曲模量等参数。

•硬度测试:硬度测试是一种通过在材料表面施加静态或动态载荷来测量材料硬度的方法。

常用的高分子材料硬度测试方法包括巴氏硬度和洛氏硬度等。

•冲击测试:冲击测试是一种通过施加冲击载荷来测量材料抗冲击性能的方法。

高分子材料的鉴别与分类

高分子材料的鉴别与分类

高分子材料的鉴别与分类识别与分类高分子材料对于用于各种应用和行业至关重要。

高分子材料是一类重要的材料,包括塑料、橡胶、纤维等,其在汽车、电子、医疗器械等领域有着广泛的应用。

本文将对高分子材料的鉴别与分类进行深入探讨,并提供一些实用的方法和技巧。

一、鉴别高分子材料的方法鉴别高分子材料的方法有很多种,主要包括以下几种:1.物理性质鉴别法:通过观察和测试高分子材料的物理性质,如密度、融点、硬度、透明度等,来确定其种类。

不同的高分子材料具有不同的物理性质,通过对比实验结果和已知资料,可以鉴别高分子材料的种类。

2.化学性质鉴别法:通过高分子材料与特定化学试剂的反应,来鉴别其种类。

不同的高分子材料对化学试剂的反应不同,通过观察反应产物的性质和变化,可以推断出高分子材料的种类。

3.红外光谱鉴别法:利用红外光谱仪对高分子材料进行测试,通过分析材料的红外吸收峰和谱图特征,来鉴别其种类。

不同种类的高分子材料具有不同的红外谱图特征,通过对比实验结果和标准谱图,可以确定高分子材料的种类。

4.热分析鉴别法:通过热重分析、差热分析等热学方法,对高分子材料进行测试,通过观察和分析材料的热分解温度和热分解峰,来鉴别其种类。

不同种类的高分子材料具有不同的热分解特征,通过对比实验结果和已知资料,可以确定高分子材料的种类。

二、高分子材料的分类高分子材料根据其化学性质、结构和用途等方面的特点,可以分为以下几类:1.塑料:塑料是一类常见的高分子材料,具有良好的可塑性和可加工性。

根据其聚合物结构和用途的不同,塑料可以分为聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯等多种类型。

2.橡胶:橡胶是一类具有高弹性和可延展性的高分子材料。

根据其来源和性质的不同,橡胶可以分为天然橡胶、合成橡胶、热塑性橡胶等多种类型。

3.纤维:纤维是一类具有高拉伸强度和弯曲强度的高分子材料。

根据其来源和结构的不同,纤维可以分为天然纤维、人造纤维和合成纤维等多种类型。

4.膜材料:膜材料是一类具有薄膜结构的高分子材料。

高分子材料的成分进行定性或者定量分析的方法

高分子材料的成分进行定性或者定量分析的方法

高分子材料的成分进行定性或者定量分析的方法1.红外光谱——官能团、化学组成光谱分析是一种根据物质的光谱来鉴别物质及确定它的化学组成,结构或者相对含量的方法。

按照分析原理,光谱技术主要分为吸收光谱,发射光谱和散射光谱三种;按照被测位置的形态来分类,光谱技术主要有原子光谱和分子光谱两种。

红外光谱属于分子光谱,有红外发射和红外吸收光谱两种,常用的一般为红外吸收光谱。

2. 紫外光谱——鉴别、杂质检查和定量测定光照射样品分子或原子时,外层电子吸收一定波长紫外光,由基态跃迁至激发态而产生的光谱。

紫外光波长范围是10-400nm。

波长在10-200nm范围内的称为远紫外光,波长在200-400nm的为近紫外光。

对于物质结构表征主要在紫外可见波长范围,即200-800nm。

在无机非金属材料的推送中已经详细介绍了相关原理,此次着重介绍其在高分子材料中的应用。

3. GPC——分子量及其分布主要用于聚合物领域;以有机溶剂为流动相(氯仿,THF,DMF);常用固定相填料:苯乙烯-二乙烯基苯共聚物基本原理:GPC是一种特殊的液相色谱,所用仪器实际上就是一台高效液相色谱(HPLC)仪,主要配置有输液泵、进样器、色谱柱、浓度检测器和计算机数据处理系统。

4. 质谱测试质谱是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。

质谱法在一次分析中可提供丰富的结构信息,将分离技术与质谱法相结合是分离科学方法中的一项突破性进展。

在众多的分析测试方法中,质谱学方法被认为是一种同时具备高特异性和高灵敏度且得到了广泛应用的普适性方法。

质谱是提供有机化合物分子量与化学式的方便与可靠方法,也是鉴别有机化合物的重要手段。

5. X射线衍射(XRD)——确定高分子结晶性能X射线是一种波长很短(约为10-8~10-12米),介于紫外线和伽马射线之间的电磁辐射。

由德国物理学家伦琴于1895年发现。

X射线能够穿透一定厚度的物质,并能使荧光物质发光、照相胶乳感光、气体电离。

高分子材料分析与测试方法

高分子材料分析与测试方法

重点整理高分子材料分析与测试方法第一章 NMR一、名词解释1.同位素:质子数相同而中子数不同的同一元素的不同核素。

2.弛豫:原子核通过无辐射的途径,由高能级回复到低能级的过程; 弛豫时间:原子核从高能态回复到低能态所需时间; 纵向(自旋-晶格)弛豫:体系与环境交换能量。

处于高能级的核将其能转移给周围分子骨架中的其它核,从而使自己返回到低能态的现象;横向(自旋-自旋)弛豫:核磁矩之间的相互作用。

两个相邻的核处于不同能级,进动频率相同,高能级核与低能级核通过自旋状态而实现能量转移所发生的弛豫现象。

3.核磁共振:在静磁场中,具有磁矩的原子核存在不同能级,用某一特定频率的电磁波照射样品,若电磁波满足一定条件,原子核发生能级跃迁的现象。

4.屏蔽效应:电子在外磁场作用下,产生了相对于外磁场方向的感应磁场,使核实际受到的外磁场作用减弱的现象;远磁屏蔽效应:除了核自身的核外电子云外,远处各类原子或基团的成键电子云也将产生感应磁场,使核所受磁场强度变化的现象;去屏蔽效应:核外电子产生的感应磁场与外加磁场方向相同,核所感受到的实际磁场强度增大的现象。

5.化学位移:由于不同环境下原子核共振频率或磁场强度发生变化,在谱图上反映出的出峰位置的移动。

6.诱导效应:由于电负性差异导致的基团对所连原子电子云密度的影响;共轭效应:由于共轭多重键π电子或p 电子转移,导致原子的电子云密度变化的现象。

7.耦合常数:发生自旋-自旋耦合裂分时,分裂峰之间的距离。

8.化学等价质子:在同一分子中,位于相同化学环境的,化学位移相同的质子;磁等价质子:一组化学等价质子,当它们与组外任一磁核耦合时,耦合常数若相等,则磁等价。

二、基本原理及仪器1.原子核的自旋运动 (1)核自旋运动条件自旋量子数I 可以是整数/半整数。

I ≠0时,原子核有自旋运动。

I =12:1H 1、13C 6、15N 7、31P 15; I =2:11B 5; I =1:2H 1、14N 7(2)核磁矩与磁量子数①P μγ=⋅ μ:核磁矩; γ:磁旋比,核的特征常数,原子核的重要属性; P :自旋角动量。

高分子材料的质量标准及检验方法

高分子材料的质量标准及检验方法

高分子材料的质量标准及检验方法高分子材料是一类重要的材料,主要包括塑料、橡胶和纤维。

高分子材料的质量标准和检验方法对于保证产品质量的稳定性和可靠性至关重要。

本文将从材料物理性能、化学性能、耐候性能、力学性能、热性能和表面性能等方面介绍高分子材料的质量标准及检验方法。

一、材料物理性能的质量标准及检验方法高分子材料的物理性能包括密度、熔点、玻璃转化温度等。

对于高分子材料来说,密度是一个重要的物理性能,它直接影响材料的重量和成本。

检验方法一般采用浮力法或密度计进行测定。

二、材料化学性能的质量标准及检验方法高分子材料的化学性能包括与酸、碱和溶剂的耐受性、吸湿性以及电气性质等。

检验方法主要包括酸碱溶胀实验、吸湿实验和电性能测试。

三、材料耐候性能的质量标准及检验方法高分子材料的耐候性能是指材料在光、热、氧等外界环境作用下的稳定性能。

检验方法主要包括光照老化试验、热氧老化试验等。

四、材料力学性能的质量标准及检验方法高分子材料的力学性能包括拉伸强度、弯曲强度和冲击强度等。

检验方法主要包括拉伸试验机、弯曲测试仪和冲击试验机。

五、材料热性能的质量标准及检验方法高分子材料的热性能包括熔融温度、热稳定性和热导率等。

检验方法主要包括热分析仪和热导率测试仪。

六、材料表面性能的质量标准及检验方法高分子材料的表面性能包括光泽度、表面硬度和耐刮花性等。

检验方法主要包括光泽度计、硬度计和耐刮花试验机。

总之,高分子材料的质量标准及检验方法是保证材料质量的重要手段。

通过对材料的物理性能、化学性能、耐候性能、力学性能、热性能和表面性能的检测,可以有效评估材料的性能,从而保证产品的质量稳定性和可靠性。

在实际生产过程中,应根据产品的需求和使用环境来选择合适的标准和检验方法,确保高分子材料的优良性能。

七、投料和原材料的质量标准及检验方法除了对成品的质量进行检验外,对投料和原材料的质量也是非常重要的。

投料和原材料的质量直接影响着最终产品的质量稳定性和可靠性。

高分子材料的测试方法、测试手段的区别

高分子材料的测试方法、测试手段的区别

高分子材料的测试方法、测试手段的区别高分子材料的测试方法和测试手段涉及多个方面,下面将详细解释它们之间的区别:
测试方法:
定义:测试方法是一种系统的、有条理的程序,用于评估高分子材料的性能、质量或其他特性。

例子:拉伸试验、冲击试验、热分析、扫描电子显微镜(SEM)等都可以作为测试方法。

测试手段:
定义:测试手段是指实施测试方法的具体设备、仪器或工具,用于测量和记录高分子材料的性能参数。

例子:万能试验机用于拉伸试验、冲击试验机用于冲击试验、热分析仪器用于热分析等都可以被称为测试手段。

关系:
测试方法是更为宏观和抽象的概念,它描述了评估高分子材料性能的步骤和原理。

测试手段是实现测试方法的具体工具,通过测量、记录和分析数据来揭示高分子材料的性能特征。

拉伸试验为例:
测试方法:拉伸试验是一种测试方法,用于测量高分子材料在拉伸过程中的强度、延展性等性能。

测试手段:万能试验机是执行拉伸试验的具体测试手段,通过施加力并记录变形情况来评估材料的拉伸性能。

冲击试验为例:
测试方法:冲击试验是一种测试方法,用于测量高分子材料
在受到冲击时的韧性和抗冲击性。

测试手段:冲击试验机是执行冲击试验的具体测试手段,通过施加冲击载荷并记录断裂情况来评估材料的抗冲击性。

总体而言,测试方法是更为广义的术语,描述了测试的整体过程和目的,而测试手段则是实现具体测试方法的工具或设备。

在研究和质量控制中,了解这两者之间的区别对于正确选择合适的测试策略和设备至关重要。

高分子材料测试

高分子材料测试

高分子材料测试高分子材料是一种非常重要的新材料,它具有独特的性质和广泛的应用领域。

为了确保高分子材料的质量和性能,需要进行各种测试和评估。

下面将介绍高分子材料测试的方法和意义。

首先是物理性能测试。

高分子材料的物理性能包括力学性能、热性能、表面性能等方面。

机械测试是其中最基本的测试之一,它可以评估高分子材料的强度、硬度、韧性等力学性能。

热性能测试可以评估高分子材料的热稳定性、热导率等特性。

表面性能测试可以评估高分子材料的表面粗糙度、光泽度等特性。

这些测试可以通过拉伸试验、硬度测量、热分析、光学显微镜等仪器进行。

其次是化学性能测试。

高分子材料的化学性能包括化学稳定性、化学反应性等方面。

化学稳定性测试旨在评估高分子材料在特定化学环境下的耐化学性能。

化学反应性测试可以评估高分子材料在特定条件下的化学反应性。

这些测试可以通过化学荧光分析、质谱分析、红外光谱分析等仪器进行。

最后是应用性能测试。

高分子材料的应用性能是指它在具体应用中的性能表现。

例如,聚乙烯用于制作塑料袋时需要具有一定的拉伸强度和耐撕裂性能。

聚丙烯用于制作管道时需要具有一定的耐腐蚀性能和耐热性能。

为了评估高分子材料的应用性能,需要进行特定的测试。

这些测试可以通过实际应用环境模拟、产品性能测试等方法进行。

高分子材料的测试非常重要,它可以评估材料的质量和性能,为材料的选用和设计提供依据。

测试的结果可以用于指导材料的改进和优化,以满足特定的应用需求。

此外,高分子材料的测试还可以帮助保证产品的质量和安全,确保产品符合相关的标准和法规要求。

总的来说,高分子材料的测试是一个综合性的过程,需要综合考虑材料的物理性能、化学性能和应用性能。

通过科学的测试方法和仪器设备的应用,可以对高分子材料进行全面和准确的评估,为材料的应用和开发提供支持。

高分子材料测试的结果对于材料行业和相关领域的发展具有重要意义。

高分子材料测试的有效方法

高分子材料测试的有效方法

高分子材料测试的有效方法高分子材料是一类重要的材料,其广泛应用于各个领域,如塑料、橡胶、纤维、涂料等。

为保证其质量和性能,对高分子材料的测试是至关重要的。

在本文中,我们将探讨高分子材料测试的有效方法,并分享一些关于这个主题的观点和理解。

1. 引言高分子材料是一类由重复的大分子基本单元组成的材料,在工程与科学领域中具有重要的应用。

为了保证高分子材料的质量和性能,需要进行各种测试,以评估其物理、化学和机械性能等关键指标。

2. 常用的高分子材料测试方法2.1 物理性能测试物理性能测试对高分子材料的力学性能、热性能、电性能等进行评估。

常用的测试方法包括:- 拉伸强度和断裂伸长率测试:用于评估材料的引伸强度和延展性。

- 硬度测试:通过测量材料表面的压痕深度或弹性模量评估材料的硬度。

- 热分析测试:如差示扫描量热法(DSC)和热重分析法(TGA),用于评估材料的热稳定性和热分解温度等指标。

- 电性能测试:如导电性、绝缘性和介电性能等检测。

2.2 化学性能测试化学性能测试用于评估高分子材料的化学稳定性、溶解性、耐腐蚀性等。

常用的测试方法包括:- 溶解度测试:通过将材料置于溶剂中,观察其是否溶解来评估其溶解性。

- 耐腐蚀性测试:将材料暴露在酸、碱等腐蚀介质中,评估其对腐蚀介质的耐受程度。

- 光学性能测试:包括透明度、折射率和发光性能等。

3. 高分子材料测试的优化方法为了提高测试效率和准确性,可以采用以下优化方法:- 样品制备:合理的样品制备方法是测试的基础,需要注意样品的纯度、尺寸和形状等因素。

- 测试条件的选择:根据具体的测试要求,选择适当的测试条件,包括温度、湿度和压力等因素。

- 仪器设备的选择:选择具有高精度和可靠性的测试仪器设备,以确保测试结果的准确性和可重复性。

- 数据分析与解释:在测试结束后,对测试数据进行合理的分析和解释,得出结论并提出改进建议。

4. 观点和理解高分子材料测试是确保材料质量和性能的重要手段之一。

高分子材料分析与测试

高分子材料分析与测试

ABS
• ABS树脂是丙烯腈(Acrylonitrile)、1,3-丁二 烯(Butadiene)、苯乙烯(Styrene) • 密度:1.04~1.06 g/cm3 • ABS树脂是微黄色固体,有一定的韧性。它抗 酸、碱、盐的腐蚀能力比较强,也可在一定程 度上耐受有机溶剂溶解。 • 燃烧时:离开火焰继续燃烧,浓色的黑烟,黄 色火焰。
实验注意事项
比重瓶法是测量密度的基准方法: 比重瓶法是测量密度的基准方法:试样的质 注满比重瓶所需的试液质量m 量;注满比重瓶所需的试液质量m1;装有试 样时,注满比重瓶所需试液的质量m 样时,注满比重瓶所需试液的质量m2;都可 以精确测出,23℃时的试液密度又是已知的; 以精确测出,23℃时的试液密度又是已知的; ,23℃时的试液密度又是已知的 因此测量精度比较高。但是, 因此测量精度比较高。但是,总有一些因素 影响测量精度;最主要的因素是温度和气泡。 影响测量精度;最主要的因素是温度和气泡。 所以密度测试一定要在恒温条件下进行, 所以密度测试一定要在恒温条件下进行,并 且要去除气泡,确保测试结果的正确性。 且要去除气泡,确保测试结果的正确性。
实验步骤
1,标准环境下,准备好试样,试样尺寸适宜,
在空气中称量约1-3g并称量金属丝质量,试样 上端据液面不小于10mm,试样没有气泡。 2,用金属丝悬挂试样,试样全部浸入浸渍液中。 3,浸渍液放在固定支架的烧杯或容器。 4,称量金属丝与重锤在浸渍液中的质量。 5,浸渍液选用新鲜蒸馏水或其他不与试样作用 的液体。
实验记录
序号 空气中悬 悬丝的质 丝与试样 量(g) 的质量 (g) 0.0179 0.0178 0.0184 1.8293 1.9083 1.9888 浸渍液中 塑料试样 的悬丝与 的密度 试样的质 (g/cm3) 量(g) 0.6142 0.6664 0.6694 1.488 1.520 1.491

高分子材料分析测试方法

高分子材料分析测试方法

质谱法
• 总结词:通过测量高分子材料的质荷比来分析其组成和结构。 • 详细描述:质谱法是一种常用的高分子材料分析方法,其原理是通过测量高分子材料的质荷比来分析其组成和
结构。该方法可以用于测定高分子材料的分子量、元素组成、支化度等参数,对于研究高分子材料的性能和加 工应用具有重要意义。 • 总结词:质谱法具有高精度、高灵敏度、无损等优点,在高分子材料分析中具有重要应用价值。 • 详细描述:质谱法通常需要使用专门的质谱仪器进行测试,测试过程中不会对高分子材料造成破坏,且具有较 高的测试精度和重复性。该方法在高分子材料研究、生产和质量控制等方面具有广泛应用前景。
总结词
通过电子显微镜观察高分子材料的表面形貌和微观结构。
详细描述
扫描电子显微镜法是一种直观的高分子材料分析测试方法,通过电子显微镜观察 高分子材料的表面形貌和微观结构,可以获得材料的形变、断裂、相分离等信息 。该方法对于研究高分子材料的性能和结构关系非常有用。
热分析法
总结词
通过测量高分子材料在不同温度下的物理性质变化,研究材料的热稳定性和热分解行为。
核磁共振法
详细描述
核磁共振法利用原子核的自旋 磁矩进行研究,适用于高分子 材料的碳-13核磁共振分析。 通过测量高分子材料中碳-13 原子核的共振频率和裂分情况 ,可以推断出高分子材料的分 子结构和序列信息。
高分子材料的物理分析案例
总结词
X射线衍射法
总结词
电子显微镜法
详细描述
X射线衍射法是一种物理分析方法,用于研究高分 子材料的晶体结构和相变行为。通过测量高分子 材料在X射线下的衍射角度和强度,可以确定其晶 体结构和晶格常数等参数。
02
化学分析方法
化学滴定法

高分子材料常见检测方法

高分子材料常见检测方法

高分子材料常见检测方法我折腾了好久高分子材料常见检测方法,总算找到点门道。

我一开始完全是瞎摸索啊。

就先说密度检测吧,这个看字面上很简单。

我一开始想,不就是称个重量,再量个体积,一除不就完了嘛。

结果做的时候才发现不是那么回事儿。

就拿这个测量体积来说,不同形状的高分子材料可不好搞准确。

我测试一个异形的材料,按常规想法量尺寸去算体积,那误差大的没法看。

后来我才知道,对于不规则的高分子材料,可以用排水法,就跟咱小时候测奇奇怪怪小石子的体积一样,把材料放到装满水的容器里,看溢出来的水的体积就是材料的体积了,当然实际操作得很小心,水得足量淹没材料而且不能有气泡这些小问题影响结果。

拉伸测试我也是碰了壁。

通常是把材料做成哑铃状的试样,放在拉伸试验机上拉它,直到拉断,看它受力啥样的。

我第一次做啊,那试样制作就出问题了。

裁剪的时候边缘不整齐,结果在拉伸的时候老是从边缘先断裂,得到的数据那肯定不对啊。

后来我就找老同行请教,人家告诉我要用模具裁切或者用专门的切割设备,保证边缘光滑。

红外光谱检测那也是很常见的方法。

我刚开始接触的时候都不懂为啥这么个检测就能知道高分子材料里有啥化学键之类的。

我就慢慢研究啊,才知道原来是当红外线照到样品上,不同的化学键对红外线的吸收不一样,然后仪器检测这个吸收情况就能分析出材料里的结构。

但是我在做的时候有个教训就是,样品要是处理不好,特别是表面要是有脏东西或者不均匀,那检测出来的结果就乱七八糟的。

还有热分析这一块。

我试过用差示扫描量热法,简单说就是看材料加热或者冷却的时候热量变化情况。

我自己操作的时候,没注意升温速率这个小细节,结果测出来的数据和标准的数据差很多。

后来才明白不同的材料可能需要特定的升温速率才能得到准确的结果,这个得根据经验或者查询相关的资料来设定。

不确定的地方也有,像一些特殊的高分子材料比如说那种超疏水超亲油的新型高分子材料,有些检测方法可能会由于材料的这种特殊性质有点偏差,具体怎么做我还在摸索。

DTA、DSC、TG、DTG测试方法及表征

DTA、DSC、TG、DTG测试方法及表征

(5)研究纤维的拉伸取向
用DTA研究未拉伸的和 经过拉伸的尼龙6、尼 龙66、尼龙610和涤纶 等纤维时发现未拉伸 的纤维只有一个熔融 吸热峰,而经过拉伸 的纤维有两个吸热峰, 其中第一个峰是拉伸 过的纤维取向吸热峰。
(6)用DSC直接计算热量和测定结晶度 DSC谱图具有热力学函数意义,因为 (dH/dt)/(dT/dt)=dH/dT=Cp(比热容) dH/dt为DSC谱的纵坐标, dT/dt为升、降温 速率(在DSC实验中一般为定值),故纵 坐标的高低表明了此时样品比热的相对大 小。 用DSC法求得的熔融热可计算结晶性高聚物 的结晶度。 X= ΔHf/ ΔH∞ 熔融热ΔHf,与完全结晶熔融热ΔH∞
高分子材料的热稳定性添加剂对热稳定的影响氧化稳定性的测定含湿量和添加剂含量的测定反应动力学的研究和共聚物共混物体系的定量分析聚合物和共聚物的热裂解热老化的研究等等1高分子材料热稳定性的评定如图比较了五种高分子材料的相对热稳定性
1.4.DTA、DSC在研究高聚物中的应用
DTA,DSC在高聚物的研究中的应用十分广泛, 可以获得聚合物体系的各种转变温度。以及热 转变的各种参数,下面分成几个方面来介绍。 DSC和DTA在功能上基本相同,在研究聚合物 热,反应热及固化反应和高分子反应等方面这 两种方法是十分有效的。除此而外,以上的研 究中,DSC与DTA应用更占优势。
纯聚四氟乙烯和混有胶状二氧化硅的聚四 氟乙烯(含量2.10%,4.25%, 1.50%,3.101.0)的TG曲线。 左图为在空气中,右图为在氦气中。
3、共聚物和共混物的分析 图为苯乙烯的均聚体与其α-甲基苯乙烯的共聚 物的失重曲线。
典型的乙烯-乙酸乙烯酯共聚物的TG曲线。
天然橡胶(NB)和乙丙橡胶(EPDM) 的二元共混物的TG曲线。

高分子材料测试技术(精华版)

高分子材料测试技术(精华版)

高分子材料的测试方法综述前言:高分子材料及其成品的性能与其化学,物理的组成,结构以及加工条件亲密相关;为了表征性能与组成,结构和加工参数之间的关系,分析测试技术将起到唯独的打算作用; 并为评定材料质量,改进产品性能和研制新材料供应依据;不管是基本的材料性质,仍是加工性质( 或加工参数) 以及产品性质,客观标准的评定都需要某种测试技术供应参数进行表征;摘要:DTA DSC 红外光谱1 差热分析和差示扫描量热法差热分析1,差热分析的定义差热分析是布程控温度下,测量物质和参比物之间的温度差与温度关系的技术;这种. 关系可用数学式表示为温度;TR 参比物温度;,式中Ts 为试样2,差热分析的测试原理与仪器组成根据热分析定义,全部热分析仪器,差热分析仪器也不例外,它们都是田三大部分组成:(1) 被测物质的物理性质检测装置部分;如图 1.} 虚线内组成一也称主体部分;(2) 温度程序掌握装置部分制和数据处理装置部分;;(3) 显示记录装置部分;此外,仍有气氛控差热分析仪器的组成如下列图,虚线内为其测里原理S为试样;UTC为由控温热电偶送出的微伏信一号;R 为参比吻;UT 为由试样的热电偶送出的毫伏信号;E 为电炉;U T 为由差示热散偶送出的毫伏信号l程序掌握器;2. 氛掌握;3. 差热放大器;4. 记录仪差示扫描量热法1,差示扫描量热法定义差示扫描量热法是在程控温度下,测量输入到物质和参比物之间的功率差与温度关系的技术,用数学式表示为2,外加热式的功率补偿型差示扫描量热仪器的结构组成1. 温度程序掌握器;2. 气氛掌握;3. 差热放大器;4. 功率补偿放大器;5. 记录仪由于扫描量热法是在差热分析基础上进展起来的,因此,差示扫描量热仪在仪器结构组成上与差热分析仪特别相像;热流型兼示扫描量热法,实际上就是定量差热分析;功率补偿型差示扫描量热仪与差热分析仪的主要区分是前者在试样S侧和参比物R侧/l 面分别增加一个功率补偿加热丝( 或称加热器) ,此外仍增加一个功率补偿放大器;而内加热式功率补偿型差示扫描量热仪结构组成特点是测温敏锐. 元件是用铂电阻处而不是热电偶;高分子材料讨论中的应用差热分析技术和差示扫描里热技术在高分子材料科学与工程中的详细应用;为了实际应用时到底采纳哪种技术更为有益,先将这两种技术作比较;DTA 和DSC的主要区分:DTA 测定的是试样和参比物之间的温度差; 而DAC 测定的是热流率dH/dt, 定量便利;因此,DSC主要优点是热量定里便利,辨论率高,灵敏度好;. 其缺点是使用温度低,以功率补偿型DSC为例,最高温度只能到725;对于DTA,目前超高温DTA可作到2400 C,一般高温炉也能作到1500;所以,需要用高温的矿物,冶金等领域仍只能用DTA.但是对于需要温度不高, 灵敏度要求很高的有机,高分子及生物化学领域,DSC就是一种很有用的技术,正因如此,其进展也特别快速;近年来,DTA和DSC在高分子方而的应用特殊广泛,如讨论聚合物的相转变,测定结晶温度T, 结晶度θ,熔点Tm,等温结晶动力学参数和玻璃化转变温度以及讨论聚合,同化,交联,氧化,分解等反应,并测定反应温度或反应温区,TR,反应热,反应动力学参数等;2 热重法和微商热重法热重法和微商热重法定义热重法:根据ICTAC命名,热重法是在程序掌握温度下,测量物质的质量与温度关系的一种技术;用数学表达式为W=f(T 或t )式中:W 为物质重量;T 为温度;t 为时间微商热重法: 将热重法得到的热重曲线对时间或温度一阶微商的方法;记录的曲线为微商热重曲线简称DTG曲线,纵坐标为质量变化速率,dm/dt 或dm/dT;横坐标为时间或温度;测试原理由上述TG(DTG 定)义,可知其简洁原理;粗略的说;热重分析技术就是把物质放在炉子里进行加热称量的技术;也可在降温下称量;能够进行这种测量的仪器就是热天平(Therrnobalanee} ;下图分别表示热天平简洁示意图(简易的热重分析技术的简洁原理)和近代热天平的原理图;热重法( 微商热重法) 在高分子材料讨论中的应用热重法的主要特点是定量性强,能准地测量物质的质量变化及变化的速率;然而热重法的试验结果与试验条件有关;但是,对商品化的热天平而言,只要选用相同的试验条件,同种样品的热重数据是能重现的;试验证明,热重法广泛地应用在化学及化学有关的领域中,20 世纪50 岁月,热重法曾有力地推动了无机分析化学的进展,到幼岁月,热重法又在聚合物科学领域发挥根大作用;近年来,可以说在冶金学,漆料及油墨科学,制陶学,食品工艺学,无机化学,有机化学,生物化学及地球化学等学科中,热重法都有广泛的应用,发挥重要的作用;随着高分子材料与工程的. 进展,人们广泛应用热重法来讨论其中包括评估高分子材料的热稳固性,添加剂对热稳固的影响,氧化稳固性的测定,含湿量和添加剂含量的测定,反应动力学的讨论和共聚物,共混物体系的定量分析,聚合物和共聚物的热裂解以及热老化的讨论,等等;热重法现已成为生产部门和讨论单位讨论高分子材料热变化过程的重要手段,生产中可直接用于掌握工艺过程,理论土就可讨论聚合物分子链的端基情形;通过反应动力学的讨论,可以求得降解反应的速度常数,反应级数,频率因子及活化能;由于热重法具有分析速度快,样品用量少的特点,因而在高分子材料热老化方面的讨论中也口益引人注目;3 红外吸取光谱法红外吸取光谱特点红外吸取光谱最突出的特点是具有高度的特点性,除光学异构体外,每神化合物都有自己的红外吸取光谱;因此,红外光谱法特殊适于鉴定有机物,高聚物,以及其它复杂结构的自然及人工合成产物;固态,液态,气态样品均可测定,测试过程不破坏样品,分析速度快,样品用量少,操作简便;由于红外光潜法具有这些优点,现已成为化学试验室必不行少的分析仪器;但红外光谱法在定量分析. 方面精确度不高;在对复杂的未知物进行结构鉴定上,由丁它主要的特点是供应关于官能团的结构信息;故尚须结合紫外,核磁,质谱(U V,NMR,MS)及其它理化数据. 进行综合判定;目前在我国航空二二业系统中已广泛使用红外光谱代替传统的化学分析方法,对各种非金属材料进行质量监控; 并已制定了相应的检验标准,在各单位推广应用,取得了明显的经济效益;红外光谱仪,特殊是配有衰减全反射(ATR)漫反射(DRS)和光声池(PAS)等附件的傅里叫‘变换红外光谱仪,在涂料,胶粘剂,工程塑料以及树脂基复合材料的讨论中发挥着越来越大的作用;红外光谱仪器目前生产和使用的红外光谱仪主要有两大类,即色散型红外分光光度计和于涉分光——傅里叶变换红外光谱仪;用激光做光源的激光红外光谱仪尚处于研制阶段;1,色散型双光束红外分光光度计色散型红外分光光度计是由光源,单色器,检测器和放大记录系统等几个基术部分组成的;下图是红外分光光度计的方块图2,傅里叶变换红外光谱仪( 简称FT-IR)博里叶变换红外光谱仪与上述的色散型红外光谱仪的工作原理有很大不同,FT-IR 主要是由光源,迈克尔逊干涉仪,探测器和运算机等几部分组成;其工作原理如下列图;光源发出的红外辐射,通过迈克尔逊千涉仪变成干涉图,通过祥品后即得到带有样品信息的干涉图,经放大器将信号放大,记录在磁带或穿孔卡片或纸带. 上,输入通用电子运算机处理或直接输入到专用运算机的磁芯储备体系中;当十涉图经模拟一数字转换器(A/D)) 进行运算后,再经数字模拟转换(D/A) ,由波数分析器扫描,便可由X 一Y 记录器绘出通常的透过率对应波数关系的红外光谱;R—红外. 光源;M1肯定镜:M2 一一动镜;B —光束分裂器;S—样品;D—探测器;A—放大器;F—滤光器;A/D 模数转换骼;D/A 一数模转换器3,傅里叶变换红外光谱仪与一般色散型红外分光光度计相比的优点:①具有很高的辨论力;②波数精度高;③扫描时闻快;④光谱范畴宽;⑤灵敏度高;高聚物方面的应用红外光谱是讨论高聚物的一个很有成效的工具;讨论内容也很广泛,不仅可以鉴定米知聚合物的结构,剖析各种高聚物中添加剂,助剂,定量分析共聚物的组成,而且可以考察聚合物的结构,讨论聚合反应,测定聚合物的结晶度,取向度,判别它的立休构型等;.。

高分子材料分析与检测技术:冲击性能

高分子材料分析与检测技术:冲击性能
GB/T 1043.1/1eAb GB/T 1043.1/1eB GB/T 1043.1/1eC GB/T 1043.1/1fUc
试样 类型
1பைடு நூலகம்
冲击 方向
侧向
贯层
缺口 缺口底部半径 缺口底部剩余
类型 rN/mm
宽度bN/mm
无缺口
单缺口
A
0.25±0.05 8.0±0.2
B
1.00±0.05 8.0±0.2

A
0.25±0.05 8.0±0.2
GB/T 1843/B
B
1.00±0.05
a 如果试样是由板材或制品上裁取的,板材或制品的厚度h应该加到命名 中。未增强的试样不应使机加工表面处于拉伸状态进行试验;b 如果 板材厚度h等于宽度b,冲击方向(垂直n平行p)应加到名称中。
图5-18 冲击方向命名图
C
0.10±0.02 8.0±0.2
无缺口
a.如果试样取自片材或成品,其厚度应加载名称中。非增强材料的试样 不应以机加工面作为拉伸而进行试验;b.优选方法;c.适用于表面效应 的研究。
(冲击方向)
图5-14 简支梁试样
图5-15 缺口类型
2.测试步骤及计算结果 (1)测试步骤 试样按GB/T 2918-1998的规定调节16小时以上。 ①测量试样中部的宽度和厚度,精确至0.02mm。 ② 根据试样选择摆锤。 ③ 调节能量度盘指针零点,测定摩擦损失和修正吸收的能量。 ④ 抬起并锁住摆锤,试样放置,对中。 ⑤ 平稳释放摆锤,从度盘上读取试样吸收的冲击能量。 ⑥ 试样完全破坏或部分破坏的可以取值。 ⑦ 观察、报告。不同破坏类型的结果不能进行比较。 ⑧所有计算结果的平均值取两位有效数字,每组试验至少包括10

高分子材料性能检测及分析方法研究

高分子材料性能检测及分析方法研究

高分子材料性能检测及分析方法研究高分子材料是指由大分子聚合而成的材料,具有重量轻、韧性好、绝缘性好、抗腐蚀等优点,广泛应用于各行各业,如化工、医疗、建筑、电子、航空等领域。

但是,由于高分子材料的组成复杂、聚合度高、分子链结构多样等特点,其性能检测及分析方法也具有一定的难度和复杂性。

一、高分子材料性能检测方法1. 引入动态力学分析法(DMA)动态力学分析法是一种广泛应用于材料力学测试中的方法,通过施加受控变形来研究材料的动态力学特性,如弹性模量、刚度、阻尼比等。

在高分子材料中,动态力学分析法可以用来研究其弹性、亚弹性、塑性和粘弹性等特性。

2. 使用红外光谱(FTIR)法红外光谱法是一种常用的材料成分分析方法,它可确定高分子材料的化学组成和原子构成等参数。

FTIR技术是目前使用最广泛的红外光谱测试技术,可用于描述特定分子和突出其结构带来的振动信息。

3. 应用差示扫描量热法(DSC)差示扫描量热法是一种重要的高分子材料测试方法,其通过测量体系在恒定温度或恒定加热/降温速率下的热流和热容变化,研究高分子材料的物理和化学特性。

核心原理是,通过观察物质的热响应,了解其热行为。

4. 应用雷霆反射法 (TR) 试验雷霆反射法 (TR) 是一种新兴的材料测试方法,其使用高强度的紫外激光,在材料局部表面产生瞬间高温和高压,观测材料反射激光的特性,研究材料的结构和性能特征。

二、高分子材料性能分析方法1. 引入偏光显微镜 (POM) 分析偏光显微镜技术是一种高分辨量、高灵敏度的试验分析方法,它通过显微成像观察样品中的多种相态结构和形态,并对材料的组成和结构特性进行分析和评估。

2. 使用扫描电子显微镜(SEM)技术扫描电子显微镜技术是利用电子束在样品表面扫描照射发射的光子、离子和电子进行成像和分析的技术。

它可用于表征材料的微观结构和细节特征,从而评估其性能和可靠性等方面的特点。

3. 应用光学试验分析方法光学试验分析方法包括折光率、透明度、吸光度和荧光固有属性等分析法。

高分子材料测试方法

高分子材料测试方法

高分子材料测试方法一、引言高分子材料是指由重复结构单元组成的大分子化合物,具有广泛的应用领域。

为了确保高分子材料的质量和性能,需要进行各种测试方法的研究和开发。

本文将介绍一些常用的高分子材料测试方法。

二、物理性能测试1.密度测试密度是衡量高分子材料物理性能的重要指标之一。

通常使用比重计或密度计进行测量。

2.硬度测试硬度是指材料抵抗划伤或压缩变形的能力。

常用的硬度测试方法包括洛氏硬度、布氏硬度和维氏硬度等。

3.拉伸强度测试拉伸强度是指在拉伸过程中材料最大承受力。

该测试可通过万能试验机进行,通常以断裂点为结束点。

4.冲击韧性测试冲击韧性是指材料在受到冲击时不断裂或破碎的能力。

该测试可通过冲击试验机进行,通常以断裂点为结束点。

三、热学性能测试1.热膨胀系数测试热膨胀系数是指材料在温度变化时长度或体积的变化率。

该测试可通过热膨胀系数仪进行。

2.热导率测试热导率是指材料传递热量的能力。

该测试可通过热导率仪进行。

3.玻璃化转变温度测试玻璃化转变温度是指材料从固体状态转变为胶态状态的温度。

该测试可通过差示扫描量热仪进行。

4.分解温度测试分解温度是指材料在高温下开始分解的温度。

该测试可通过热重分析仪进行。

四、光学性能测试1.透明度测试透明度是指光线穿过材料时的能力。

该测试可通过透射光谱仪或反射光谱仪进行。

2.折射率测试折射率是指光线经过材料时偏离原来方向的程度。

该测试可通过折射计进行。

3.吸收系数测试吸收系数是指材料吸收光线的程度,通常使用紫外-可见吸收光谱法测定。

五、电学性能测试1.电阻率和电导率测试电阻率和电导率是衡量材料导电性能的指标。

该测试可通过四探针法或两探针法进行。

2.介电常数和介质损耗测试介电常数和介质损耗是指材料在电场作用下的响应能力。

该测试可通过介电恒定仪进行。

3.击穿强度测试击穿强度是指材料在电场作用下发生击穿的最大电场强度。

该测试可通过高压击穿试验机进行。

六、总结以上是一些常用的高分子材料测试方法,不同的测试方法可以衡量不同的物理、化学和机械性能。

高分子材料分析测试与研究方法

高分子材料分析测试与研究方法

高分子材料分析测试与研究方法引言高分子材料是一类重要的工程材料,公认为21世纪最具潜力的材料之一。

高分子材料的性能与结构密切相关,因此对其进行分析测试与研究是非常必要的。

本文将介绍常用的高分子材料分析测试方法及其研究方法,包括物理性能测试、化学结构分析、热性能分析、力学性能测试以及相关的表征技术。

一、物理性能测试物理性能是高分子材料的基本性能之一,常用的物理性能测试包括密度测量、吸水性能测试、熔融指数测试等。

1. 密度测量密度是衡量材料物理性能的重要指标之一,可以通过比重法、浮力法或压缩气体法等方法进行测量。

其中,比重法是最常用的方法,通过称量样品质量和体积来计算密度。

2. 吸水性能测试吸水性能是衡量材料对水分的吸收能力的指标,可以通过浸泡法、浸水法或密闭测量等方法进行测试。

这些测试方法可以帮助评估材料的耐水性能及吸水后的性能变化。

3. 熔融指数测试熔融指数是衡量高分子材料熔融流动性能的指标,常用的测试方法有熔体指数法、熔体流动速率法等。

通过测量熔融材料的流动性能,可以评估材料的加工性能以及与其他材料的相溶性。

二、化学结构分析化学结构分析是研究高分子材料化学特性的重要手段,常用的化学结构分析方法包括红外光谱分析、核磁共振分析、质谱分析等。

1. 红外光谱分析红外光谱分析是研究材料化学结构的重要手段,通过研究材料在红外波段的吸收谱图,可以确定材料中的官能团、键的类型以及化学环境等信息。

2. 核磁共振分析核磁共振分析是研究材料分子结构及动力学性质的重要方法,通过测量核磁共振信号,可以获得材料中原子的化学环境、相对数量以及分子间的相互作用信息。

3. 质谱分析质谱分析是研究材料分子结构及组成的关键分析方法,通过测量不同质荷比的离子的相对丰度,可以确定材料中的化学元素、分子量以及它们的相对含量等信息。

三、热性能分析热性能是衡量材料耐热性、热膨胀性等重要性能的指标,常用的热性能分析方法包括热重分析、差示扫描量热分析等。

高分子材料分析与检测技术:透气性和透湿性的测定

高分子材料分析与检测技术:透气性和透湿性的测定
• 第二阶段,被吸收或溶解的气体在聚合物内部进行扩散,通常有扩 散系数 D 表示;
• 第三阶段,穿过聚合物的气体或蒸汽在另一侧解吸出来。
• 气体透过聚合物的总能力通常用透气系数表示,
• 三者关系符合公式: P =SD 。
一、透气性及其测定
塑料薄膜透气系数或透气量的测定,参照国标 GB 1038 一 88 《 塑料薄膜透气性试验方法 》 进行的。
3.成膜材料的性质
➢聚合物的品种不同,结构不同,性质也不同,因而 对气体的阻隔性也不同。
➢扩散系数可以认为是聚合物疏松度的量度
结构紧密,分子的对称性好,对气体的扩散常常数比较 小,
在聚合物材料中加入颜料或填料,会使结构紧密度降低, 透气性增加。
结晶度增加,会使材料的紧密度增加,因而结晶度高的 聚合物比结晶度低的聚合物对气体的阻隔性要好。
• 试验结果一般表示为透过速度,而不采用渗透系数。
• (一)定义
• ( l )透湿量(水燕气透过量) • 在薄膜两侧水蒸气压差和薄膜厚度一定、温度一定、相对湿度一定的条件 下,一平方米聚合物材料, 24h 内所透过的水蒸气量,用 Qv 来表示, 单位为 kg / (m2·24h )。
• (2)透湿系数(水蒸气透过系数) • 在一定的温度和相对湿度下,单位水蒸气压差,单位时间内透过单位面积 和单位厚度的水蒸气量,用Pv 来表示,单位为 kg / (m2·m·Pa·s )。
2 .测试仪器和试剂
干燥剂,无水氯化钙,粒度为 0 . 60 ~ 2. 36mm , 使用前在( 200 士 2 ) ℃ 干燥 2h
3 .试验条件
(1 )条件 A 温度( 38± 0 . 6 ) ℃ ,相对湿度( 90 ± 2 ) %。
( 2 )条件 B 温度( 23 ± 0 . 6 ) ℃ ,相对湿度( 90 ± 2 ) %。

高分子材料分析测试方法

高分子材料分析测试方法
傅立叶变换红外光谱仪的结构
光源发出的光被分束器分为两束,一束经反射到达动镜,另一束经 透射到达定镜。两束光分别经定镜和动镜反射再回到分束器,从而产生 干涉。动镜作直线运动,因而干涉条纹产生连续的变换。干涉光在分束 器会合后通过样品池,然后被检测器(傅立叶变换红外光谱仪的检测器 有TGS,DTGS,MCT等)接收,计算机处理数据并输出。
结构鉴定
傅里叶红外光谱
B.分辨率 红外光谱仪器的分辨率是指仪器对于紧密相邻的峰可分辨的最 小波长间隔,表示仪器实际分开相邻两谱线的能力,往往用仪器 的单色光带宽来表示,它是仪器最重要的性能指标之一,也是仪 器质量的综合反映。 仪器的分辨率主要取决于仪器的分光系统的性能。仪器的分辨 率主要影响光谱仪器获得测定样品光谱的质量,从而影响分析的 准确性,对于一台仪器的分辨率是否满足要求,这与待测样品的 光谱特征有关,有些物质光谱重叠、特征复杂,要得到满意的分 析结果,就要求较高的仪器分辨率。
结构鉴定
傅里叶红外光谱
(3)样品量的控制对谱图的影响: 在红外光谱实验中, 固体粉末样品不能直接压片, 必须用稀释剂稀释、
研磨后才能压片。稀释剂溴化钾与样品的比例非常重要, 样品太少不行, 样 品太多则信息太丰富而特征峰不突出, 造成分析困难或吸收峰成平顶。对于 白色样品或吸光系数小的样品, 稀释剂溴化钾与样品的比例是100:1; 对于 有色样品或吸光系数大的样品稀释剂溴化钾与样品的比例是150:1。
Raman散射与红外吸收方法机理不同,所遵守的选择定则也不同。 两种方法可以相互补充,这样对分子的问题可以更周密的研究。下图是 Nylon 66的Raman与红外光谱图
结构鉴定
激光拉曼散射光谱
品吸潮以外还有环境的潮湿和噪声。平滑是减少来自各方面因素所产生的 噪声信号, 但实际是降低了分辨率, 会影响峰位和峰强, 在定量分析时需特 别注意。 (2)基线校正:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结构鉴定 傅里叶红外光谱
红外吸收光谱在高分子材料分析中的要素
1. 谱带的位置;它代表某一基团的振动频率。 也是说明是否含有某一基团的标志。 2. 谱带的形状;这主要用于鉴定特殊基团的存 在(如:氢键和离子的官能团会产生很宽的 吸收谱带),如酰胺基的C=O和烯类的C=C 伸缩振动都出现在1650cm-1附近但酰胺基 团的羰基大多形成氢键,其谱带较宽。 3. 谱带的相对强度;谱带的强弱对比不单是定 量分析的基础,而且可以暗示某一特殊基团 或元素的存在。
结构鉴定 傅里叶红外光谱
5、影响吸收谱带的因素还有分子外和分子内的因素:如溶剂不同, 振动频率不同, 溶剂的极性不同, 介电常数不同, 引起溶质分子振动 频率不同, 因为溶剂的极性会引起溶剂和溶质的缔合, 从而改变吸收 带的频率和强度。氢键的形成使振动频率向低波数移动、谱带加宽 和强度增强(分子间氢键可以用稀释的办法消除, 分子内氢键不随溶 液的浓度而改变)。 6、影响吸收谱带的其他因素还有:共轭效应、张力效应、诱导效 应和振动耦合效应。 共轭效应: 由于大P 键的形成, 使振动频率降低。 张力效应: 当环状化合物的环中有张力时, 环内伸缩振动降低,环外 增强。 诱导效应: 由于取代基具有不同的电负性, 通过静电诱导作用,引起 分子中电子分布的变化及键力常数的变化,从而改变了基团的特征 频率。 振动耦合效应: 当2个相邻的基团振动频率相等或接近时, 2个基团 发生共振,结果使一个频率升高, 一个频率降低。
结构鉴定 傅里叶红外光谱
相干的复色光,在空间x处电场强度的叠加是:
E ( x) f ( )cos 2 xd
0

其中 f ( ) 是光强度按波数 的分布函数
很明显E(x)、 f ( ) 分别是光时域和频域的表征,上述关系式就是 傅立叶变换式。可以通过FT把光在时域和频域的表征相互转换:
结构鉴定 傅里叶红外光谱
B.分辨率 红外光谱仪器的分辨率是指仪器对于紧密相邻的峰可分辨的最 小波长间隔,表示仪器实际分开相邻两谱线的能力,往往用仪器 的单色光带宽来表示,它是仪器最重要的性能指标之一,也是仪 器质量的综合反映。 仪器的分辨率主要取决于仪器的分光系统的性能。仪器的分辨 率主要影响光谱仪器获得测定样品光谱的质量,从而影响分析的 准确性,对于一台仪器的分辨率是否满足要求,这与待测样品的 光谱特征有关,有些物质光谱重叠、特征复杂,要得到满意的分 析结果,就要求较高的仪器分辨率。
结构鉴定 傅里叶红外光谱
(3)样品量的控制对谱图的影响: 在红外光谱实验中, 固体粉末样品不能直接压片, 必须用稀释剂稀释、 研磨后才能压片。稀释剂溴化钾与样品的比例非常重要, 样品太少峰成平顶。对于 白色样品或吸光系数小的样品, 稀释剂溴化钾与样品的比例是100:1; 对于 有色样品或吸光系数大的样品稀释剂溴化钾与样品的比例是150:1。
高分子材料分析 测试方法
结构鉴 定
流变性
高分子材 料分析主 要方向
分子量 及分布 鉴定
形态及 形貌表 征
热分析 技术
第一部分
红外光 谱法 核磁共 振法 紫外光 谱法
气相色 谱法
结构 鉴定
拉曼散 射
质谱法
分子荧 光光谱 发
结构鉴定
傅里叶红外光谱
红外光谱又称为分子振动转动光谱,它和紫外-可见光谱一 样,也是一种分子吸收光谱。当样品受到频率连续变化的红外 光照射时,分子吸收了某些频率的辐射,并由其振动或转动运 动引起偶极矩的净变化产生分子振动和转动能级从基态到激发 态的跃迁,使相应于这些吸收区城的透射光强度减弱。记录红 外光的百分透射比与波数或波长关系的曲线,就得到红外光谱。 红外光谱法不仅能进行定性和定量分析,而且从分子的特征吸 收可以鉴定化合物和分子结构。
结构鉴定 傅里叶红外光谱
3、分辨率对红外谱图的影响: 红外光谱的分辨率等于最大光程差的倒数, 是由干涉仪动镜移动的距离决 定的, 确切地说是由光程差计算出来的。分辨率提高可改善峰形, 但达到一定 数值后, 再提高分辨率峰形变化不大, 反而噪声增加。分辨率降低可提高光谱 的信噪比, 降低水汽吸收峰的影响, 使谱图的光滑性增加。 样品对红外光的吸收与样品的吸光系数有关,如果样品对红光外有很强的 吸收, 就需要用较高的分辨率以获得较丰富的光谱信息; 如果样品对红光外有 较弱的吸收, 就必须降低光谱的分辨率、提高扫描次数以便得到较好的信噪比。 4、数据处理对红外谱图质量的影: (1)平滑处理: 红外光谱实验中谱图常常不光滑,影响谱图质量。不光滑的原因除了样 品吸潮以外还有环境的潮湿和噪声。平滑是减少来自各方面因素所产生的 噪声信号, 但实际是降低了分辨率, 会影响峰位和峰强, 在定量分析时需特 别注意。 (2)基线校正: 在溴化钾压片制样中由于颗粒研磨得不够细或者不够均匀, 压出的锭片不 够透明而出现红外光散射, 所以不管是用透射法测得的红外光谱,还是用反射 法测得的光谱, 其光谱基线不可能在零基线上, 使光谱的基线出现漂移和倾斜 现象。需要基线校正时, 首先判断引起基线变化的原因, 能否进行校正。基线 校正后会影响峰面积, 定量分析要慎重。
区域
波长μm
波数 cm-1
能级跃迁类型
近 红 外 区 0.75~2.5 13158 (泛频区) 中 红 外 区 2.5~25 (基本振动 4000
~ OH 、 NH 及 CH 键的倍频吸收
4000~400 分 子 振 动 , 伴 随转动
结构鉴定 傅里叶红外光谱
傅立叶变换红外光谱仪的结构
傅立叶变换红外光谱仪的结构
结构鉴定 傅里叶红外光谱
红外光谱谱图质量影响因素
1、扫描次数对红外谱图的影响: 傅里叶变换红外光谱仪测量物质的光谱时, 检测器在接受样品光谱信号的 同时也接受了噪声信号, 输出的光谱既包括样品的信号也包括噪声信号。信噪 比与扫描次数的平方成正比。增加扫描次数可以减少噪声、增加谱图的光滑 性。
2、扫描速度对红外谱图的影响: 扫描速度减慢, 检测器接收能量增加; 反之, 扫描速度加快, 检测器接收能 量减小。当测量信号小时( 包括使用某些附件时) 应降低动镜移动速度, 而在 需要快速测量时, 提高速度。扫描速度降低, 对操作环境要求更高, 因此应选 择适当的值。 采用某一动镜移动速度下的背景, 测定不同扫描速度下样品的吸收谱图, 随扫描速度的加快, 谱图基线向上位移。用透射谱图表示时, 趋势相反。所以 在实验中测量背景的扫描速度与测量样品的扫描速度要一致。
结构鉴定 傅里叶红外光谱
D.波长精确度 波长精确度又称波长重复性,是指对同一样品进行多次扫描,光谱谱 峰位置间的差异程度或重复性,通常用多次测量某一谱峰所得波长的标 准差来表示。波长精确度是体现仪器稳定性的—个重要指标,取决于光 学系统的结构,与波长准确度一样,也会影响分析结果的准确性。如果 仪器的光学系统全部设计成固定不动,则仪器的波长的精确度就会很高 E.光度准确度 光度准确度是指仪器对某物质进行透射或漫反射测量时,测得的光度 值与该物质真实值之差。主要是由检测器、放大器、信号处理电路的非 线性引起。它会直接影响近红外定量分析结果的准确度。
结构鉴定 傅里叶红外光谱
C.波长准确度 波长准确度是指仪器所显示的波长值和分光系统实际输出单色光 的波长值之间相符的程度。波长准确度可用波长误差,即上述两值 之差来表示。保证波长准确度是红外光谱仪器能够准确测定样品光 谱的前提,是保证分析结果的准确度前提。红外分析结果一般是通 过用已知化学值的标准样品建立的模型来分析待测样品,如果波长 准确度不能保证,整组数据就会因波长平移而使每个数据出现偏差 ,造成分析结果的误差。波长准确度主要决定于光学系统的结构, 此外还受温度的影响。傅里叶变换红外光谱仪器一般内部有波长校 正系统,所以波长准确度很高。
光源发出的光被分束器分为两束,一束经反射到达动镜,另一束经 透射到达定镜。两束光分别经定镜和动镜反射再回到分束器,从而产生 干涉。动镜作直线运动,因而干涉条纹产生连续的变换。干涉光在分束 器会合后通过样品池,然后被检测器(傅立叶变换红外光谱仪的检测器 有TGS,DTGS,MCT等)接收,计算机处理数据并输出。
结构鉴定 傅里叶红外光谱
简单介绍FTIR的数学原理
周期性的运动可在两种域(Domain)中得到表征:一种表征域是表现 出周期性的域,例如,电(磁)场强度随时间(空间)的分布,就是在时 (空)域中表征光波的特征;另一种表征域是运动状态按某一周期性参 数(频率、波长、波数等)的分布,可统称为频域。这两种域表征同一 运动状态.可通过傅里叶变换(Fourier Transform,简称FT)相互转变 。通常所说的某种光的光谱是指该光包含的不同频率成分的强度按频 率的分布,因此光谱就是光在频率域中的表征。下图是某频率的两种 单色光分别在空间域(时域)和频域的表征。
激光拉曼散射光谱
Raman散射与红外吸收方法机理不同,所遵守的选择定则也不同。 两种方法可以相互补充,这样对分子的问题可以更周密的研究。下图是 Nylon 66的Raman与红外光谱图
f ( ) E( x) cos 2 xdx
0

我们用迈克耳孙干涉仪可以得到红外光的时域谱,通过FT就 可以得到光的频率(波数)分布。这就是傅里叶变换红外光谱 仪名称的由来。
结构鉴定 傅里叶红外光谱
光谱范 围 分析速 度 红外光 谱仪各 项指标 分辨率
信噪比
波长准 确度
光度准 确度
波长精 确度
结构鉴定 傅里叶红外光谱
红外光区的划分
红外光谱在可见光区和微波光区之间,其波长范围约为0.75~ 1000μm。根据实验技术和应用的不同,通常将红外区划分成三个区: 近红外光区(0.75~2.5μm),中红外光区(2.5~25μm)和远红外光区 (25~1000μm),如下表:其中中红外区是研究和应用最多的区域, 一般说的红外光谱就是指中红外区的红外光谱。
结构鉴定 傅里叶红外光谱
F.信噪比 信噪比就是样品吸光度与仪器吸光度噪声的比值。仪器吸光度 噪声是指在一定的测量条件下,在确定的波长范围内对样品进行 多次测量,得到光谱吸光度的标准差。仪器的噪声主要取决于光 源的稳定性、放大器等电子系统的噪声、检测器产生的噪声及环 境噪声,如电子系统设计不良、元件质量低劣、仪器接地不良、 工作环境潮湿、外界电磁干扰多会使仪器噪声增大。信噪比是红 外光谱仪器非常重要的一项指标,直接影响分析结果的准确度与 精确度;因为红外光谱分析是一门弱信号提取技术,在一个很强 的背景信号下提取出相对很弱的有用信息,得到分析结果,所以 信噪比对近红外光谱仪器尤为重要。对于高档仪器,一般要求信 噪比达到105。
相关文档
最新文档