最新新人教版初一(七年级)下册数学期中考试卷
新人教版七年级数学下册期中考试卷及参考答案

新人教版七年级数学下册期中考试卷及参考答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.计算(-2)1999+(-2)2000等于()A.-23999B.-2C.-21999D.219992.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4400000000人,这个数用科学记数法表示为()A.4.4×108B.4.40×108C.4.4×109D.4.4×10103.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等4.若x是3的相反数,|y|=4,则x-y的值是()A.-7 B.1 C.-1或7 D.1或-75.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)6.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3()A .70°B .180°C .110°D .80°7.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm8.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数,例如:[]5.8=5,[]10=10,[]=4π--.若[]=6a -,则a 的取值范围是( ).A .6a ≥-B .65a -≤-<C .65a <<--D .76a -≤-<9.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A ,B ,C 均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是( )A .B .C .D .10.若不论k 取什么实数,关于x 的方程2136kx a x bk +--=(a 、b 是常数)的解总是x=1,则a+b 的值是( )A .﹣0.5B .0.5C .﹣1.5D .1.5二、填空题(本大题共6小题,每小题3分,共18分)11x -x 的取值范围是_______.2.点P 是直线l 外一点,点A ,B ,C ,D 是直线l 上的点,连接PA ,PB ,PC ,PD .其中只有PA 与l 垂直,若PA =7,PB =8,PC =10,PD =14,则点P 到直线l 的距离是________.3.实数8的立方根是________.4.一大门栏杆的平面示意图如图所示,BA 垂直地面AE 于点A ,CD 平行于地面AE ,若∠BCD=150°,则∠ABC=_______度.5.若不等式组2x b 0{x a 0-≥+≤的解集为3≤x ≤4,则不等式ax+b <0的解集为________.6.若实数a 、b 满足a 2b 40++-=,则2a b=_______. 三、解答题(本大题共6小题,共72分)1.解方程:(1)3(2x ﹣1)=15 (2)71132x x -+-=2.先化简,再求值:(a+b )2+b (a ﹣b )﹣4ab ,其中a=2,b=﹣123.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)若∠EOC =70°,求∠BOD 的度数;(2)若∠EOC :∠EOD =2:3,求∠BOD 的度数.4.如图,某市有一块长为()3a b +米,宽为()2a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当3,2a b ==时的绿化面积?5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A (0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B (5001~10000步),C (10001~15000步),D (15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了 位好友.(2)已知A 类好友人数是D 类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、A4、D5、D6、C7、B8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、1x2、73、2.4、1205、x>3 26、1三、解答题(本大题共6小题,共72分)1、(1)x=3;(2)x=-23.2、5.3、(1)35°;(2)36°.4、(5a2+3ab)平方米,63平方米5、(1)30;(2)①补图见解析;②120;③70人.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试卷一、单选题1.下列数据能确定物体具体位置的是()A .朝阳大道右侧B .好运花园2号楼C .东经103︒,北纬30°D .南偏西55︒2.在0.21)A .0.2BC .﹣1D3.下列各式计算正确的是()A 2=±B 1=-C 2=±D .3=4.下列命题中是假命题的是()A .两直线平行,同位角互补B .对顶角相等C .直角三角形两锐角互余D .平行于同一直线的两条直线平行5.在平面直角坐标系内,将M (5,2)先向下平移2个单位,再向左平移3个单位,则移动后的点的坐标是()A .(2,0)B .(3,5)C .(8,4)D .(2,3)6.如图,直线AB 和CD 相交于点O ,45AOC ∠=︒,射线OE 是BOD ∠的角平分线,则∠BOE 的度数为()A .22.5︒B .23.5︒C .45︒D .40︒7.如图,在下列条件中,能判断AB ∥CD 的是()A .∠1=∠2B .∠BAD =∠BCDC .∠BAD +∠ADC =180°D .∠3=∠48.小明在学习平行线的性质后,把含有60°角的直角三角板摆放在自己的文具上,如图,AD ∥BC ,若∠2=70°,则∠1=()A .22°B .20°C .25°D .30°9.如图,数轴上有M ,N ,P ,Q 四点,则这四点中所表示的数最接近)A .点MB .点NC .点PD .点Q10.如图,已知直线AB ,CD 被直线AC 所截,//AB CD ,E 是平面内任意一点(点E 不在直线AB ,CD ,AC 上),设∠BAE =α,∠DCE =β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,④360°﹣α﹣β,∠AEC 的度数可能是()A .①②③B .①②④C .①③④D .①②③④二、填空题11.已知点(1,3)M m m ++在x 轴上,则m 等于______.12.如果一个正数a 的两个不同平方根分别是22x -和63x -,则a =______.13.在平面直角坐标系中,第二象限内有一点M ,点M 到x 轴的距离为5,到y 轴的距离为4,则点M 的坐标是______.14.如图://AB CD ,AE CE ⊥,13EAF EAB ∠=∠,13ECF ECD ∠=∠,则AFC ∠=__.15a ,小数部分是b ,计算a ﹣2b 的值是__.16<x x 的整数有4个;③﹣3⑥对于任意实数a a .其中正确的序号是_____.三、解答题17218.求下列各式中的x :(1)24810x -=;(2)35(1)48x -+=.19.如图,已知AD BC ⊥于点D ,点E 在AB 上,EF BC ⊥于点F ,12∠=∠,试说明//DE AC .20.按要求画图及填空:在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O 及△ABC 的顶点都在格点上.(1)点A 的坐标为;(2)将△ABC 先向下平移2个单位长度,再向右平移5个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1.(3)△A 1B 1C 1的面积为.21.(1)由8个同样大小的立方体组成的魔方,体积为64,则出这个魔方的棱长是_____.(2)图1正方形EFGH 的边长等于魔方的棱长,求出阴影部分的面积及其边长.(3)把正方形ABCD 放到数轴上,如图2,使得A 与1-重合,那么D 在数轴上表示的数为______.22.在平面直角坐标系中,有A(﹣2,a +1),B(a ﹣1,4),C(b ﹣2,b )三点.(1)当点C 在y 轴上时,求点C 的坐标;(2)当AB ∥x 轴时,求A ,B 两点间的距离;(3)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标.23.先阅读下列一段文字,再回答后面的问题:已知在平面直角坐标系内两点P 1(x 1,y 1),P 2(x 2,y 2),其两点间的距离P 1P 2轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2﹣x 1|或|y 2﹣y 1|.(1)已知A (1,3),B (﹣3,﹣5),试求A ,B 两点间的距离;(2)已知线段MN ∥y 轴,MN =4,若点M 的坐标为(2,﹣1),试求点N 的坐标;(3)已知一个三角形各顶点坐标为D (0,6),E (﹣3,2),F (3,2),你能判定此三角形的形状吗?说明理由.24.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,直接写出A ∠和C ∠之间的数量关系________;(2)如图2,过点B 作BD AM ⊥于点D ,请说明ABD C ∠=∠的理由;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE ,BP 、CF ,BF 平分DBC ∠,BE 平分ABD ∠,若180FCB NCF ∠+∠=︒,3BFC DBE ∠=∠,求EBC ∠的度数.参考答案1.C【分析】在平面中,要用两个数据才能表示一个点的位置.【详解】解:朝阳大道右侧、好运花园2号楼、南偏西55︒都不能确定物体的具体位置,东经103︒,北纬30°能确定物体的具体位置,故选:C.【点睛】此题主要考查了坐标确定位置,要明确,一个有序数对才能确定一个点的位置.2.D【分析】按照无理数的定义逐个来判定即可.【详解】解:A、0.2属于有理数,故A不符合题意;3,为有理数,故B不符合题意;BC、﹣1为有理数,故C不符合题意;D符合题意.D故选:D.【点睛】此题主要考查无理数的识别,解题的关键是熟知无理数的定义.3.B【分析】根据算术平方根、平方根和立方根的定义分别判断即可.【详解】解:A2=,故选项错误;B1=-,故选项正确;C2=,故选项错误;D、3=±,故选项错误;故选B.【点睛】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.4.A【分析】根据平行线、相交线、三角形内角和等性质,对选项逐个判断即可.【详解】解:A:两直线平行,同位角相等,同旁内角互补,选项错误,符合题意;B:对顶角相等,为真命题,故选项不符合题意;C:直角三角形两锐角相加为90︒,即互余,为真命题,故选项不符合题意;D:平行于同一直线的两条直线平行,为真命题,故选项不符合题意;故选A.【点睛】此题主要考查了真假命题,涉及到平行线、相交线、三角形内角和、平行公理等内容,熟练掌握相关几何性质是解题的关键.5.A【分析】根据平移变换与坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,可得答案.【详解】因为M点坐标为(5,2),根据平移变换的坐标变化规律可知,向下平移2个单位,再向左平移3个单位后得到的点的坐标是(5−3,2-2),即(2,0).故选:A.【点睛】此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.6.A【分析】根据对顶角相等可得∠BOD=∠AOC,再根据射线OE是∠BOD的角平分线即可得解.【详解】解:由对顶角相等得,∠BOD=∠AOC=45°,∵射线OE是∠BOD的角平分线,∴∠BOE=12∠BOD=12×45°=22.5°.故选:A.【点睛】本题考查了对顶角的性质和角平分线的定义,熟记概念并求出∠BOD的度数是解题的关键.7.C【分析】利用平行线的判定方法逐一判断即可.【详解】解:A.由∠1=∠2可判断AD∥BC,不符合题意;B.∠BAD=∠BCD不能判定图中直线平行,不符合题意;C.由∠BAD+∠ADC=180°可判定AB∥DC,符合题意;D.由∠3=∠4可判定AD∥BC,不符合题意;故选择:C.【点睛】本题主要考查平行线的判定,掌握平行线的判定方法是解题的关键.8.B【分析】过F作FG∥AD,则FG∥BC,即可得到∠2=∠EFG=70°,再根据∠AFE=90°,即可得出∠AFG=90°-70°=20°,进而得到∠1=∠AFG=20°.【详解】解:如图,过F作FG∥AD,则FG∥BC,∴∠2=∠EFG=70°,又∵∠AFE=90°,∴∠AFG=90°-70°=20°,∴∠1=∠AFG=20°,故选:B.【点睛】本题考查了平行线的性质,三角板的知识,比较简单,熟记平行线的性质是解题的关键.9.B【分析】先估算.【详解】∵∴43-<-∴最接近N故答案选择B.【点睛】本题考查的是无理数,正确估算.10.D【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1,由AB//CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图2,过E2作AB平行线,则由AB//CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.当AE2平分∠BAC,CE2平分∠ACD时,∠BAE2+∠DCE2=12(∠BAC+∠ACD)=12×180°=90°,即α+β=90°,又∵∠AE2C=∠BAE2+∠DCE2,∴∠AE2C=180°﹣(α+β)=180°﹣α﹣β;(3)如图3,由AB//CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图4,由AB//CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.(5)(6)当点E 在CD 的下方时,同理可得,∠AEC =α﹣β或β﹣α.综上所述,∠AEC 的度数可能为β﹣α,α+β,α﹣β,180°﹣α﹣β,360°﹣α﹣β.故选:D .【点睛】本题主要考查了平行线的性质的运用与外角定理,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.11.3-【分析】当点M 的纵坐标为0时,即可列式求值.【详解】解:由题意得:m+3=0,解得m=-3,故答案为:3-.【点睛】此题主要考查点的坐标;用到的知识点为:x 轴上点的纵坐标为0.12.36【分析】根据平方根的定义,两不同平方根互为相反数,列式求解即可【详解】解:由题意可得()3262x x -=--,即2263x x -=-+,解得4x =,222426x ∴-=⨯-=,36a ∴=故答案为:36【点睛】本题主要考查了平方根的定义,利用正数的平方根有两个且互为相反数列出正确的关系式是解决本题的关键.【分析】根据点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值,得到点M 的横纵坐标可能的值,进而根据所在象限可得点M 的具体坐标.【详解】解:设点M 的坐标是(x ,y ).∵点M 到x 轴的距离为5,到y 轴的距离为4,∴|y|=5,|x|=4.又∵点M 在第二象限内,∴x =−4,y =5,∴点M 的坐标为(−4,5),故答案是:(−4,5).【点睛】本题考查了点的坐标,用到的知识点为:点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值;第二象限(−,+).14.60︒【分析】利用两直线平行,同旁内角互补,垂直的定义,方程的思想求解即可.【详解】解:连接AC ,设EAF x ∠=,ECF y ∠=,3EAB x ∠=,3ECD y ∠=,//AB CD ,180BAC ACD ∴∠+∠=︒,33180CAE x ACE y ∴∠++∠+=︒,180(33)CAE ACE x y ∴∠+∠=︒-+,180(22)FAC FCA x y ∠+∠=︒-+180()AEC CAE ACE ∴∠=︒-∠+∠180[180(33)]x y =︒-︒-+33x y=+3()x y =+,180()AFC FAC FCA ∠=︒-∠+∠180[180(22)]x y =︒-︒-+2()x y =+,AE CE ⊥ ,90AEC ∴∠=︒,22906033AFC AEC ∴∠=∠=⨯︒=︒.故答案为:60︒.【点睛】本题考查了平行线的性质,垂直的定义,方程的思想,熟练应用平行线的性质,科学引入未知数是解题的关键.15.3﹣【分析】a 、b 的值,代入求出即可.【详解】解:∵12,∴a =1,b 1,∴a ﹣2b =1﹣21)=3﹣故答案为:3﹣【点睛】此题主要考查无理数的估算,解题的关键是根据无理数的大小先表示出a 、b ,代入求解.16.②③【分析】根据有理数、无理数、实数的意义逐项进行判断即可.【详解】解:①开方开不尽的数是无理数,但是有的数不开方也是无理数,如:π,3π等,因此①不正确,不符合题意;x x 的整数有﹣1,0,1,2共4个,因此②正确,符合题意;③﹣3是99,因此③正确,符合题意;④π就是无理数,不带根号的数也不一定是有理数,因此④不正确,不符合题意;⑤无限循环小数,是有理数,因此⑤不正确,不符合题意;⑥若a <0|a|=﹣a ,因此⑥不正确,不符合题意;因此正确的结论只有②③,故答案为:②③.【点睛】本题考查无理数、有理数、实数的意义,理解和掌握实数的意义是正确判断的前提.172++.【分析】先化简绝对值、化简二次根式、立方根、二次根式的乘法,再计算二次根式的加减法即可得.【详解】原式35=+,2+.【点睛】本题考查了化简绝对值、立方根、二次根式的乘法与加减法,熟记各运算法则是解题关键.18.(1)92x =±;(2)12x =-【分析】(1)移项后根据平方根的定义求解;(2)移项后根据立方根的定义求解;【详解】解:(1)∵24810x -=,∴2481x =,∴2814x =,∴92x =±;(2)∵35(1)48x -+=,∴327(1)8x -=-,∴312x -=-,∴12x =-.【点睛】本题考查了利用平方根和立方根的定义解方程,熟练掌握平方根和立方根的定义是解答本题的关键.19.见解析【分析】先由垂直于同一条直线的两条直线平行,得出∠1=∠3,再用∠1=∠2代换,最后用内错角相等得出结论.【详解】解:如图,∵AD BC ⊥于点D ,EF BC ⊥于点F ,∴//AD EF ,∴13∠=∠,∵12∠=∠,∴23∠∠=,∴//DE AC .【点睛】此题是平行线的判定,主要考查了平行线的性质和判定,用判断垂直于同一条直线的两直线平行,解本题的关键是判断出AD ∥EF .20.(1)(-4,2);(2)见解析;(3)5.5.【分析】(1)根据点A 的的位置和平面直角坐标系求解即可;(2)根据平移规律即可画出△A 1B 1C 1;(3)利用割补法求△A 1B 1C 1的面积,把△A 1B 1C 1补全成一个矩形,然后用矩形的面积减去其他三个三角形的面积,即可求出△A 1B 1C 1的面积.【详解】(1)A (-4,2);(2)如图,△A 1B 1C 1即为所求.(3)11111134231413 5.5222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯= .∴△A 1B 1C 1的面积是5.5.【点睛】此题考查了平移变换以及利用割补法求三角形面积,解题的关键是熟练掌握平移变换以及利用割补法求三角形面积.21.(1)4;(2)阴影部分的面积是8,边长是(3)-1-【分析】(1)根据正方体的体积公式可求这个魔方的棱长.(2)根据魔方的棱长为4,所以小立方体的棱长为2,阴影部分由4个直角三角形组成,算出一个直角三角形的面积乘以4即可得到阴影部分的面积,开平方即可求出边长.(3)根据两点间的距离公式可得D 在数轴上表示的数.【详解】解:(1=4,答:这个魔方的棱长为4.(2)∵魔方的棱长为4,∴小立方体的棱长为2,∴阴影部分面积为:12×2×2×4=8,答:阴影部分的面积是8,边长是(3)D 在数轴上表示的数为-1-故答案为:-1-【点睛】本题考查的是立方根在实际生活中的运用,解答此题的关键是根据立方根求出魔方的棱长.22.(1)(0,2);(2)4;(3)(﹣1,1)或(﹣3,﹣1)【分析】(1)利用y 轴上点的坐标特征得到b ﹣2=0,求出b 得到C 点坐标;(2)利用与x 轴平行的直线上点的坐标特征得到a +1=4,求出a 得到A 、B 点的坐标,然后计算两点之间的距离;(3)利用垂直于x 轴的直线上点的坐标特征得到|b |=1,然后求出b 得到C 点坐标.【详解】解:(1)∵点C 在y 轴上,∴20b -=,解得2b =,∴C 点坐标为(0,2);(2)∵AB ∥x 轴,∴A 、B 点的纵坐标相同,∴a +1=4,解得a =3,∴A(﹣2,4),B(2,4),∴A ,B 两点间的距离=2﹣(﹣2)=4;(3)∵CD ⊥x 轴,CD =1,∴|b |=1,解得b =±1,∴C 点坐标为(﹣1,1)或(﹣3,﹣1).【点评】本题考查平面直角坐标系中点坐标的求解,解题的关键是掌握坐标轴上点的坐标特征.23.(1)(2)(2,3)或(2,﹣5);(3)等腰三角形,见解析【分析】(1)直接利用两点间的距离公式计算;(2)利用MN∥y轴得到M、N的横坐标相同,设N(2,t),利用两点间的距离为4得到|t+1|=4,然后求出t即可;(3)利用两点间的距离公式计算出DE、DF、EF,然后根据三角形的分类进行判断.【详解】解:(1)A,B(2)∵线段MN∥y轴,∴M、N的横坐标相同,设N(2,t),∴|t+1|=4,解得t=3或﹣5,∴N点坐标为(2,3)或(2,﹣5);(3)△DEF为等腰三角形.理由如下:∵D(0,6),E(﹣3,2),F(3,2),∴DE5,DF5,EF6,∴DE=DF,∴△DEF为等腰三角形.【点睛】本题考查了两点间的距离公式.解答该题时,先弄清两点在平面直角坐标系中的位置,然后选取合适的公式来求两点间的距离.24.(1)∠A+∠C=90°;(2)证明见解析(3)105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)过点B作BG∥DM,证∠DBG=90°,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∴∠D+∠DBG=180°,∵BD⊥AM,∴∠D=90°,∴∠DBG=90°,∴∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,∴∠DBF=∠CBF,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,∵BE平分∠ABD,∴∠DBE=∠ABE,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠ABF=β,∵BG∥DM,∴∠AFB=∠GBF=β,∵∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵BG∥DM,∴∠AFC+∠NCF=180°,∵∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质和三角形内角和,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.。
新人教版七年级数学下册期中考试卷及答案【可打印】

新人教版七年级数学下册期中考试卷及答案【可打印】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+7C.12或7+7D.以上都不对2.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°3.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为( )A.180 B.182 C.184 D.1864.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.65.若关于x的不等式组()2213x x ax x<⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a的取值范围是()A .102a ≤<B .01a ≤<C .102a -<≤D .10a -≤<6.下列解方程去分母正确的是( )A .由1132x x --=,得2x ﹣1=3﹣3x B .由2124x x --=-,得2x ﹣2﹣x =﹣4 C .由135y y -=,得2y-15=3y D .由1123y y +=+,得3(y+1)=2y+6 7.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a 2+b 2+c 2—ab -bc -ca 的值等于( )A .0B .1C .2D .38.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.已知x a =3,x b =4,则x 3a-2b 的值是( )A .278B .2716C .11D .1910.若不论k 取什么实数,关于x 的方程2136kx a x bk +--=(a 、b 是常数)的解总是x=1,则a+b 的值是( )A .﹣0.5B .0.5C .﹣1.5D .1.5二、填空题(本大题共6小题,每小题3分,共18分)1.有理数a 、b 、c 在数轴上的位置如图所示,化简|a+b|﹣|c ﹣a|+|b ﹣c|的结果是________.2.如图,过直线AB 上一点O 作射线OC ,∠BOC=29°18′,则∠AOC 的度数为________.3.如图所示,在等腰△ABC 中,AB=AC ,∠A=36°,将△ABC 中的∠A 沿DE 向下翻折,使点A 落在点C 处.若AE=3,则BC 的长是________.4.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x)°,则x =________.5.若方程组x y 73x 5y 3+=⎧⎨-=-⎩,则()()3x y 3x 5y +--的值是________. 6.如图,AB ∥CD ,∠1=50°,∠2=110°,则∠3=___________度.三、解答题(本大题共6小题,共72分)1.按要求解下列方程组.(1)124x y x y +=⎧⎨-=-⎩(用代入法解) (2)34225x y x y +=⎧⎨-=⎩(用加减法解)2.已知关于x 的方程m +3x =4的解是关于x 的方程241346x m x x ---=-的解的2倍,求m 的值.3.如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于点C 和D ,点P 是直线CD上的一个动点。
新人教版七年级数学下册期中考试卷及答案【完整版】

新人教版七年级数学下册期中考试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0B.1C.﹣1D.±1 2.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°3.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣19 4.一5的绝对值是()A.5 B.15C.15-D.-55.若关于x的不等式组()2213x x ax x<⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a的取值范围是()A.12a≤<B.01a≤<C.12a-<≤D.10a-≤<6.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3()A.70°B.180°C.110°D.80°7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ).A .x +2x +4x =34 685B .x +2x +3x =34 685C .x +2x +2x =34 685D .x +12x +14x =34 685 8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.下列等式变形正确的是( )A .若﹣3x =5,则x =35B .若1132x x -+=,则2x+3(x ﹣1)=1 C .若5x ﹣6=2x+8,则5x+2x =8+6D .若3(x+1)﹣2x =1,则3x+3﹣2x =1二、填空题(本大题共6小题,每小题3分,共18分)1.有理数a 、b 、c 在数轴上的位置如图所示,化简|a+b|﹣|c ﹣a|+|b ﹣c|的结果是________.2.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=________.3.如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.如果方程(m-1)x|m|+2=0是表示关于x的一元一次方程,那么m的取值是________.5.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF = CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是________.(只需写一个,不添加辅助线)6.已知|x|=3,则x的值是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)2(x+3)=5(x-3)2123x-()=435x--x2.解不等式组:3(1)72323x xxx x--<⎧⎪-⎨-≤⎪⎩,并把解集在数轴上表示出来.3.如图,直线AB 、CD 相交于点O ,OE 把BOD ∠分成两部分,(1)直接写出图中AOC ∠的对顶角为________,BOE ∠的邻补角为________;(2)若AOC 70∠=︒,且BOE EOD ∠∠:=2:3,求AOE ∠的度数.4.如图,已知∠ACD =70°,∠ACB =60°,∠ABC =50°.试说明:AB ∥CD .5.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6.小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图).(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、A5、A6、C7、A8、A9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、-2a2、60°3、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、-15、AC=DF(答案不唯一)6、±3三、解答题(本大题共6小题,共72分)1、(1)x=7;(2)x=1 2.2、x≥3 53、(1)∠BOD;∠AOE;(2)152°.4、证明略5、(1)20%;(2)6006、(1) 自变量是时间,因变量是距离;(2) 10时他距家10千米,13时他距家30千米;(3) 12:00时他到达离家最远的地方,离家30千米;(4)13千米;(5) 12:00~13:00休息并吃午餐;(6) 15千米/时。
新人教版七年级数学下册期中试卷(附答案)

新人教版七年级数学下册期中试卷(附答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+7C.12或7+7D.以上都不对2.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244∠=,则1∠的大小为()A.14 B.16 C.90α- D.44α-3.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒A.2.5 B.3 C.3.5 D.44.已知5x=3,5y=2,则52x﹣3y=()A.34B.1 C.23D.985.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A .﹣2B .0C .1D .46.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13或119B .13或15C .13D .15 7.明月从家里骑车去游乐场,若速度为每小时10km ,则可早到8分钟,若速度为每小时8km ,则就会迟到5分钟,设她家到游乐场的路程为xkm ,根据题意可列出方程为( )A .851060860x x -=- B .851060860x x -=+ C .851060860x x +=- D .85108x x +=+ 8.若0ab <且a b >,则函数y ax b =+的图象可能是( )A .B .C .D .9.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >10.如图,宽为50cm 的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为( )A .400cm 2B .500cm 2C .600cm 2D .300cm 2二、填空题(本大题共6小题,每小题3分,共18分)1.一个n 边形的内角和为1080°,则n=________.2.已知关于x ,y 的二元一次方程组2321x y k x y +=⎧⎨+=-⎩的解互为相反数,则k 的值是_________.3.已知|x|=5,|y|=4,且x>y ,则2x +y 的值为____________.4.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为______cm .5.一只小蚂蚁停在数轴上表示﹣3的点上,后来它沿数轴爬行5个单位长度,则此时小蚂蚁所处的点表示的数为________.6.木工师傅在锯木料时,一般先在木料上画出两个点,然后过这两个点弹出一条墨线,这是因为______________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)430210x y x y -=⎧⎨-=-⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c分.(1)求a ,b ,c 的值;(2)求3a b c -+的平方根.3.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)若∠EOC =70°,求∠BOD 的度数;(2)若∠EOC :∠EOD =2:3,求∠BOD 的度数.4.如图,∠1=70°,∠2 =70°. 说明:AB∥CD.5.中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对七年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:(1)统计表中的a=________,b=___________,c=____________;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校七年级共有1200名学生,请你分析该校七年级学生课外阅读7本及以上的人数.6.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A 型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、D4、D5、C6、C7、C8、A9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、82、-13、6或144、225、2或﹣8.6、两点确定一条直线.三、解答题(本大题共6小题,共72分)1、(1)1010xy=⎧⎨=⎩(2)64xy=⎧⎨=⎩2、(1)a=5,b=2,c=3 ;(2)±4.3、(1)35°;(2)36°.4、略.5、(1)a=10,b=0.28,c=50;(2)补图见解析;(3)6.4本;(4)528人.6、(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.。
新人教版七年级数学下册期中试卷及答案【完美版】

新人教版七年级数学下册期中试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.计算(-2)1999+(-2)2000等于( )A .-23999B .-2C .-21999D .219992.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°3.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°4.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.下列说法,正确的是( )A .若ac bc =,则a b =B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC BC =,则C 是线段AB 的中点6.下列方程组中,是二元一次方程组的是( )A .4237x y x y +=⎧⎨+=⎩B .2311546a b b c -=⎧⎨-=⎩C .292x y x ⎧=⎨=⎩D .284x y x y +=⎧⎨-=⎩7.把1a a -根号外的因式移入根号内的结果是( ) A .a - B .a -- C .a D .a -8.(-9)2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或79.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x=16(27﹣x )B .16x=22(27﹣x )C .2×16x=22(27﹣x )D .2×22x=16(27﹣x )10.将一个四边形截去一个角后,它不可能是( )A .六边形B .五边形C .四边形D .三角形二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简ac b abc a b c abc+++结果是________. 2.如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD =70°,∠BCD =40°,则∠BED 的度数为________.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4.若单项式32m x y 与3m n xy +2m n +的值是_______________.5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.6.化简: 43ππ-+-=________三、解答题(本大题共6小题,共72分)1.解方程(1)37322x x +=- (2)31322322510x x x +-+-=-2.若关于x 的不等式组152(3)3()>22x x x a x +>-⎧⎨++⎩只有4个整数解,求a 的取值范围.3.已知坐标平面内的三个点A (1,3),B (3,1),O (0,0),求△ABO 的面积.4.已知直线l 1∥l 2,l 3和11,l 2分别交于C ,D 两点,点A ,B 分别在线l 1,l 2上,且位于l 3的左侧,点P 在直线l 3上,且不和点C ,D 重合.(1)如图1,有一动点P 在线段CD 之间运动时,试确定∠1、∠2、∠3之间的关系,并给出证明.(2)如图2,当动点P在射线DC上运动时,上述的结论是否成立?若不成立,请写出∠1、∠2、∠3的关系并证明.5.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)补全频数分布直方图(2)求扇形统计图中m的值和E组对应的圆心角度数(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数6.华联超市购进一批四阶魔方,按进价提高40%后标价,为了让利于民,增加销量,超市决定打八折出售,这时每个魔方的售价为28元.(1)求魔方的进价?(2)超市卖出一半后,正好赶上双十一促销,商店决定将剩下的魔方以每3个80元的价格出售,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、A4、C5、B6、A7、B8、D9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4或02、55°3、15°4、25、16、1三、解答题(本大题共6小题,共72分)1、(1)x=5;(2)811 x=2、14 53a-<≤-3、4.4、(1)∠2=∠1+∠3;(2)不成立,应为∠3=∠1+∠2,证明略.5、略;m=40, 14.4°;870人.6、25元超市一共购进1200个魔方。
新人教版七年级数学下册期中考试卷及答案【完整版】

新人教版七年级数学下册期中考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为( ) A .12 B .7+7 C .12或7+7 D .以上都不对2.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.如图, BD 是△ABC 的角平分线, AE ⊥ BD ,垂足为 F ,若∠ABC =35°,∠ C =50°,则∠CDE 的度数为( )A .35°B .40°C .45°D .50°5.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC于点E ,则下列结论一定正确的是( )A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE6.将下列多项式因式分解,结果中不含有因式(a+1)的是( )A .a 2-1B .a 2+aC .a 2+a-2D .(a+2)2-2(a+2)+17.如图所示,下列说法不正确的是( )A .∠1和∠2是同旁内角B .∠1和∠3是对顶角C .∠3和∠4是同位角D .∠1和∠4是内错角8.满足方程组35223x y m x y m+=+⎧⎨+=⎩的x ,y 的值的和等于2,则m 的值为( ).A .2B .3C .4D .5 9.若a <b ,则下列结论不一定成立的是( ) A .11a b -<- B .22a b < C .33a b ->- D .22a b <10.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.如果22(1)4x m x +-+是一个完全平方式,则m =__________.3.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 _________.4.若关于x 、y 的二元一次方程3x ﹣ay=1有一个解是32x y =⎧⎨=⎩,则a=_____. 5.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______________.6.已知关于x 的不等式(1﹣a )x >2的解集为x <21a-,则a 的取值范围是_______. 三、解答题(本大题共6小题,共72分)1.解方程组:23328x y x y -=⎧⎨+=⎩2.已知120153a m =+,120163b m =+,120173c m =+,求222a b c ab bc ac ++---的值.3.如图①,已知AD ∥BC ,∠B=∠D=120°.(1)请问:AB 与CD 平行吗?为什么?(2)若点E 、F 在线段CD 上,且满足AC 平分∠BAE ,AF 平分∠DAE ,如图②,求∠FAC 的度数.(3)若点E 在直线CD 上,且满足∠EAC=12∠BAC ,求∠ACD :∠AED 的值(请自己画出正确图形,并解答).4.如图,在平面直角坐标系中,点A、C分别在x轴上、y轴上,CB//OA,OA=8,若点B的坐标为(a,b),且b=444-+-+.a a(1)直接写出点A、B、C的坐标;(2)若动点P从原点O出发沿x轴以每秒2个单位长度的速度向右运动,当直线PC把四边形OABC分成面积相等的两部分停止运动,求P点运动时间;(3)在(2)的条件下,在y轴上是否存在一点Q,连接PQ,使三角形CPQ的面积与四边形OABC的面积相等?若存在,求点Q的坐标;若不存在,请说明理由.5.学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?6.在端午节来临之际,某商店订购了A型和B型两种粽子.A型粽子28元/千克,B型粽子24元/千克.若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、C5、C6、C7、A8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、82、-1或33、44、45、±46、a>1三、解答题(本大题共6小题,共72分)1、21 xy=⎧⎨=⎩2、33、(1)平行,理由略;(2)∠FAC =30°;(3)∠ACD:∠AED=2:3或2:1.4、(1)A(8,0),B(4,4),C(0,4);(2)t=3;(3)存在;点Q坐标(0,12)或(0,−4)5、(1)200;(2)见解析;(3)54°;(4)估计该市初中生中大约有6800名学生学习态度达标.6、A型粽子40千克,B型粽子60千克.。
新人教版七年级数学下册期中试卷及答案【A4版】

新人教版七年级数学下册期中试卷及答案【A4版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( )A .﹣4B .4C .﹣2D .22.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180° 3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9B .8C .5D .44.如果a 与1互为相反数,则|a+2|等于( ) A .2B .-2C .1D .-15.若关于x 的不等式组()2213x x a x x <⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a 的取值范围是( ) A .102a ≤<B .01a ≤<C .102a -<≤D .10a -≤<6.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2017将与圆周上的哪个数字重合( )A.0 B.1 C.2 D.37.明月从家里骑车去游乐场,若速度为每小时10km,则可早到8分钟,若速度为每小时8km,则就会迟到5分钟,设她家到游乐场的路程为xkm,根据题意可列出方程为()A.851060860x x-=-B.851060860x x-=+C.851060860x x+=-D.85108x x+=+8.一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱9.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l410.若x﹣m与x+3的乘积中不含x的一次项,则m的值为()A.3 B.1 C.0 D.﹣3二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a+1)2+|b+5|=b+5,且|2a-b-1|=1,则ab=___________.2.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.3.分解因式:32x2x x-+=_________.4.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为_____cm(杯壁厚度不计).5.若方程组x y73x5y3+=⎧⎨-=-⎩,则()()3x y3x5y+--的值是________.5.如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要______cm.三、解答题(本大题共6小题,共72分)1.解不等式组:3(2)421152x xx x--≥⎧⎪-+⎨<⎪⎩,并将解集在数轴上表示出来.2.已知方程组3247x ymx ny-=⎧⎨+=⎩与231953mx nyy x-=⎧⎨-=⎩有相同的解,求m,n的值.3.如图,AB⊥BC于点B,DC⊥BC于点C,DE平分∠ADC交BC于点E,点F为线段CD 延长线上一点,∠BAF =∠EDF (1)求证:∠DAF =∠F ;(2)在不添加任何辅助线的情况下,请直接写出所有与∠CED 互余的角.4.如图,已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC 、OD 、OE ,且OC 平分AOD ∠,3BOE DOE ∠=∠,70COE ∠=,求∠BOE 的度数5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题: (1)学校这次调查共抽取了 名学生; (2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为 ; (4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.小明同学三次到某超市购买A、B两种商品,其中仅有一次是有折扣的,购买数量及消费金额如下表:类别次数购买A商品数量(件)购买B商品数量(件)消费金额(元)第一次 4 5 320第二次 2 6 300第三次 5 7 258解答下列问题:(1)第次购买有折扣;(2)求A、B两种商品的原价;(3)若购买A、B两种商品的折扣数相同,求折扣数;(4)小明同学再次购买A、B两种商品共10件,在(3)中折扣数的前提下,消费金额不超过200元,求至少购买A商品多少件.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、C5、A6、B7、C8、A9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、10.3、()2 x x1-.4、205、24.6、10三、解答题(本大题共6小题,共72分)1、-7<x≤1.数轴见解析.2、m=4,n=﹣1.3、(1)略;(2)与∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.4、∠BOE的度数为60°5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、(1)三(2)A:30元/件,B:40元/件(3)6 (4)7件。
2024年最新人教版初一数学(下册)期中考卷及答案(各版本)

2024年最新人教版初一数学(下册)期中考卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/22. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.333D. 14. 下列哪个数是无理数?A. 3B. 2/3C. √2D. 0.255. 下列哪个数是整数?A. 1/2B. 0.5C. 3D. 0.3336. 下列哪个数是正整数?A. 0B. 1C. 1D. 1/27. 下列哪个数是负整数?A. 0B. 1C. 1D. 1/28. 下列哪个数是奇数?A. 0B. 2C. 3D. 49. 下列哪个数是偶数?A. 1B. 2C. 3D. 410. 下列哪个数是质数?A. 0B. 1C. 2D. 4二、填空题(每题4分,共20分)1. 5的绝对值是______。
2. 2的相反数是______。
3. 3/4的倒数是______。
4. 5的平方是______。
5. 2的立方根是______。
三、解答题(每题10分,共50分)1. 解方程:2x 3 = 7。
2. 解不等式:3x + 4 > 11。
3. 解方程组:x + y = 5, x y = 1。
4. 解不等式组:x > 2, x < 5。
5. 计算下列表达式的值:(3 + 4) × (5 2) ÷ 2。
四、应用题(每题15分,共30分)1. 小明买了5本书,每本书的价格是8元。
他付了50元,应该找回多少元?2. 一个长方形的长是6厘米,宽是4厘米。
求这个长方形的面积。
五、附加题(每题10分,共20分)1. 证明:对于任意实数a,a的平方总是非负的。
2. 解析几何:在平面直角坐标系中,点A(2, 3),点B(5, 1)。
求线段AB的长度。
选择题答案:1. C2. D3. B4. C5. C6. C7. C8. C9. B10. C填空题答案:1. 52. 23. 4/34. 255. 1.2599210498948732(约等于1.26)解答题答案:1. x = 52. x > 33. x = 3, y = 24. 2 < x < 55. 13应用题答案:1. 找回的金额为10元。
人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试卷一、单选题1.下列图形中,1∠与2∠互为邻补角的是()A .B .C .D .2.下列各数中22,,0.27π,有理数有()A .2个B .3个C .4个D .5个3.如图所示,因为AB ⊥l ,BC ⊥l ,B 为垂足,所以AB 和BC 重合,其理由是()A .两点确定一条直线B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .过一点能作一条垂线D .垂线段最短4.在平面坐标系中,线段CF 是由线段AB 平移得到的;点(1,4)A -的对应点为(4,1)C ,则点(,)B a b 的对应点F 的坐标为()A .()3,3a b +-B .()5,3a b +-C .()5,3a b --D .()3,5a b ++5.已知点P 的坐标为()2,32a a ++,且点P 在y 轴上,则点P 坐标为()A .(0,4)P -B .(0,4)P C .(0,2)P -D .(0,6)P -6.已知下列命题:①相等的角是对顶角;②在同一平面内,若//a b ,//b c ,则//a c ;③同旁内角互补;④互为邻补角的两个角的角平分线互相垂直.其中,是真命题的有()A .0个B .1个C .2个D .3个7.若平面直角坐标系内的点M 在第二象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为()A .()2,1B .()2,1-C .()2,1-D .()1,2-8)A .3±B .3C .3-D .9.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A .45°B .60°C .75°D .82.5°10.如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA 、CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F ,∠F 的度数为()A .120°B .135°C .150°D .不能确定11.实数,a b||a b +)A .2a -B .2b -C .2a b +D .2a b-12.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为()A .()2019,0B .()2019,1C .()2019,2D .()2020,0二、填空题13.将命题“两直线平行,同位角相等”写成“如果…,那么…”的形式是________14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是()()--,那么“帅”的坐标是__________3,1,3,115.若一个数的立方根就是它本身,则这个数是________.16.若a ba b的值为____________<,且,a b17.如图,把一张平行四边形纸片ABCD沿BD对折,使点C落在点E处,BE与AD相交于点O,若∠DBC=15°,则∠BOD=______________.==,现对72进行如下操18.任何实数a,可用[]a表示不超过a的最大整数,如[4]4,[3]3作:72第一次8]=;第二次[8]2=;第三次[2]1=;这样对72只需进行3次操作后变为1,在进行这样3次操作后变为1的所有正整数中,最大的是___19.如图,直线a和b被直线c所截,∠1=110°,当∠2=_____时,直线a b成立三、解答题20.(1-2|x-=-(2)解方程:()3112521.(1)如图这是某市部分简图,为了确定各建筑物的位置:①请你以火车站为原点建立平面直角坐标系②写出体育场、宾馆的坐标;③图书馆的坐标为()-4,-3,请在图中标出图书馆的位置;(2)已知M=是3m +的算术平方根,N=n-2的立方根,试求M-N 的值;22.如图在平面直角坐标系中,已知(1,1)P ,过点P 分别向,x y 轴作垂线,垂足分别是,A B ;(1)点Q 在直线AP 上且与点P 的距离为2,则点Q 的坐标为__________(2)平移三角形ABP ,若顶点P 平移后的对应点(4,3)P ',画出平移后的三角形'''A B P .23.如图,//,AB CD EFG ∆的顶点,F G 分别落在直线,AB CD 上,CE 交AB 于点,H GE 平分FGD ∠,若90,20EFG EFH ︒︒∠=∠=,求EHB ∠的度数.24.如图,在平面直角坐标系中,,A B 坐标分别是(0,),(,)A a B b a ,且,a b 满足()23|5|0a b -+-=,现同时将点,A B 分别向下平移3个单位,再向左平移1个单位,分别得到点,A B 的对应点,C D ,连接,,AC BD AB .(1)求点,C D 的坐标及四边形ACDB 的面积ACDB S ;(2)在y 轴上是否存在一点M ,连接,MC MD ,使13MCD ACDB S S ∆=?若存在这样的点,求出点M 的坐标,若不存在,试说明理由.25.学着说理由:如图∠B =∠C ,AB ∥EF ,试说明:∠BGF =∠C证明:∵∠B =∠C ()∴AB ∥CD ()又∵AB ∥EF ()∴EF ∥CD ()∴∠BGF =∠C ()26.如图,EF ⊥BC 于点F ,∠1=∠2,DG ∥BA ,若∠2=40°,则∠BDG 是多少度?参考答案1.D2.C3.B4.B5.A6.C7.B8.D9.C10.B11.A【详解】解:0,,a b a b <<>0,a b ∴+<||a b a a b b+=+++()a a b b=--++a a b b=---+2.a =-故选A .12.C【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3,当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .13.如果两条直线是平行线,那么同位角相等.【解析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】“两直线平行,同位角相等”的条件是:“两直线平行”,结论为:“同位角相等”,∴写成“如果…,那么…”的形式为:“如果两条直线是平行线,那么同位角相等”,故答案为如果两条直线是平行线,那么同位角相等.14.()1,3--【解析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“帅”的坐标.【详解】解:建立平面直角坐标系,如图,“帅”的坐标为(-1,-3),故答案为:(-1,-3).15.±1,0【详解】∵13=1,(-1)3=-1,03=0,∴1的立方根是1,-1的立方根是-1,0的立方根是0,∴一个数的立方根就是它本身,则这个数是±1,0.故答案为±1,0.16.-1【详解】解:364049,<<67,∴6,7,a b ∴==1,a b ∴-=-故答案为: 1.-17.150︒【详解】如图,∵在平行四边形ABCD 中,AD ∥BC ,∴∠ODB=∠DBC=15°.又由折叠的性质知,∠EBD=∠CBD=15°,即∠OBD=15°,∴在△OBD 中,∠BOD=180°−∠OBD−∠ODB=150°,18.255【详解】解:9,3,1,⎡===⎣13,3,1,⎡===⎣15,3,1,===16,4,2,1,⎡⎡====⎣⎣需要进行4次操作后变为1,即只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.19.70°【分析】根据平行的判定,要使直线a b 成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a b 成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.20.(1)10(2)4x =-【详解】(1)原式=9(3)22+-++-10=(2)解:15x -=-4x =-21.(1)①见解析;②体育馆()4,3-;宾馆()2,2;③见解析;(2)2【详解】(1)①平面直角坐标系如图;②体育馆()4,3-;宾馆()2,2,③图书馆的位置见上图.(2)422433m m n -=⎧⎨-+=⎩ 63m n =⎧∴⎨=⎩3,1M N ∴==2M N ∴-=22.(1)12(1,1),(1,3)Q Q -;(2)见解析【详解】解:(1)∵点Q 在直线AP 上且与点P 的距离为2,AP ⊥x 轴,P (1,1),∴点Q 的坐标为(1,-1)或(1,3),故答案为:(1,-1)或(1,3);(2)如图所示,'(1,1),(4,3).P P ∴平移方式为先向右平移3个单位长度,再向上平移2个单位长度,按相同方式把,A B 作同样的平移得到''.A B ,顺次连接''',,A B P 得到三角形A′B′P′即为所求.【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.55︒【详解】解:90,20EFG EFH ︒︒∠=∠= 70BFG ︒∴∠=//AB CD ,70FGC BFG ︒∴∠=∠=,110FGD ︒∴∠=因为GE 平分FGD ∠,55FGH ︒∴∠=,180705555FHG ︒︒︒∴∠=--=︒55EHB FHG ︒∴∠=∠=24.(1)(1,0),(4,0),C D -15.ACDB S =(2)在y 轴上存在点(0,2)M ,或(0,2)M -使13MCD ABDC S S ∆=【详解】解:(1)依题意得:3050a b -=⎧⎨-=⎩解得:35a b =⎧⎨=⎩(0,3),(5,3)A B ∴,将点,A B 分别向下平移3个单位,再向左平移1个单位,(1,0),(4,0),C D ∴-5315.ACDB S CD OA =∙=⨯=(2)假设在y 轴上存在点(0,)M y ,使13MCD ABDCS S ∆=11553MCD S ∆∴==,1552y ∴⨯⨯=,2y ∴=±,(0,2)M ∴或(0,2)-所以在y 轴上存在点(0,)M y ,使13MCD ABDC S S ∆=.25.【详解】证明:∵∠B =∠C (已知),∴AB ∥CD (内错角相等,两直线平行),又∵AB ∥EF (已知),∴EF ∥CD (平行于同一直线的两直线平行),∴∠BGF =∠C (两直线平行,同位角相等).26.130°【详解】解:∵∠1=∠2,∴EF∥AD,∵EF⊥BC,∴AD⊥BC,即∠ADB=90°,又∵DG∥BA,∠2=40°,∴∠ADG=∠2=40°,∴∠BDG=∠ADG+∠ADB=130°.。
新人教版七年级数学下册期中考试题及答案【完整版】

新人教版七年级数学下册期中考试题及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若()286m n a b a b =,那么22m n -的值是 ( ) A .10 B .52 C .20 D .322.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .803.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度6.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,58.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.若|abc|=-abc,且abc≠0,则||||ba ca b c++=()A.1或-3 B.-1或-3 C.±1或±3 D.无法判断10.已知2,1=⎧⎨=⎩xy是二元一次方程组7,{1ax byax by+=-=的解,则a b-的值为A.-1 B.1 C.2 D.3二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a+1)2+|b+5|=b+5,且|2a-b-1|=1,则ab=___________.2.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=________.3.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.4.如果方程(m-1)x|m|+2=0是表示关于x的一元一次方程,那么m的取值是________.5.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)(1)2(1)13x x x +--=-;(2)30564x x --=; (3)3 1.4570.50.46x x x --=.2.解不等式组:2(3)47{22x x x x +≤++>并写出它的所有整数解.3.如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE=DF ,∠A=∠D ,(1)求证:AB=CD ;(2)若AB=CF ,∠B=30°,求∠D 的度数.4.某住宅小区有一块草坪如图所示.已知AB =3米,BC =4米,CD =12米,DA =13米,且AB ⊥BC ,求这块草坪的面积.5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话图片,解决下面两个问题:(1)求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次老板给予8折优惠,合计272元.问小明购买了钢笔和签字笔各多少支?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、D5、B6、C7、C8、D9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、60°3、344、-15、16、±3三、解答题(本大题共6小题,共72分)1、(1)1x =-;(2)30x =;(3)0.7x =-.2、原不等式组的解集为122x -≤<,它的所有整数解为0,1.3、(1)略;(2)∠D=75°.4、36平方米5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)小明原计划购买文具袋17个;(2)小明购买了钢笔20支,签字笔30支.。
人教版七年级下册数学期中考试试题含答案

人教版七年级下册数学期中考试试卷一、单选题1.下列各组图形可以通过平移互相得到的是()A .B .C .D .2.实数4的算术平方根是()A B .2C .2±D .163.下列数据能确定物体具体位置的是()A .息州大道北侧B .好运花园2号楼C .东经103︒,北纬30°D .南偏西55︒4.如图,90ACB ∠=︒,CD AB ⊥,垂足为D ,则点B 到直线CD 的距离是指()A .线段BC 的长度B .线段CD 的长度C .线段BE 的长度D .线段BD 的长度5.如图,1234//,//l l l l ,若170∠=︒,则2∠的度数为()A .100︒B .110︒C .120︒D .130︒6.点()3,5A -在平面直角坐标系中所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限7.如图,在下列给出的条件中,能判定//DF AB 的是()A .∠4=∠3B .∠1=∠AC .∠1=∠4D .∠4+∠2=180°8.在平面直角坐标系中,点M 在第四象限,且点M 到x 轴、y 轴的距离分别为6,4,则点M 的坐标为()A .()4,6-B .()4,6-C .()6,4-D .()6,4-9.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺,设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是()A . 4.5112y x y x =+⎧⎪⎨=+⎪⎩B . 4.5112y x y x =+⎧⎪⎨=-⎪⎩C . 4.5112y xy x =-⎧⎪⎨=+⎪⎩D . 4.5112y x y x =-⎧⎪⎨=-⎪⎩10.如图,在平面直角坐标系上有点()1,0A ,点A 第一次向左跳动至()11,1A -,第二次向右跳动至()22,1A ,第三次向左跳动至()32,2A -,第四次向右跳动至()43,2A …依照此规律跳动下去,点A 第124次跳动至124A 的坐标为()A .()63,62B .()62,63C .()62,62-D .()124,123二、填空题11.请写出一个大于1且小于2的无理数:___.12.请把“36的平方根是正负6”翻译成数学式子表示出来:____________________________.13.已知方程2x ﹣3y =6,用含x 的式子表示x ,则y =_____.14.如图,已知//AB DE ,75ABC ∠=︒,160CDE ∠=︒,则BCD ∠的度数为______________.15.定义“在四边形ABCD 中,若AB ∥CD ,且AD ∥BC ,则四边形ABCD 叫做平行四边形.”若一个平行四边形的三个顶点的坐标分别是(0,0),(3,0),(1,3),则第四个顶点的坐标是__.三、解答题16.如图,直线AB 与CD 相交于点O ,EO CD ⊥于点O ,OF 平分AOD ∠,且50BOE ∠=︒,求DOF ∠的度数.17.如图,直线CD 与直线AB 相交于点C ,点P为两直线外一点.(1)根据下列要求画图:①过点P 作//PQ CD ,交AB 于点Q ;②过点P 作PR CD ⊥,垂足为R .(2)若120DCB ∠=︒,则PQC ∠是多少度?请说明理由.(3)连接PC ,比较PC 和PR 的大小,并说明理由.18.解方程组:(1)1{322x y x y =+-=;(2)()()5962{1243x y x y -=-+-=19.如果一个正数a 的两个不相同的平方根是22x -和63x -.求:(1)x 和这个正数a 的值;(2)173a +的立方根.20.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个整数的立方是59319,求这个整数.华罗庚脱口而出:39.邻座的乘客十分惊奇,忙问计算的奥妙.你知道华罗庚是怎样迅速准确地计算出来的吗?请按照下面的问题试一试:(1)由3101000=,31001000000=(2)由59319的个位上的数是9(3)如果划去59319后面的三位319得到数59,而3327=,3464=,的十位上的数是几吗?(4)已知19683,110592都是整数的立方,请你按照上述方法确定它们的立方根.21.如图,在每个小正方形边长均为1的方格纸中,ABC ∆的顶点都在方格纸格点上,点A 的坐标是()2,1-,点B 的坐标是()6,1-.(1)请你在方格中建立直角坐标系,并写出C 点的坐标;(2)将ABC ∆向左平移2格,再向上平移3格,请在图中画出平移后的A B C ∆''';(3)在图中能使PBC ABC S S ∆∆=的格点P 有多少个(点P 异于点A ),写出符合条件的P 点坐标.22.完成下面推理过程.如图,已知://AB EF ,EQ 交CD 于点Q ,EP 交AB 于点P ,且EP EQ ⊥,90EQC APE ∠+∠=︒,求证://AB CD .证明:∵//AB EF ,(已知)∴APE PEF ∠=∠.(_________________________________)∵EP EQ ⊥,∴PEQ ∠=_________︒,(垂直的定义)即90QEF PEF ∠+∠=︒.∴90QEF APE ∠+∠=︒.∵90EQC APE ∠+∠=︒,∴EQC ∠=___________,(同角的余角相等)∴//EF CD ,(______________________)又∵//AB EF ,∴//AB CD .(______________________)23.如图,在平面直角坐标系中,(),0A a ,(),3B b ,()4,0C ,满足()260a b a b ++-+=,线段AB 交y 轴于点F .(1)分别求出A ,B 两点的坐标;(2)求点F 的坐标;(3)在坐标轴上是否存在点P ,使ABP ∆的面积和ABC ∆的面积相等,若存在,求出点P 的坐标,若不存在,请说明理由.参考答案1.C 【详解】试题解析:观察图形可知图案C 通过平移后可以得到.故选C .点睛:图形的平移只改变图形的位置,而不改变图形的形状和大小,易混淆图形的平移与旋转或翻转,而误选A 、B 、D .2.B 【分析】根据算术平方根的定义,求一个非负数a 的算术平方根,也就是求一个非负数x ,使得x 2=a ,则x 就是a 的算术平方根,特别地,规定0的算术平方根是0.【详解】解:∵22=4,∴4的算术平方根是2.故选B.【点睛】本题主要考查了算术平方根的定义,解题的关键在于能够掌握一个非负数的算术平方根具有非负性.3.C【分析】在平面中,要用两个数据才能表示一个点的位置.【详解】解:东经103o,北纬30o能确定物体的具体位置,故选:C.【点睛】此题主要考查了确定物体具体位置,要明确,一个有序数对才能确定一个点的位置.4.D【分析】直线外一点到直线的垂线段的长度,叫做点到直线的距离,根据点到直线的距离的定义解答即可.【详解】解:∵BD⊥CD于D,∴点B到直线CD的距离是指线段BD的长度.故选:D.【点睛】本题考查了点到直线的距离的定义,点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.5.B【分析】利用平行线的性质即可求解.【详解】如图,∵34//l l ,∴∠1+∠3=180º,∵∠1=70º,∴∴∠3=180º-70º=110º,∵12l l //,∴∠2=∠3=110º,故选:B .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答的关键.6.B 【分析】根据坐标的特点即可求解.【详解】点()3,5A -在平面直角坐标系中所在的象限是第二象限故选B .【点睛】此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点.7.C 【分析】可以从直线DF 、AB 的截线所组成的“三线八角”图形入手进行判断.【详解】解:A 、∵∠4=∠3,∴DE ∥AC ,不符合题意;B 、∵∠1=∠A ,∴DE ∥AC ,不符合题意;C 、∵∠1=∠3,∴DF ∥AB ,符合题意;D 、∵∠4+∠2=180°,∴DE ∥AC ,不符合题意;故选:C.【点睛】此题考查平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.8.A【分析】已知点M在第四象限内,那么横坐标大于0,纵坐标小于0,进而根据到坐标轴的距离判断坐标.【详解】解:因为点M在第四象限,所以其横、纵坐标分别为正数、负数,又因为点M到x轴的距离为6,到y轴的距离为4,所以点M的坐标为(4,6)-.故选:A.【点睛】本题主要考查了点在第四象限时点的坐标的符号,解题的关键是点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.9.B【分析】根据题意可以列出相应的二元一次方程组,从而本题得以解决.【详解】用一根绳子去量一根长木,绳子还剩余4.5尺,则 4.5y x=+,将绳子对折再量长木,长木还剩余1尺,则11 2y x=-,∴4.5 11 2y xy x=+⎧⎪⎨=-⎪⎩,故选B.【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.10.A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第124次跳动至点的坐标是(63,62).故选:A.【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.11.【分析】由于所求无理数大于1且小于2,两数平方得大于2小于4,所以可选其中的任意一个数开平方即可.【详解】π-等,大于1且小于2 2(答案不唯一).考点:1.开放型;2.估算无理数的大小.12.=±6【分析】根据平方根的定义即可得到答案.【详解】解:“36的平方根是正负6”用数学式子表示为:6±故答案为:6±.【点睛】本题主要考查了平方根的定义,解决本题的关键是熟记平方根的定义.13.263x-【分析】将x看做已知数求出y即可.【详解】解:2x﹣3y=6,得到y=263x-.故答案为:26 3 x-【点睛】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.14.55︒【分析】延长ED与BC相交于点F,根据两直线平行,内错角相等可得∠BFD=∠ABC,再根据邻补角的定义分别求出∠CDF和∠CFD,然后根据三角形的内角和定理列式计算即可得解.【详解】解:如图,延长ED与BC相交于点F,∵AB∥DE,∴∠BFD=∠ABC=75°,∴∠CFD=180°﹣75°=105°,∴∠CDF=180°﹣∠CDE=180°﹣160°=20°,在△CDF中,∠BCD=180°﹣∠CDF﹣∠CFD=180°﹣20°﹣105°=55°.故答案为:55°.【点睛】本题考查了平行线的性质,邻补角的定义,是基础题,熟记性质并准确识图是解题的关键.15.(4,3)或(-2,3)或(2,-3).【分析】根据题意画出平面直角坐标系,然后描出(0,0)、(3,0)、(1,3)的位置,再找第四个顶点坐标.【详解】解:如图所示,∴第4个顶点的坐标为(4,3)或(-2,3)或(2,-3).故答案为:(4,3)或(-2,3)或(2,-3).【点睛】此题主要考查了平行四边形的性质及坐标与图形的性质,解题关键是要分情况讨论,难易程度适中.16.70【分析】利用垂直定义可得∠COE=90°,进而可得∠COB的度数,再利用对顶角相等可得∠AOD,再利用角平分线定义可得答案.【详解】解:∵EO⊥CD于点O,∵∠BOE =50°,∴∠COB =90°+50°=140°,∴∠AOD =140°,∵OF 平分∠AOD ,∴∠FOD =12∠AOD =70°,【点睛】此题主要考查了垂直的性质和角平分线的性质,关键是理清图中角之间的和差关系.17.(1)见解析;(2)60PQC ∠=︒,见解析;(3)PR 小于PC ,见解析【分析】(1)①根据同位角相等两直线平行作点P 作PQ ∥CD ;②再利用直角三角板,一条直角边与CD 重合,沿CD 平移,是另一直角边过P ,再画垂线即可;(2)根据两直线平行内角互补可得答案.(3)根据垂线段最短可比较PC 和PR 的大小.【详解】(1)如图所示.(2)60PQC ∠=︒.理由如下:∵CD ∥PQ ,∴∠DCQ +∠PQC =180°,∵∠DCB =120°,∴∠PQC =60°.(3)PR 小于PC ,理由:垂线段最短.【点睛】此题主要考查了复杂作图,平行线的性质和判定以及垂线线段最短等知识,关键是掌握同位角相等两直线平行,据两直线平行内角互补.18.(1)01x y =⎧⎨=-⎩;(2)18{412x y =-=-【详解】试题分析:(1)把第二个方程代入第一个方程,利用代入消元法其解即可;(2)方程组整理后,利用加减消元法求出解即可.试题解析:(1)1322x y x y =+⎧⎨-=⎩①②;把①代入②得,3(y+1)-2y=2,解得y=−1,把y=−1代入①得,x=−1+1=0,所以,原方程组的解是01x y =⎧⎨=-⎩;(2)方程组整理得:56333428x y x y -=⎧⎨-=⎩①②,①×2−②×3得:x=−18,把x=−18代入②得:y=1236-,则方程组的解为181236x y =-⎧⎪⎨=-⎪⎩.19.(1)4x =,36a =;(2)5.【分析】(1)根据平方根的性质列出算式22630x x -+-=,解方程后求出x 的值,再代入22x -即可求出a 的值;(2)求出173a +的值,根据立方根的概念求出答案.【详解】解:(1)∵一个正数a 的两个不相同的平方根是22x -和63x -,∴22630x x -+-=.∴4x =.∴222426x -=⨯-=.∴36a =.(2)∵36a =,∴173********a +=+⨯=.∵125的立方根为5,∴173a +的立方根为5.【点睛】本题考查了平方根和立方根的概念,熟练掌握平方根的性质和立方根的概念是解题的关键.20.(1)两位数;(2)9;(3)3;(4)27,48【分析】(1)根据59319大于1000而小于1000000,即可确定59319的立方根是2位数;(2)根据一个数的立方的个位数就是这个数的个位数的立方的个位数,据此即可确定;(3)根据数的立方的计算方法即可确定;(4)根据(1)(2)(3)即可得到答案.【详解】解:(1)∵1000<59319<1000000,∴10100,(2)只有个位数是9的立方数的个位数依然是9,9;(3)∵27<59<64,∴34,3.(4)经过分析可得,19683的立方根是两位数,19683的立方根的个位数字是7,十位数字是2,故19683的立方根是27;同理可得,110592的立方根是48.【点睛】本题主要考查了立方根以及数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键.21.(1)画图见解析,()8,3;(2)见解析;(3)4个;()3,1,()4,3,()5,5,()6,7【分析】(1)根据点A 、点B 的坐标解答;(2)找出点A 、点B 、点C 的对应点,然后用线段连接;(3)根据两平行线间的距离相等求解.【详解】(1)建直角坐标系如图,C 点坐标()8,3.(2)如图所示,A B C ''' 即为所求;(3)如图所示,有4个,坐标分别为()3,1,()4,3,()5,5,()6,7.【点睛】本题考查作图-平移变换,平面直角坐标系,坐标与图形的性质,三角形的面积,以及两平行线间的距离等知识,解题的关键是理解题意,灵活运用所学知识解决问题.22.两直线平行,内错角相等;90;QEF ∠;内错角相等,两直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行【分析】根据平行线的性质得到∠APE =∠PEF ,根据余角的性质得到∠EQC =∠QEF 根据平行线的判定定理即可得到结论.【详解】证明:∵AB ∥EF∴∠APE =∠PEF (两直线平行,内错角相等)∵EP ⊥EQ∴∠PEQ =90°(垂直的定义)即∠QEF +∠PEF =90°∴90QEF APE ∠+∠=︒.∵90EQC APE ∠+∠=︒,∴∠EQC =∠QEF∴EF ∥CD (内错角相等,两直线平行)又∵//AB EF ,∴AB ∥CD (如果两条直线都与第三条直线平行,那么这两条直线也互相平行),【点睛】本题考查了平行线的判定和性质,垂直的定义,熟练掌握平行线的判定和性质是解题的关键.23.(1)()30A -,,()3,3B ;(2)30,2⎛⎫ ⎪⎝⎭;(3)存在,()0,5或()0,2-或()10,0-或()4,0【分析】(1)根据()260a b a b ++-+=结合平方和绝对值的非负性即可计算得到答案;(2)连接OB ,设F 的坐标为(0,t )根据AOF 的面积BOF +△的面积AOB =△的面积进行计算求解即可;(3)先根据前面的已知条件求出ABC 的面积,再根据ABP △的面积APF =△的面积BPF +△的面积进行计算求解即可.【详解】(1)∵()260a b a b ++-+=,()20a b +≥,06a b -+≥∴060a b a b +=⎧⎨-+=⎩∴解得33a b =-⎧⎨=⎩.∴A 的坐标为(-3,0),B 的坐标为(3,3)(2)连接OB ,设F 的坐标为(0,t )∵AOF BOF AOBS S += S ∴1113333222t t ⋅⋅+⋅⋅=⋅⋅.解得32t =.∴点F 的坐标为(0,32).(3)存在.ABC 的面积1217322=⨯⨯=.当P 点在y 轴上时,设P 点的坐标为(0,y ),∵ABP APF BPFS S S =+△△△∴1313213322222y y ⋅-⋅+⋅-⋅=.解得5y =或2y =-.∴此时点P 的坐标为(0,5)或(0,-2)当P 点在x 轴上时,设P 点坐标为(x ,0),则1213322x ⋅+⋅=.解得10x =-或4x =.∴此时点P 的坐标为(-10,0)或(4,0).综上所述,满足条件的点P 的坐标为(0,5)或(0,-2)或(-10,0)或(4,0).【点睛】本题主要考查了坐标系与几何相结合的综合应用,解题的关键在于能够找到几个三角形面积之间的关系.。
人教版七年级下册数学期中考试题及答案【审定版】

人教版七年级下册数学期中考试题及答案【审定版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.若, 那么的值是( )A. 10B. 52C. 20D. 322.如图, 将▱ABCD沿对角线AC折叠, 使点B落在B′处, 若∠1=∠2=44°, 则∠B为()A. 66°B. 104°C. 114°D. 124°3.已知x+y=﹣5, xy=3, 则x2+y2=()A. 25B. ﹣25C. 19D. ﹣194.某气象台发现: 在某段时间里, 如果早晨下雨, 那么晚上是晴天;如果晚上下雨, 那么早晨是晴天, 已知这段时间有9天下了雨, 并且有6天晚上是晴天, 7天早晨是晴天, 则这一段时间有()A. 9天B. 11天C. 13天D. 22天5.如图, 在△ABC和△DEC中, 已知AB=DE, 还需添加两个条件才能使△ABC≌△DEC, 不能添加的一组条件是()A. BC=EC, ∠B=∠EB. BC=EC, AC=DCC. BC=DC, ∠A=∠DD. ∠B=∠E, ∠A=∠D6.如图, 四个有理数在数轴上的对应点M, P, N, Q, 若点M, N表示的有理数互为相反数, 则图中表示绝对值最小的数的点是()A. 点MB. 点NC. 点PD. 点Q7. 下列各组线段不能组成三角形的是 ( )A. 4cm、4cm、5cmB. 4cm、6cm、11cmC. 4cm、5cm、6cmD. 5cm、12cm、13cm8.在平面直角坐标系中, 点P(-2, +1)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.如图是一个切去了一个角的正方体纸盒, 切面与棱的交点A, B, C均是棱的中点, 现将纸盒剪开展成平面, 则展开图不可能是()B. C. D.10.如图, △ABC中, AD为△ABC的角平分线, BE为△ABC的高, ∠C=70°, ∠ABC=48°, 那么∠3是()A. 59°B. 60°C. 56°D. 22°二、填空题(本大题共6小题, 每小题3分, 共18分)1. 的立方根是__________.2.如图, DA⊥CE于点A, CD∥AB, ∠1=30°, 则∠D=________.3. 已知有理数a, b满足ab<0, a+b>0, 7a+2b+1=﹣|b﹣a|, 则的值为________.4. 若, 则m+2n的值是________.5. A.B两地相距450千米, 甲、乙两车分别从A.B两地同时出发, 相向而行. 已知甲车的速度为120千米/时, 乙车的速度为80千米/时, t时后两车相距50千米, 则t的值为____________.6. 如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,则阴影部分面积是________.........三、解答题(本大题共6小题, 共72分)1. 解方程组2. 解不等式组: , 并把解集在数轴上表示出来.3. 已知: O是直线AB上的一点, 是直角, OE平分.(1)如图1. 若. 求的度数;(2)在图1中, , 直接写出的度数(用含a的代数式表示);(3)将图1中的绕顶点O顺时针旋转至图2的位置, 探究和的度数之间的关系.写出你的结论, 并说明理由.4. 如图, 在△ABC中, AB=AC,点D.E分别在AB.AC上, BD=CE, BE、CD相交于点0;求证: (1)(2)OB OC5. 为了解某市市民“绿色出行”方式的情况, 某校数学兴趣小组以问卷调查的形式, 随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类), 并将调查结果绘制成如下不完整的统计图.种类A B C D E出行方式共享单车步行公交车的士私家车根据以上信息, 回答下列问题:(1)参与本次问卷调查的市民共有人, 其中选择B类的人数有人;(2)在扇形统计图中, 求A类对应扇形圆心角α的度数, 并补全条形统计图;(3)该市约有12万人出行, 若将A, B, C这三类出行方式均视为“绿色出行”方式, 请估计该市“绿色出行”方式的人数.(2)该商场售完这500箱矿泉水, 可获利多少元?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、A2、C3、C4、B5、C6、C7、B8、B9、B10、A二、填空题(本大题共6小题, 每小题3分, 共18分)1、-22.60°3、0.4、-15.2或2.56、48三、解答题(本大题共6小题, 共72分)1、23 xy=⎧⎨=⎩2.x≥3、(1);(2);(3), 理由略.4.(1)略;(2)略.5、(1)800, 240;(2)补图见解析;(3)9.6万人.6、(1)购进甲矿泉水300箱, 购进乙矿泉水200箱;(2)该商场售完这500箱矿泉水, 可获利5600元.。
人教版七年级下册数学期中考试试题含答案

人教版七年级下册数学期中考试试卷一、单选题1.下列车标,可看作图案的某一部分经过平移所形成的是()A.B.C.D.2.下列说法中正确的是()A.36的平方根是6B.8的立方根是2CD.9的算术平方根是-3的平方根是23.如图,立定跳远比赛时,小明从点A起跳落在沙坑内P处.若AP=2.3米,则这次小明跳远成绩A.小于2.3米B.等于2.3米C.大于2.3米D.不能确定4.若点P在x轴上方,y轴的左侧,到每条坐标轴的距离都是6,则点P的坐标为() A.(6,6)B.(﹣6,6)C.(﹣6,﹣6)D.(6,﹣6) 5.如图,下列条件:①∠1=∠2;②∠3=∠4;③∠B=∠5;④∠1+∠ACE=180°其中,能判定AD∥BE的条件有()A.4个B.3个C.2个D.1个6.下列各组数中,两个数互为相反数的是()A .-2B .-2与12-C .-2D .|-2|与27.如图,已知AD ⊥BC 于D ,DE ∥AB ,若∠B=48°,则∠ADE 的度数为()A .32°B .42°C .48°D .52°8.在平面直角坐标系中,点A(1,2)平移后的坐标是A′(-3,3),按照同样的规律平移其他点,则符合这种要求的变换是()A .(3,2)→(4,-2)B .(-1,0)→(-5,-4)C .(2,5)→(-1,5)D .(1,5)→(-3,6)9.如图,在数轴上表示2C ,B ,点C 是AB 的中点,则点A 表示的数是()A .B .C .D二、填空题10.如图,将正整数按下图所示规律排列下去,若用有序数对(n ,m)表示n 排从左到右第m 个数.如(4,3)表示9,则(11,3)表示()A .56B .57C .58D .5911.9的算术平方根是.12.在平面直角坐标系中,点P(﹣1,2)向右平移3个单位长度再向上平移1个单位长度得到的点的坐标是_____.13.如图,直线l ∥m ,将含有45°角的三角形板ABC 的直角顶点C 放在直线m 上,若∠1=30°,则∠2=______.14.如图,//AB CD ,CF 交AB 于点E ,AEC ∠与C ∠互余,则CEB ∠是__________度.15.===,…,根据你发现=、b 为正整数)=_______.16.如图,将长方形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C′处,折痕为EF ,若∠AEB=70°,那么∠BFC′的度数为______度.三、解答题1718.求未知数:(1)9(x-3)2=64.(2)(2x-1)3=-8. 19.已知一个数的平方根是±(a+4),算术平方根为2a﹣1,求这个数.20.中国象棋中的马颇有骑士风度,自古有“马踏八方”之说,如图(1),按中国象棋中“马”的行棋规则,图中的马下一步有A、B、C、D、E、F、G、H八种不同选择,它的走法就象一步从“日”字形长方形的对角线的一个端点到另一个端点,不能多也不能少.要将图(2)中的马走到指定的位置P处,即从(四,6)走到(六,4),现提供一种走法:(四,6)→(六,5)→(四,4)→(五,2)→(六,4).(1)下面是提供的另一走法,请你填上其中所缺的一步:(四,6)→(五,8)→(七,7)→____→(六,4);(2)请你再给出另一种走法(只要与前面的两种走法不完全相同即可,步数限定4步以内),①画图:把“马”行走的路线端点,从出发点到目标点先后依次用线段连接;②仿照题(1)表述,写出你所画图①的走法是:_____________.21.已知:如图,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,请判断AB与EF的位置关系,并说明理由.解:,理由如下:∵AB∥CD,∴∠B=∠BCD,()∵∠B=70°,∴∠BCD=70°,()∵∠BCE=20°,∴∠ECD=50°,∵∠CEF=130°,∴+=180°,∴EF∥,()∴AB∥EF.()22.如图,∠1=80°,∠2=100°∠C=∠D.(1)判断AC与DF的位置关系,并说明理由;(2)若∠C比∠A大20°,求∠F的度数.23.如图,已知∠ABC.点D为∠ABC的内部一点,请你再画一个∠DEF,使DE∥AB,EF∥BC,且DE交BC边与点P(1)操作:画出满足题意的图形.(2)探究:根据所画图形猜想∠ABC与∠DEF有怎样的数量关系?并说明理由.24.阅读下面的文字,解答问题.的小数部分我们不可能完全地写出来,﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,的整数部分是1,用这个数减去其整数部分,差就是小数部分.请解答下列问题:(1)的整数部分和小数部分;(2)已知:,其中x是整数,且0<y<1,请你求出(x﹣y)的相反数.25.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.参考答案1.D【解析】【分析】根据平移的性质:不改变图形的形状和大小,不可旋转与翻转,依次判断即可.【详解】可看作图案的某一部分经过平移所形成的是D选项所示图形,故选D.【点睛】此题主要考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而导致错选.2.B【解析】【分析】根据立方根、平方根和算术平方根的定义判断即可.【详解】A、36的平方根是6±,错误;B、8的立方根是2,正确;C的平方根是D、9的算术平方根是3,错误,故选B.【点睛】本题考查了平方根与立方根,熟练掌握它们的定义以及求解方法是解题的关键. 3.A【解析】【分析】直接利用垂线段最短即可得出小明的跳远成绩.【详解】如图,过点P作PE⊥AC,垂足为E,∴PE<PA,∵PA=2.3米,∴这次小明跳远成绩小于2.3米,故选A.【点睛】本题考查了垂线段最短的性质,熟悉测量跳远成绩的方法是解题的关键.4.B【解析】【分析】根据点到直线的距离和各象限内点的坐标特征进行解答即可.【详解】解:∵点P在x轴上方,y轴的左侧,∴点P是第二象限内的点,∵点P到每条坐标轴的距离都是6,∴点P的坐标为(﹣6,6).故选B.【点睛】本题考查了各象限内的点的坐标特征及点的坐标的几何意义,熟练掌握平面直角坐标系中各个象限的点的坐标的符号特点是解此类题的关键.5.C【解析】【分析】根据平行线的判定方法逐一进行分析判断即可.【详解】①∠1=∠2,内错角相等,两直线平行,则能判定AD∥BE;②∠3=∠4,内错角相等,两直线平行,能判定AB∥CD,但不能判定AD//BE,故不符合题意;③∠B=∠5,同位角相等,两直线平行,则能判定AB∥CD,但不能判定AD//BE,故不符合题意;④∠1+∠ACE=180°,同旁内角互补,两直线平行,则能判定AD∥BE,所以满足条件的有2个,故选C.【点睛】本题考查了两直线平行的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行,并要分清给出的角所截的是哪两条直线.6.C【解析】【分析】根据立方根的定义、算术平方根的定义以及绝对值的性质结合相反数的定义逐一进行分析即可得答案.【详解】A,两数相等,不能互为相反数,故选项错误;B、-2与12-互为倒数,故选项错误;C=2与-2互为相反数,故选项正确;D、|-2|=2,两数相等,不能互为相反数,故选项错误,故选C.【点睛】本题考查了立方根、算术平方根、绝对值的化简、相反数等知识,熟练掌握相反数的定义是解本题的关键.7.B【解析】【分析】根据平行线的性质和两角互余解答即可.【详解】解:∵DE∥AB,∴∠EDC=∠B=48°,∵AD⊥BC,∴∠ADE=90°﹣48°=42°,故选B.【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质是解决问题的关键.8.D【解析】由点A(1,2)平移后的坐标是A′(-3,3),得出平移前后点的坐标变化规律为横坐标减去4,纵坐标加上1,再将各选项逐一检验即可.【详解】解:∵点A(1,2)平移后的坐标是A′(-3,3),∴平移前后点的坐标变化规律为横坐标减去4,纵坐标加上1,∴选项D符合要求.故选D.【点睛】本题考查了坐标与图形变化-平移,根据点P与P′的坐标,得出平移前后点的坐标变化规律是解题的关键.9.A【解析】【分析】先求出线段BC的长度,然后利用中点的性质即可解答.【详解】∵表示2的对应点分别为C,B,∴-2,∵点C是AB的中点,∴AC=BC=-2,∵OA=OC-AC,∴-2)=4-∴点A表示的数是故选A.本题考查了实数与数轴,线段的和差,准确识图,熟练掌握相关知识是解题的关键. 10.58【解析】【分析】从图中可以发观,第n排的最后的数为:12n(n+1),据此规律进行求解即可.【详解】从图中可以发观,第n排的最后的数为:12n(n+1),∵第10排最后的数为:12×10×(10+1)=55,∴(11,3)表示第11排第3个数,则第11排第3个数为55+3=58,故选C.【点睛】本题考查了规律型——数字的变化类,找到第n排的最后的数的表达式是解题的关键.11.3.【解析】【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】∵239 ,∴9算术平方根为3.故答案为3.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.12.(2,3).【解析】将点P的横坐标加3,纵坐标加1即可求解.【详解】点P(﹣1,2)向右平移3个单位长度再向上平移1个单位得到的点的坐标是(﹣1+3,2+1),即(2,3).故答案为(2,3).【点睛】本题考查了坐标与图形的变化,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.13.15°【解析】【分析】先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,即可求得∠4的度数,又由△ABC是含有45°角的三角板,即可求得∠3的度数,继而求得∠2的度数.【详解】如图,过点B作BD∥l.∵直线l∥m,∴BD∥l∥m,∴∠4=∠1=30°.∵∠ABC=45°,∴∠3=∠ABC﹣∠4=45°﹣30°=15°,∴∠2=∠3=15°.故答案为15°.【点睛】本题考查了平行线的性质.解题时注意辅助线的作法,注意掌握两直线平行,内错角相等定理的应用.14.135【解析】【分析】根据//AB CD 知AEC ∠=C AEC ∠∠,又与C ∠互余,故AEC ∠=C ∠=45°,再跟邻补角的性质即可求出CEB ∠的度数.【详解】∵//AB CD∴AEC ∠=C ,∠又AEC ∠与C ∠互余,∴AEC ∠=C ∠=45°,∴CEB ∠=180°-AEC ∠=135°.【点睛】此题主要考查平行线的性质,解题的关键是熟知余角与补角的定义.15.4【解析】【分析】从①②③三个式子中,我们可以发现计算出的等号后面的系数为等号前面的根号里的整数加分数的分子,根号里的还是原来的分数,据此求出a 、b 的值即可求得答案.【详解】===,…,∴用含n (1n =+,=∴a=8-1=7,b=a+2=9,=4,故答案为4.【点睛】本题考查了本题考查了规律型——数字的变化类,找到变化的规律是解题的关键.16.70°.【解析】【分析】由AD//BC可以求得∠EBF的度数,由折叠的性质知:∠EBC′、∠BC′F都是直角,继而可求得∠FBC′的度数,在Rt△BC′F中利用直角三角形两锐角互余即可求得答案.【详解】∵AD//BC,∴∠EBF=∠AEB=70°,由折叠的性质知,∠EBC′=∠D=90°,∠BC′F=∠C=90°,∴∠FBC′=∠EBC′-∠EBF=90°-70°=20°,在Rt△B C′F中,∠BC′F=90°,∴∠BFC′=90°-∠FBC′=70°,故答案为70.【点睛】本题考查了折叠的性质,涉及了平行线的性质,直角三角形两锐角互余的性质等知识,准确识图,熟练掌握和灵活运用相关知识是解题的关键.17.【解析】=-++=试题解析:原式331 1.故答案为1.18.(1)x=173,或x=13;(2)x=-12.【解析】【分析】(1)利用平方根的定义进行求解即可;(2)利用立方根的定义进行求解即可.【详解】(1)(x-3)2=649,则x-3=±83,即x=173或x=13;(2)(2x-1)3=-8,2x-1=-2,∴x=-12.【点睛】本题考查了利用平方根定义以及立方根定义解方程,熟练掌握相关定义是解题的关键.19.这个数是81.【解析】【分析】根据平方根与算术平方根的定义即可列出式子进行求解.【详解】∵一个数的平方根是±(a+4),算术平方根为2a ﹣1,∴a+4=2a ﹣1或-(a+4)=2a-1,解得:a=5或a=-1,由于2a ﹣1≥0,∴a=-1舍去.∴a=5∴这个数的平方根为±9,这个数是81.【点睛】此题主要考查平方根与算术平方根的定义,解题的关键是熟知平方根与算术平方根的联系. 20.(1)(五,6)或(八,5);(2)①画图见解析;(答案不唯一)②(四,6)(二,5)→(三,3)→(四,5)→(六,4)(答案不唯一).【解析】【分析】(1)根据点的坐标移动按照从“日”字形长方形的对角线的一个端点到另一个端点,观察图形即可得知从(七,7)到(六,4)中间所缺的一步;(2)①此题只需根据点的坐标移动按照从“日”字形长方形的对角线的一个端点到另一个端点,不能多也不能少”来确定行走路线即可(答案不唯一);②根据①的线路写出走法即可.【详解】(1)观察图形,结合“马”的行棋规则可得缺失的一步是(五,6)或(八,5),故答案为(五,6)或(八,5);(2)①如图所示(答案不唯一);(2)图示的走法为:(四,6)(二,5)→(三,3)→(四,5)→(六,4),故答案为(四,6)(二,5)→(三,3)→(四,5)→(六,4).【点睛】本题考查了坐标确定位置,体现了规律性,需要灵活求解.21.AB∥EF,两直线平行,内错角相等;等量代换,∠E,∠DCE,CD,同旁内角互补,两直线平行;平行于同一直线的两条直线互相平行.【解析】【分析】依据平行线的性质,即可得到∠BCD=70°,进而得出∠E+∠DCE=180°,进而得到EF∥CD,进而得到AB∥EF.【详解】AB∥EF,理由如下:∵AB∥CD,∴∠B=∠BCD,(两直线平行,内错角相等)∵∠B=70°,∴∠BCD=70°,(等量代换)∵∠BCE=20°,∴∠ECD=50°,∵∠CEF=130°,∴∠E+∠DCE=180°,∴EF∥CD,(同旁内角互补,两直线平行)∴AB∥EF.(平行于同一直线的两条直线互相平行)【点睛】本题考查平行线的性质和判定,解题的关键是熟练掌握平行线的判定和性质.22.(1)AC∥DF,理由见解析;(2)40°.【解析】【分析】(1)根据平行线的性质得出∠ABD=∠C,求出∠D=∠ABD,根据平行线的判定得出AC∥DF;(2)根据平行线的性质和三角形内角和解答即可;【详解】解:(1)AC∥DF,理由如下:∵∠1=80°,∠2=100°,∴∠1+∠2=180°,∴BD∥CE,∴∠ABD=∠C,∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF;(2)∵AC∥DF,∴∠A=∠F,∠ABD=∠D,∵∠C=∠D,∠1=80°,∴∠A+∠ABD=180°﹣80°=100°,即∠A+∠C=100°,∵∠C比∠A大20°,∴∠A=40°,∴∠F=40°.【点睛】本题考查了平行线的性质和判定的应用,能综合运用定理进行推理是解此题的关键.23.见解析【解析】【分析】先根据题意画出图形,再根据平行线的性质进行解答即可.【详解】∠ABC与∠DEF的数量关系是相等或互补,理由如下:①如图,∵DE∥AB,∴∠ABC=∠DPC,又∵EF∥BC,∴∠DEF=∠DPC,∴∠ABC=∠DEF;②如图,因为DE∥AB,∴∠ABC+∠DPB=180°,又∵EF∥BC,∴∠DEF=∠DPB.∴∠ABC+∠DEF=180°.【点睛】本题考查了平行线的性质,根据题意画出图形是解答此题的关键,解答此题时要注意分两种情况讨论,否则会造成漏解.24.(1)3,【解析】【分析】(1)根据阅读材料知,1+2的整数部分,然后再去求其小数部分即可;(2)x-y的相反数即可.【详解】(1)∵1<2,∴3<4,+2的整数部分是1+2=3,+2﹣1;(2)∵2<3,∴12<<13,∴12,﹣2,即x=12,2,∴x﹣y=12﹣(2)=12=14则x﹣y14.【点睛】本题主要考查了无理数的大小.解题关键是确定无理数的整数部分即可解决问题.25.(1)证明见解析;(2)证明见解析;(3)45°【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°-∠3=90°-2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=12∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.【详解】(1)解:如图1,∵∠1与∠2互补,∴∠1+∠2=180°.又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)证明:如图2,由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP=12(∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)解:∠HPQ的大小不发生变化,理由如下:如图3,∵∠1=∠2,∴∠3=2∠2.又∵GH⊥EG,∴∠4=90°-∠3=90°-2∠2.∴∠EPK=180°-∠4=90°+2∠2.∵PQ平分∠EPK,∴∠QPK=12∠EPK=45°+∠2.∴∠HPQ=∠QPK-∠2=45°,∴∠HPQ的大小不发生变化,一直是45°.【点睛】本题考查了平行线的判定与性质.解题过程中,注意“数形结合”数学思想的运用.。
新人教版七年级数学下册期中考试题及答案【各版本】

新人教版七年级数学下册期中考试题及答案【各版本】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.02.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人3.如图,P是直线l外一点,A,B,C三点在直线l上,且PB⊥l于点B,∠APC=90°,则下列结论:①线段AP是点A到直线PC的距离;②线段BP的长是点P到直线l的距离;③PA,PB,PC三条线段中,PB最短;④线段PC的长是点P到直线l的距离,其中,正确的是( )A.②③B.①②③C.③④D.①②③④4.如图,已知AB AD=,那么添加下列一个条件后,仍无法判定≌的是()ABC ADC∆∆A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒5.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个6.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m ≤7D .4<m ≤77.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm8.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( )A .10℃B .6℃C .﹣6℃D .﹣10℃9.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b10.若320,a b -++=则a b +的值是( )A .2B .1C .0D .1-二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠=________.3.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________4.若m 2﹣2m ﹣1=0,则代数式2m 2﹣4m+3的值为________.5.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为________. 6.一个多边形的内角和是1800°,这个多边形是________边形.三、解答题(本大题共6小题,共72分)1.解不等式组:3(1)531152x x x x --≥⎧⎪-+⎨-<⎪⎩2.已知关于x 、y 的方程组354526x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,求a 、b 的值.3.如图,AB ∥CD ,△EFG 的顶点F ,G 分别落在直线AB ,CD 上,GE 交AB 于点H ,GE 平分∠FGD ,若∠EFG=90°,∠E=35°,求∠EFB 的度数.4.如图,一伞状图形,已知120AOB ∠=︒,点P 是AOB ∠角平分线上一点,且2OP =,60MPN ∠=︒,PM 与OB 交于点F ,PN 与OA 交于点E .(1)如图一,当PN 与PO 重合时,探索PE ,PF 的数量关系(2)如图二,将MPN ∠在(1)的情形下绕点P 逆时针旋转α度()060α<<︒,继续探索PE ,PF 的数量关系,并求四边形OEPF 的面积.5.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m 名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m= ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、B4、C5、C6、A7、B8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、1253、135°4、55、196、十二.三、解答题(本大题共6小题,共72分)1、71x -<≤-.2、149299a b ⎧=⎪⎪⎨⎪=⎪⎩3、20°4、(1)=PE PF ,证明详略;(2)=PE PF5、(1)150,(2)36°,(3)240.6、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元。
新人教版七年级数学下册期中试卷【及参考答案】

新人教版七年级数学下册期中试卷【及参考答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.对于任何有理数a ,下列各式中一定为负数的是( ).A .(3)a --+B .a -C .1a -+D .1a --2.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .803.8的相反数的立方根是( )A .2B .12C .﹣2D .12- 4.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元5.下列说法,正确的是( )A .若ac bc =,则a b =B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC BC =,则C 是线段AB 的中点6101的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间7.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .28.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱9.下面四个图形中,∠1=∠2一定成立的是( )A .B .C .D .10.如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A .59°B .60°C .56°D .22°二、填空题(本大题共6小题,每小题3分,共18分)1. 3-5的相反数为______,|1-2|=_______,绝对值为327的数为________.2.如图,//AB EF ,设90C ∠=︒,那么x ,y ,z 的关系式________.3.关于x的不等式组430340a xa x+>⎧⎨-≥⎩恰好只有三个整数解,则a的取值范围是_____________.4.已知2a﹣3b=7,则8+6b﹣4a=________.5.若一个多边形的内角和是900º,则这个多边形是________边形.6.木工师傅在锯木料时,一般先在木料上画出两个点,然后过这两个点弹出一条墨线,这是因为______________.三、解答题(本大题共6小题,共72分)1.(1)解方程组:425x yx y-=⎧⎨+=⎩(2)解不等式:2132x x->-2.(1)若a2=16,|b|=3,且ab<0,求a+b的值.(2)已知a、b互为相反数且a≠0,c、d互为倒数,m的绝对值是3,且m位于原点左侧,求22015 (1)()2016m a b cd--++-的值.3.如图,O,D,E三点在同一直线上,∠AOB=90°.(1)图中∠AOD的补角是_____,∠AOC的余角是_____;(2)如果OB平分∠COE,∠AOC=35°,请计算出∠BOD的度数.4.如图,在平面直角坐标系中,点A、C分别在x轴上、y轴上,CB//OA,OA=8,若点B的坐标为(a,b),且b444a a--.(1)直接写出点A、B、C的坐标;(2)若动点P从原点O出发沿x轴以每秒2个单位长度的速度向右运动,当直线PC把四边形OABC分成面积相等的两部分停止运动,求P点运动时间;(3)在(2)的条件下,在y轴上是否存在一点Q,连接PQ,使三角形CPQ的面积与四边形OABC的面积相等?若存在,求点Q的坐标;若不存在,请说明理由.5.某校为加强学生安全意识,组织全校学生参加安全知识竞赛.从中抽取部分学生成绩(得分取正整数值,满分为100分)进行统计,绘制以下两幅不完整的统计图.请根据图中的信息,解决下列问题:(1)填空:a=_____,n=_____;(2)补全频数直方图;(3)该校共有2000名学生.若成绩在70分以下(含70分)的学生安全意识不强,则该校安全意识不强的学生约有多少人?6.某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、C4、C5、B6、C7、C8、A9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)11 ±32、90x y z +-=︒3、4332a ≤≤ 4、-65、七6、两点确定一条直线. 三、解答题(本大题共6小题,共72分)1、(1)31x y =⎧⎨=-⎩;(2)x >125.2、(1)1±;(2)9.3、(1)∠AOE ,∠BOC ;(2)125°4、(1)A (8,0),B (4,4),C (0,4);(2)t =3;(3)存在;点Q 坐标(0,12)或(0,−4)5、(1)75,54;(2)补图见解析;(3)600人.6、(1)2400个, 10天;(2)480人.。
2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)

最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、9的算术平方根是()A.±3B.3C.﹣3D.2、下列数是无理数的有()A.B.﹣1C.0D.3、点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)4、下列是真命题的是()A.有理数与数轴上的点一一对应B.内错角相等C.同一平面内,垂直于同一条直线的两条直线互相平行D.负数没有立方根5、如图,下列各组条件中,能得到AB∥CD的是()A.∥1=∥3B.∥2=∥4C.∥B=∥D D.∥B+∥2=180°6、中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛、羊各直金几何?“译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为()A.B.C.D.7、若正数a的两个平方根是3m﹣2与3﹣2m,则m为()A.0B.1C.﹣1D.1或﹣18、如图,将∥ABC沿BC方向平移3cm得到∥DEF,若∥ABC的周长为24cm,则四边形ABFD的周长为()A.30cm B.24cm C.27cm D.33cm9、如图,直线m∥n,∥1=70°,∥2=30°,则∥A等于()A.30°B.35°C.40°D.50°10、已知关于x、y的方程组的解满足x+y=6,则a的值为()A.1B.2C.﹣2D.11第8题第9题第15题二、填空题(每小题3分,满分18分)11、设n为正整数,且,则n的值为.12、若y=+2,则y=.13、若是二元一次方程ax+by=﹣1的一个解,则3a﹣2b+2024的值为.14、已知=1.038,=2.237,=4.820,则=.15、如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∥1+∥2+∥3=°.16、如果,其中m,n为有理数,那么m+n=.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(﹣1)2023+|1﹣|+﹣.18、已知2a﹣1的算术平方根是3,b是﹣1的立方根,c是的整数部分,求a+b+c的值.19、已知方程组的解和方程组的解相同,求(2a+b)2024.20、∥ABC与∥A'B'C'在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A(,),B(,),C(,);(2)若∥A'B'C'是由∥ABC平移得到的,点P(x,y)是∥ABC内部一点,则∥A'B'C'内与点P相对应点P'的坐标为(,);(3)求∥A'B'C'的面积.21、已知:如图,DE∥BC,BD平分∥ABC,EF平分∥AED.(1)求证:EF∥BD;(2)若BD∥AC,∥C=2∥2,求∥A的度数.22、在平面直角坐标系xOy中,已知点P(a﹣1,4a),分别根据下列条件进行求解.(1)若点P在y轴上,求此时点P坐标;(2)若点P在过点A(2,8)且与x轴平行的直线上,求此时a值;(3)若点P的横纵坐标相等,Q为x轴上的一个动点,求此时PQ的最小值.23、水果店2月份购进甲种水果50千克、乙种水果80千克,共花费1600元,其中甲种水果以20元/千克,乙种水果以15元/千克全部售出;3月份又以同样的价格购进甲种水果30千克、乙种水果40千克,共花费880元,由于市场不景气,3月份两种水果均以2月份售价的9折全部售出.(1)求甲、乙两种水果的进价每千克分别是多少元?(2)请计算该水果店2月和3月甲、乙两种水果总赢利多少元?24、规定:若P(x,y)是以x,y为未知数的二元一次方程ax+by=c的正整数解,则称此时点P为二元一次方程ax+by=c的“理想点”.请回答以下关于x,y的二元一次方程的相关问题.(1)方程x+2y=3的“理想点”P的坐标为.(2)已知m,n为非负整数,且,若是方程2x+ y=13的“理想点”,求的值;(3)“郡园点”P(x,y)满足关系式:,其中m为整数,求“理想点”P的坐标.25、如图,在平面直角坐标系中,A,B坐标分别为A(0,a)、B(b,a),且a,b满足:,现同时将点A,B分别向下平移3个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求C,D两点的坐标及四边形ABDC的面积;(2)点P是线段BD上的一个动点,连接P A,PO,当点P在BD上移动时(不与B,D重合),的值是否发生变化,并说明理由;(3)已知点M在y轴上,连接MB、MD,若∥MBD的面积与四边形ABDC 的面积相等,求点M的坐标.最新人教版七年级下学期数学期中考试试卷(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、7 12、2 13、2023 14、22.37 15、360 16、5三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣218、119、720、解:(1)A(1,3),B(2,0),C(3,1)(2)答案为:x﹣4,y﹣2 (3)2.21、(1)略(2)60°22、(1)P(0,4)(2)a=2 (3)P(﹣,﹣),最小值为.23、(1)甲种水果的进价为每千克16元,乙种水果的进价为每千克10元.(2)该水果店2月和3月甲、乙两种水果共赢利800元.24、(1)P的坐标为(1,1)(2)m=25,n=3(3)P(1,1)25、(1)四边形ABDC的面积是15(2)值为1,值不发生变化(3)M的坐标为(0,18)或(0,﹣42)。
新人教版七年级数学下册期中测试卷及答案【完整版】

新人教版七年级数学下册期中测试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知m ,n 为常数,代数式2x 4y +mx |5-n|y +xy 化简之后为单项式,则m n 的值共有( )A .1个B .2个C .3个D .4个2.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .18.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,在△ABC 中,AB=AC ,∠A=30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 的度数为( )A .15°B .17.5°C .20°D .22.5° 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.3.正五边形的内角和等于______度.4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S 1=4,S 2=9,S 3=8,S 4=10,则S=________.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解下列方程组(1)257320x y x y -=⎧⎨-=⎩ (2)33255(2)4x y x y +⎧=⎪⎨⎪-=-⎩2.已知关于x 的方程9x 3kx 14-=+有整数解,求满足条件的所有整数k 的值.3.如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.4.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.在一次实验中,小明把一根弹簧的上端固定、在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.所挂物体质量0 1 2 3 4 5x/kg弹簧长度18 20 22 24 26 28y/cm①上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?②当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?③若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、D4、D5、B6、C7、A8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、40°3、5404、50°5、316、7三、解答题(本大题共6小题,共72分)1、(1)55xy⎧=⎨=⎩;(2)25xy⎧=⎪⎨=⎪⎩2、k=26,10,8,-8.3、(1)矩形的周长为4m;(2)矩形的面积为33.4、(1)∠1+∠2=90°;略;(2)(2)BE∥DF;略.5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.6、①上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;②当所挂物体重量为3千克时,弹簧长24厘米;当不挂重物时,弹簧长18厘米;③32厘米.。
人教版初一下册《数学》期中考试卷及答案【可打印】

人教版初一下册《数学》期中考试卷及答案【可打印】一、选择题(每题1分,共5分)1. 下列哪个数是平方数?A. 3B. 4C. 6D. 82. 下列哪个图形是圆?A. 三角形B. 长方形C. 正方形D. 圆3. 下列哪个数是立方数?A. 2B. 3C. 4D. 54. 下列哪个数是质数?A. 4B. 6C. 7D. 95. 下列哪个数是合数?A. 2B. 3C. 4D. 5二、判断题(每题1分,共5分)1. 一个等腰三角形的底边长为8厘米,腰长为5厘米,这个三角形是等边三角形。
()2. 两个连续的奇数相加的和是偶数。
()3. 一个数的立方根是这个数的平方根的平方。
()4. 一个正方形的对角线等于它的边长的根号2倍。
()5. 任何两个不同的质数相加的和都是偶数。
()三、填空题(每题1分,共5分)1. 9的平方根是______。
2. 一个等腰三角形的底边长为10厘米,腰长为6厘米,这个三角形的周长是______厘米。
3. 2的立方根是______。
4. 一个正方形的边长为5厘米,这个正方形的面积是______平方厘米。
5. 5的平方根是______。
四、简答题(每题2分,共10分)1. 简述等腰三角形的性质。
2. 简述正方形的性质。
3. 简述平方数的定义。
4. 简述立方数的定义。
5. 简述质数的定义。
五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长为10厘米,腰长为6厘米,求这个三角形的周长。
2. 一个正方形的边长为5厘米,求这个正方形的面积。
3. 求2的立方根。
4. 求9的平方根。
5. 一个等腰三角形的底边长为8厘米,腰长为5厘米,求这个三角形的周长。
六、分析题(每题5分,共10分)1. 分析等腰三角形和等边三角形的区别和联系。
2. 分析正方形和长方形的区别和联系。
七、实践操作题(每题5分,共10分)1. 在一张纸上画一个等腰三角形,底边长为10厘米,腰长为6厘米,并标注出各边的长度。
2. 在一张纸上画一个正方形,边长为5厘米,并标注出各边的长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二学期期中考试初一数学试题(注:本次考试设卷面分,书写工整美观、卷面整洁者适当加分,书写潦草适当扣分,最多可加4分,并计入总分,但总分不超过120分) 题号 一 二 三 四 五 六 七 八 九 十 总分 得分一、填空题(每空3分,共39分)1.运算结果为a 6b 12的一个算式是______.2.一个只含x 的二次三项式,它的二次项、一次项系数均为-1,常数项为2,则这个多项式为_______________.3.若∠1和∠2互为余角,且∠1=30°,则∠2=________度. 4.若2×8 n ×16 n = 2 22,则n =________.5.甲产品合格率为96%,乙产品合格率为80%,买_____产品较可靠. 6.在一个球袋中放有7个红球和3个白球,把球摇匀后摸到 球的可能性大.7.如图7,直线a 与b 的关系是 . 8.一个角的补角等于这个角的2倍,则这个 角的度数是 度.9.如图,∠1+∠2=284°,b ∥c ,则 ∠3= 度,∠4= 度.10.若︒=∠+∠9021,︒=∠+∠9023, 则31∠∠与的关系是 .11.若()()n x x mx x ++=-+3152,则m 的值为 .12.房间里有一个从外表量长a 米、宽b 米、高c 米的长方形木箱子,已知木板的厚度为x 米,那么这个木箱子的容积是________________米3.(只列式子,结果不展开)二、选择题(每小题3分,共30分) 1.代数式abc 5,172+-x ,x 52-,5121中,单项式的个数是 ( )(A )4个 (B )3个 (C )2个 (D )1个2.如图,∠1=∠2,由此可得哪两条直线平行 ( )(A )AB ∥CD图7ba62︒62︒(B)AD∥BC(C)AB∥CD,AD∥BC(D)无法判断3.下面四个图形中∠1与∠2是对顶角的图形有()(A)0个(B)1个(C)2个(D)3个4.如果一个角的两边平行于另一个角的两边,那么这两个角()(A)相等(B)互补(C)互余(D)相等或互补5.下列事件中,必然发生的事件是()(A)明天会下雨(B)小明数学考试得99分(C)今天是星期一,明天就是星期二(D)明年有370天6.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真的复习老师课上讲的内容,他突然发现一道题:(-x2 + 3xy-21y2)-(-21x2+ 4xy-23y2)=-21x2_____+ y2. 空格的地方被钢笔水弄污了,那么空格中的一项是()(A)-7xy(B)7xy(C)-xy(D)xy7.下列算式能用平方差公式计算的是()(A)(2a+b)(2b-a)(B))121)(121(--+xx(C)(3x-y)(-3x+y)(D)(-m-n)(-m+n)8.如图OC⊥AB于O点,∠1=∠2,则图中互余的角共有()(A)2对(B)3对(C)4对(D)5对9.按下面的规律摆下去,第n个图形需要棋子的个数是21EDCBA O( )○○○ ○○○○○ ○○○○○○○ ○ ○ ○ ○ ○ ○○ ○○① ② ③(A )3n (B )3n +1 (C )2n +1 (D )3n +210.如图,在方格纸中有四个图形<1>、<2>、<3>、<4>,其中面积相等的图形是 ( )(A )<2>和<3> (B )<1>和<2> (C )<2>和<4> (D )<1>和<4> 三、计算题(每小题4分,共16±0.5分)1.()322312122005--÷⎪⎭⎫⎝⎛-+⨯÷-2.33222)()2()()(a a a a ---3.()()1212-+++b a b a4.)21()23(3223ab ab b a b a -÷+-四、化简求值(本大题5±0.5分)[()()422222+--+y x xy xy ]÷()xy ,其中 10=x ,251-=y . 五、(本大题5±0.5分)下面第一排表示了各袋中球的情况,请你用第二排的语言来描述摸到红球的可能性大小,并用线连起来. 010 8 1六、(本大题4±0.5分)如图,直线BC 与DE 相交,请分别指出图的对顶角、内错角、同位角和同旁内角.对顶角有:同位角有:内错角有:同旁内角有:七、(本大题6±0.5分)如图,若∠1+∠2=180°,则_____∥____, 理由是____ _______.若a ∥b ,则∠___=∠3,理由是__________ _______ _____ .若∠2=∠4,则____∥____, 理由是___________ __________. 八、(本大题6±0.5分)如图,已知AB ∥CD ,∠A =∠C ,若∠ADB =65°,求∠DBC 的度数. 4321FE D C B A1 4abc 32九、(本大题6±0.5分)小明和小强平时是爱思考的学生,他们在学习《整式的运算》这一章时,发现有些整式乘法结果很有特点, 例如:1)1)(1(32-=++-x x x x ,33228)24)(2(b a b ab a b a +=+-+,小明说:“这些整式乘法左边都是一个二项式跟一个三项式相乘,右边是一个二项式” .小强说:“是啊!而且右边都可以看成是某两项的立方的和(或差).” 小明说:“还有,我发现左边那个二项式和最后的结果有点像.” 小强说:“对啊,我也发现左边那个三项式好像是个完全平方式,不对,又好像不是,中间不是两项积的2倍.”小明说:“二项式中间的符号、三项式中间项的符号和右边结果中间的符号也有点联系.”…… ……亲爱的同学们,你能参与到他们的讨论中并找到相应的规律吗? (1)能否用字母表示你所发现的规律?(2)你能利用上面的规律来计算)42)(2(22y xy x y x +---吗?十、(本大题3±0.5分)本学期中,你最感兴趣的数学思想、数学知识或数学方法是什么?你能用它设计一个数学问题或者发现一个现实生活中与之相关的数学问题吗?请写下来.数学参考答案注:卷面分4分记入总分,每题根据书写情况上下浮动 0.5分,但总分不超过120分. 一、1、略 2、22+--x x 3、60 4、3 5、甲 6、红7、平行 8、60 9、38,142 10、相等 11、-212、()()()x c x b x a 222---二、BBADC CDCDB三、1、原式=1×21×21+9×8 ………………………2分=41+72 ………………………3分 =7241………………………4分2、原式=33428a a a a ⋅+⋅ ………………………2分 =668a a + ………………………3分 =69a ………………………4分 3、原式=()122-+b a ………………………2分=14422-++b ab a ………………………4分4、原式=⎪⎭⎫⎝⎛-÷+⎪⎭⎫ ⎝⎛-÷-⎪⎭⎫ ⎝⎛-÷ab ab ab b a ab b a 212213213223……………2分 =22462b ab a -+- ………………………4分 四、原式=()()xy y x y x ÷+--4242222………………………1分=()()xy yx ÷-22 ………………………2分=xy - ………………………3分 当10=x ,251-=y 时 ………………………4分 原式=52………………………5分 五、连对一条线得1分10初一数学期中考试题答案第1页六、∠1与∠3,∠2与∠4 ………………………1分∠B 与∠2,∠E 与∠2 ………………………2分 ∠B 与∠4,∠E 与∠4 ………………………3分 ∠B 与∠1,∠E 与∠3 ………………………4分 七、a ∥b ………………………1分同旁内角互补,两直线平行 ………………………2分 1 ………………………3分 两直线平行,内错角相等 ………………………4分 a ∥b ………………………5分 同位角相等,两直线平行 ………………………6分 八、∵AB ∥CD∴∠A +∠ADC =180° ………………………2分 ∵∠A =∠C∴∠C +∠ADC =180° ………………………4分 ∴AD ∥BC ………………………5分 ∴∠DBC =∠ADB =65° ………………………6分 九、()()3322b abab a b a ±=+±μ ………………………2分原式=()()332y x -+- ………………………4分=338y x -- ………………………6分十、略 ………………………3分(以上各解答题只提供其中一种解法的评分标准,若出现不同的解法可参照上述各题的解法评分标准给分)±第二学期期中考 七年级数学科试卷(参赛试题)(时间:120分钟 满分:100分)命题人:cyj431友情提示:亲爱的同学,现在是检验你半期来的学习情况的时候,相信你能沉着、冷静,发挥出平时的水平,祝你考出好的成绩。
一、细心填一填(每题2分,共24分)1. 在同一平面内,两条直线有 种位置关系,它们是 ; 2.若直线a//b ,b//c ,则 ,其理由是 ; 3.如图1直线AB ,CD ,EF 相交与点O ,图中AOE ∠的对顶角是 , COF ∠的邻补角是 。
4.如图2,要把池中的水引到D 处,可过C 点引CD ⊥AB 于D ,然后沿CD 开渠,可使所开渠道最短,试说明设计的依据: ;5.点P (-2,3)关于X 轴对称点的坐标是 。
关于原点对称点的坐标是 。
6.把“对顶角相等”写成“如果……那么……”的形式为 。
7.一个等腰三角形的两边长分别是3cm 和6cm,则它的周长是 cm. 8.若点M (a+5,a-3)在y 轴上,则点M 的坐标为 。
9.若P (X ,Y )的坐标满足XY >0,且X+Y<0,则点P 在第___象限 。
10.一个多边形的每一个外角等于30o,则这个多边形是 边形,其内角和是 。
11.直角三角形两个锐角的平分线所构成的钝角等于 度。
12.如图3,四边形ABCD 中,12∠∠与满足 关系时AB//CD ,当 时AD//BC(只要写出一个你认为成立的条件)。