八木天线计算器验证
一种参数可调的八木天线的设计_于臻
时候,半波有源振子的输入阻抗由 73 Ω 下降到 15 ~
20 Ω 左右,很难与常用同轴线( 特性阻抗为 50 或 75 Ω) 直接匹配,为此须设法提高有源振子的输入阻抗; ②工作频带变窄。对称振子本身的工作频带较窄,再 加上若干个无源振子的影响,使其频率特性更差。
( 4) 引向器间距。可从方向性和阻抗特性 2 方面 考虑。在振子数一定的情况下,间距增加,可在一定程 度上提高增益,但当 d > 0. 4λ 后,增益开始下降,但第 一引向器和主振子的间距应略小于其它间距,增益将 会有所提高; 若要降低天线旁瓣电平,振子距离可取得 小一些,但间距过小,有源振子的输入阻抗会变得很小 且随频率变化剧烈,不便于和馈线匹配,从而减小工作 带宽,一般间距不要小于 0. 1λ。综上所述,各引向器 之间的距离 d = ( 0. 1 ~ 0. 4) λ。
由于八木天线涉及较多的参数,为了使天线几何 尺寸的确定更加快捷,方便,根据天线的工作频率与天 线振子长度和间距的关系,利用 Visual Basic 软件编写 设计了 1 个八木天线交互计算软件[12 ~ 13]。当输入天 线的中心工作频率后,该软件可以立刻计算出各个振 子的长度和振子的间距范围等几何参数,为后面的仿 真优化及参数的确定提供参考。这里选择 2. 4 GHz 为 天线的中心工作频率,得到的天线参数范围见图 2 所 示。按清零按钮后可以清除当前的数据,重新输入天 线的中心工作频率进行设计。
Langfang 065201; 2. School of Electronic Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China)
Abstract: To increase the flexibility and the bandwidth,this paper presents a parameter tunable 18 unit Yagi-Uda antenna that operate at the center frequency of 2. 4 GHz based on the theoretical analysis of traditional Yagi-Uda antennas. First,an antenna calculator was designed with Visual Basic to calculate and adjust the parameters. The antenna model for a kind of scenario was constructed,simulated and optimized as well using the HFSS. The antenna was tested by PNA3621 vector network analyzer. Measured results show that the antenna has a good characteristic with a symmetrical beam width,a broad impedance bandwidth,little side lobes and voltage standing wave ratio. The echo loss is relatively ideal in 2. 3 GHz ~ 2. 5 GHz frequency range,which agrees well with simulated results. Key words: Yagi-Uda antenna; antenna calculator; HFSS simulation; performance testing
矩量法分析八木天线
矩量法分析八木天线八木天线是一种常用于无线通信的高利用效率的天线结构,由经典日本电气工程师八木秀次于1926年提出。
八木天线结构简单,轻巧,适用于各种频段的应用,并能在设计中考虑到信号接收或传输方向的选择。
本文将使用矩量法对八木天线进行详细分析。
首先,让我们了解一下八木天线的基本结构。
八木天线由两个平行的贵金属金属棒组成,其中一个是驱动器,另一个是反射器。
驱动器是由驱动源供电的,它辐射出电磁波,然后被反射器反射回到驱动器附近的空间中。
在驱动器和反射器的中间,还有一系列的被称为直拨子的金属棒,用于增强天线的接收和传输性能。
通过调整直拨子的长度,可以改变天线的共振频率。
此外,还可以通过改变驱动器和反射器之间的距离来进一步调节天线的性能。
在矩量法中,我们需要分析和计算天线的辐射特性和性能。
首先,我们需要定义一个适当的坐标系来描述天线结构。
假设天线的长度为L,宽度为W,高度为H,并且将天线的中心线与Z轴对齐(即X-Z平面)。
接下来,我们需要定义一些参数来描述天线的物理特性和电气特性。
首先是导体的电导率σ,它描述了导体的传导性能。
通常,我们可以假设导体是理想导体,导电率为无穷大。
然后是导体中自由电荷的表面密度σ,它可以通过电荷守恒定律计算得到。
最后是天线的输入阻抗Zin和辐射方向图。
在计算输入阻抗时,我们可以使用传输线理论。
我们可以假设八木天线驱动器的输入电阻为50欧姆,并使用传输线理论来计算天线输入阻抗。
在计算辐射方向图时,我们可以使用积分方程来描述电流分布,然后使用适当的数值方法来解决积分方程。
通过使用矩量法,我们可以快速而准确地分析八木天线的性能。
我们可以通过调整直拨子的长度和驱动器与反射器之间的距离来改变天线的频率响应和方向性。
此外,我们还可以通过在驱动器和反射器之间添加一个金属棒来改变辐射方向图的形状和性能。
总之,矩量法是一种强大而有效的工具,可以用于分析八木天线的性能。
它可以帮助工程师们设计出具有高利用效率和优异性能的八木天线,从而满足各种无线通信的需求。
一种八木天线的优化设计方法
一种八木天线的优化设计方法许海堤, 傅 光(西安电子科技大学 天线与电磁散射研究所 陕西 西安 710071)摘 要: 介绍了基于矩量法的N EC 分析八木天线的原理和单纯形法的基本原理, 并将两者结合起来提出了一种适合 工程中使用的优化设计方法。
数值结果表明该方法是行之有效的。
关键词: 单纯形法; 八木天线; 优化; N EC中图分类号: TN 823+ 117文献标识码: B文章编号: 1004 373X (2003) 22 045 03A M ethod for Opt im iza t ion D es ign of Yag i uda An tennaXU H aidi , FU Guan g(R esearch Institute of A ntennas and EM Scattering , X idian U niversity , X i ′a n , 710071, Ch ina )Abstract : T he theo ry u sed in the analy sis o f the Yagi uda an tenna of N EC w h ich is based on m etho d of mom en t (mom ) an d the sim p lex are b riefly in t roduced in th is paper 1 A m etho d w ith the com b inat io n of the sim p lex and m etho d of mom en t is in t r od u ced fo r the design of Yagi uda an tenna 1 T he num erical resu lt show s its validity 1Keywords : sim p lex ; Yagi ; op t im izat io n ; N EC1 引 言八木天线[ 1 ] 是一种常用的天线形式, 由于其结构g ( r , r ′) = exp (- j k | r - r ′| ) ƒ| r - r ′|(3) k = ΞΛ0 Ε0 (4) 简单、 造价低廉, 在实际工程中得到广泛应用。
八木天线制作教程
八木天线制作教程八木天线是一种引向天线,由一个有源振子和多个无源振子放臵在同一平面上,并且垂直于连接它们中心的金属杆。
一般一个无源振子为反射器,其余的无源振子为引向器。
因为金属杆通过振子上的压波节点,并垂直于天线,所以,金属杆对天线的近场影响很小。
而有源振子必须与金属杆绝缘。
通过下表的数据可以看到,八木天线的增益高于垂直天线及偶极天线。
(摘自《天线与电波传播》,北方交通大学徐坤生、蒋忠涌编著)天线形式反射器数引向器数有源振子数方向性系数偶极0010dB二单元八木1013~4.5dB二单元八木0013~4.5dB三单元八木1116~8dB四单元八木1217~10dB五单元八木1319~11dB从上表上可知,八木天线的单元越多,方向性越强。
但是单元的增加不与方向性成正比。
单元过多时,导致工作频带变窄,整个天线尺寸也将偏大。
在短波波段,波长较长,自制八木天线比较困难,在超短波波段(V/U),因波长短,可以比较方便的自制低成本的八木天线。
八木天线的数学计算复杂,不过很多工程或理论书籍都给出它的尺寸,只要依照这些数据,就可以自制出一副不错的YAGI!五单元八木天线的尺寸如图1如果自制四单元八木天线,只要不安装引向器D就可以,天线也会显得小巧一点。
如果想做成七单元,在上图的基础上加两个引向器单元,长度分别是半波长的84%,82%。
新加的单元的间隔仍是波长的0.2倍。
我做的70CM波段八木天线,最初是四单元的,各个振子及其连接的金属杆,用BG4RUV提供的铜焊条(直径2.5mm)制成。
大约一个月后,买了一段2米长,直径4mm的铜条,又制了一可拆卸的四单元八木天线(找到一段矩形铜管作为连接各个振子的支杆,各个振子均用螺丝与支杆固定,便于携带)。
第一支天线的谐振点比预计的中心频率(435兆赫)低了约2兆赫,但在430至440兆赫内的SWR不高,最低的SWR〈1.1,最高的SWR也不大于1.4。
第二支天线的SWR在整个70CM频段内的起伏不大,最高约1.2。
授人以渔:几种常用天线DIY的在线计算器
授⼈以渔:⼏种常⽤天线DIY的在线计算器不像是UV段上的情况,短波爱好者们常常⾃⼰制作天线,并不断地⽐较天线的性能差距,找到最适合⾃⼰的⼀款。
想要制作什么东西就要有它的图纸,然⽽在制作过⼏次“按图索骥”后的天线,你⼀定对于设计⾃⼰的天线和参数有了追求,这时候你知道你的第⼀步要从哪⾥开始吗?垂直天线计算器垂直天线是⼀种⽐较简单的天线形式,其发射仰⾓低、接收范围⼴、制作简单的特点使得它成为了很多爱好者的⾸只天线。
对于较长的拉杆天线和拼接天线,我们可以通过垂直天线计算器来算出天线⼯作在任⼀频率上时,其伸出长度应为多少。
以7.023MHz为例,在“Desired Frequency(欲求频率)”中输⼊“7.023”,并在“SelectAntenna(天线形式)”中选择“1/8”(⼋分之⼀波长),并点击“Calculate(计算)”。
这样你就能够在下⾯的“Calculated Vertical Length(计算出的垂直⾼度)”中读到“16ft. 7 - 15/16in. or5.078 M” 5.078⽶这个数值。
将你的拉杆天线拉出约5.078⽶,并铺设地⽹,不断⽤驻波表或天线分析仪进⾏测试,你就可以得到⼀个满意的天线效果。
计算器地址:DP/倒V天线计算器DP和倒V天线则是更加常见的⼀种天线类型,不管是家中使⽤还是在野外架台中,倒V天线使⽤起来都⾮常⽅便。
这个天线计算器可以帮助我们设计出具有多波段的陷波器倒V天线,⽐较具有实际意义。
进⼊页⾯后,点击“Linked Antenna Designer”进⼊天线设计器界⾯。
⾸先,我们要确定天线包含⼏个波段。
这个天线设计器最多可设计出包含五个波段的倒V天线。
在“No. of bands”中选择所需波段的总数,然后在下⽅添加上各个频率的中⼼点,从⾼到低,以kHz为单位。
下⽅的位置是让我们填写架设的信息的。
“Center Support Height”填写的是中间⽀撑杆的⾼度,如果末端不是在平地上架设的话还要填写“End Support Height(末端⽀撑⾼度)”,就像是DP天线的话,你上⾯的两个参数就应该填写相同的值。
八木天线计算器设计天线实例
用八木天线计算器设计天线八木天线计算器各部分功能图示如下:嘉靖通宝同学想设计一副8单元的、一副11单元的八木天线,用的是6mm直径的铜管。
下面设计一款11单元的八木天线,以实例说明计算器的使用。
一共只要6步,就可以完成八木天线的设计计算。
⑴ 输入频率:我们这里设计一个WIFI频段的八木天线,所以输入2437 MHz 。
⑵ 设定线径:嘉靖通宝同学手头有6mm的铜管,铜管和实心铜线是一样的。
我们点击滚动条,找到6.4mm,选中。
⑶ 因为要设计11单元的八木天线,所以选中“多元件”。
⑷ 点击计算按钮。
下面原来空格就都显示出数据了。
⑸ 所显示的数据都是以英尺为单位的。
我们把它转换成公制单位(厘米)。
按下“转为公制”按钮。
完成了。
简单吧!实际我们已经完成了一个23单元的八木天线设计。
无论你想制作几单元的,就把相关数据提取出来就行了。
如果你安装了打印机,直接点“打印”按钮,把数据打印出来就OK了。
下面再简单说说“十进制英尺转英寸”转换器的使用。
一般的数学计算,都是十进制的。
八木天线计算器计算出的数据也是这样。
而我们知道,英尺与英寸是12进制。
也就是说,1英尺是12英寸。
1.2英尺是多少英寸?不用工具,要一般人可能一下子反应不过来。
这个公制英尺转换英寸的计算器,就是为转换设计的。
当然,我们中国人习惯使用cm ,mm ,就用不着这个转换计算器了。
我们就以上面计算出的数据来进行一下转换。
按下『十进制英尺转英寸』按钮,就会弹出一个『计算』对话框。
这就是转换计算器。
以反射器长度为例:反射器长度是0.18942英尺。
我们把它拷贝到上面的框子里,点击计算钮,下面的框子就显示出计算结果:计算结果:0.18942英尺=2.2730英寸,即2又9/32英寸。
激情无线(lijiqing) 2010年4月。
八木天线参数计算方法
八木天线参数计算方法
八木天线是一种常用于无线通信系统的天线,其特点是具有较宽的频率范围和
较高的增益。
对于设计和优化八木天线,准确计算和确定其参数非常重要。
以下是八木天线参数计算的基本方法。
1. 八木天线的长度计算:八木天线的长度直接影响其工作频率。
根据所需工作
频率,可以使用公式L = λ/2 来计算八木天线的长度,其中 L 为八木天线的长度,
λ 为工作频率的波长。
2. 八木天线的元件排列:八木天线通常由主驱动器和辅助反射器组成。
主驱动
器的长度通常为1/2波长,而辅助反射器的长度为1/4波长。
主驱动器和辅助反射
器之间的距离也需要根据频率来确定。
3. 八木天线的驱动器设计:驱动器是八木天线的核心元件,其设计包括驱动器
的形状和驱动器到辅助反射器的连接方式。
常见的驱动器形状包括V形和半弯曲形,其选择取决于所需的波束宽度和频率响应。
4. 八木天线的辐射特性计算:辐射特性是评估八木天线性能的重要指标之一。
可以使用天线模拟软件进行计算和分析,以得到天线的辐射图案、增益和波束宽度等参数。
5. 八木天线的阻抗匹配计算:阻抗匹配是确保八木天线与传输线之间的能量传
输最大化的关键。
可以通过调整驱动器的长度和形状,以及使用阻抗匹配网络来实现阻抗匹配。
请记住,八木天线参数计算方法可以因具体应用而异,上述方法仅为基本指导。
在实际应用中,根据具体的需求和系统要求,可能需要进行更详细和精确的计算和优化。
最好的方法是参考相关文献和专业资源,或者咨询专业工程师以获取更准确和有效的参数计算方法。
八木天线的设计仿真与测试的开题报告
八木天线的设计仿真与测试的开题报告引言目前,随着通信技术的发展,无线通信在我们的生活中变得无处不在。
因此,对于无线通信天线技术的研究得到了越来越多的关注。
八木天线是一种非常重要的天线设计,它以其优秀的性能,被广泛应用于卫星通信、移动通信、广播电视等领域。
本文将面向开展八木天线的设计仿真与测试的研究工作,探讨八木天线的原理、设计流程、仿真分析以及测试实验。
一、八木天线原理八木天线是由日本的八木秀次教授于1924年发明的。
它是一种折叠衍射天线,由多个元件组成,其中主要包括驱动器、反向器和马鞍形反射器。
八木天线的原理基于电磁波反射和折射的知识,其结构示意图如图1所示。
图1 八木天线结构示意图在八木天线中,驱动器发出的电磁波会经过反向器以及一系列衍射元件,最终聚焦到马鞍形反射器上。
反射器将其反射回来,再经过衍射元件和反向器折射出去,形成辐射波。
八木天线的优点在于,它能够提高信号的增益和方向性,同时还能使信号的频率响应宽带化。
二、八木天线设计流程在进行八木天线的设计前,需要预先确定工作频率范围、增益要求、辐射方向等关键参数。
在此基础上,八木天线的设计流程一般包括以下几个步骤:1.确定驱动器类型和位置驱动器是八木天线的核心部分,通常采用同轴电缆驱动器或异轴电缆驱动器。
在确定驱动器类型后,需要进一步确定其位置在反射器的何处,这个位置通常在反射器中心的高度上。
2.反向器的位置和大小反向器在八木天线中扮演着重要的反射作用,所以其位置和大小需要合理设计。
一般来说,反向器的凹面部分应该朝向天线的前方。
3. 衍射元件的设计衍射元件是八木天线中的另一个重要组成部分,它们的作用是将波束聚焦到反射器上。
在设计衍射元件时,需要注意选择具有良好电学性能和机械稳定性的材料,比如玻璃纤维等。
4.反射器形状的设计反射器的设计形状通常是马鞍形,但是具体的形状参数需要根据不同设计要求进行调整。
在确定反射器形状后,需要进行仿真分析,优化参数,在实验中得到最优性能。
八木天线 阻抗
八木天线阻抗八木天线是一种常见的电磁波传输装置,其阻抗是指在八木天线上的电流和电压之间的比值。
阻抗是电路中的一个重要参数,用来描述电流和电压之间的关系,也是八木天线设计和使用中需要考虑的重要因素之一。
八木天线的阻抗是由其物理结构和材料特性决定的。
八木天线主要由一个金属框架和若干个金属片组成,金属片之间有一定的间隔。
当电磁波通过八木天线时,会在金属片之间产生电流分布,从而产生辐射。
这时,八木天线的阻抗就起到了重要作用,它决定了电流和电压之间的关系,从而影响了八木天线的性能。
八木天线的阻抗可以分为实部和虚部两个部分。
实部反映了八木天线的电阻特性,它与八木天线的导电性能有关。
虚部则反映了八木天线的电感或电容特性,它与八木天线的结构和材料有关。
八木天线的阻抗通常是一个复数,可以用阻抗匹配来优化八木天线的性能,使其能够更好地与其他电路或装置进行匹配。
八木天线的阻抗可以通过计算或实验来确定。
计算方法主要是基于八木天线的物理结构和电磁理论进行的,可以得到一个理论阻抗值。
实际上,由于八木天线的制作和安装等因素的影响,其阻抗往往会与理论值有所偏差。
因此,通常还需要通过实验来测量八木天线的阻抗,以确保其性能达到设计要求。
在八木天线的设计和使用中,阻抗的匹配是一个重要问题。
如果八木天线的阻抗与其他电路或装置的阻抗不匹配,会导致电流和电压之间的能量损失,从而影响八木天线的发射或接收效果。
因此,在设计和使用八木天线时,需要考虑阻抗匹配的问题,以提高八木天线的性能。
八木天线的阻抗还受到频率的影响。
由于不同频率的电磁波在八木天线中的传播特性不同,其阻抗也会发生变化。
因此,在设计和使用八木天线时,还需要考虑频率对阻抗的影响,以保证八木天线在不同频率下的性能稳定。
八木天线的阻抗是影响其性能的重要因素之一。
了解八木天线的阻抗特性,可以帮助我们更好地设计和使用八木天线,提高其发射或接收效果。
同时,阻抗匹配也是八木天线设计和使用中需要重视的问题,通过合理的阻抗匹配,可以提高八木天线的性能,实现更好的信号传输。
天线第八讲-八木天线与振子天线小型化20160323
具有几个引向器的八木天线是端射行波天线,它
South China University of Technology
支持慢波型的表面波。 设计良好的八木天线上的引向器电流如下所示
一个27元八木天线上的相对电流幅度
Research Institute of Antennas & RF Techniques School of Electronic & Information Engineering
South China University of Technology
金属支持杆。但实际尺寸的金属支撑杆还是会有 影响,需进行补偿。
实验3 计算八木天线6
实验4 计算八木天线图1 示意图目标:计算八木天线的电流分布、方向图计算结果:图2 天线电流分布图图2 天线E平面方向图图3 天线H平面方向图程序:clearlambda=0.6263;k=2*pi/lambda;u=4*pi*10^(-7);e=8.854*10^(-12);a=0.0026*lambda;LR=0.5*lambda;L=0.47*lambda;LD=0.43*lambda;SR=0.25*lambda;SD=0.3*lambda;w=k/sqrt(u*e);y=120*pi;n=6;N=5;dlr=LR/(N+1);dl=L/(N+1);dld=LD/(N+1);point=zeros(n*(2*N+1),4);mid=zeros(n*N,3);for ii=1:2*N+1point(ii,1:3)=[-SR LR/2-ii*LR/(2*(N+1)) dlr];if rem(ii+point(ii,4),2)==0mid((ii+point(ii,4))/2,:)=point(ii,1:3);endendfor ii=2*N+1+1:2*(2*N+1)point(ii,2:4)=[L/2-(ii-(2*N+1))*L/(2*(N+1)) dl 1];if rem(ii+point(ii,4),2)==0mid((ii-point(ii,4))/2,2:3)=point(ii,2:3);endendfor ii=2*(2*N+1)+1:3*(2*N+1)point(ii,:)=[SD LD/2-(ii-2*(2*N+1))*LD/(2*(N+1)) dld 2];if rem(ii+point(ii,4),2)==0mid((ii-point(ii,4))/2,:)=point(ii,1:3);endendfor ii=3*(2*N+1)+1:4*(2*N+1)point(ii,:)=[2*SD LD/2-(ii-3*(2*N+1))*LD/(2*(N+1)) dld 3];if rem(ii+point(ii,4),2)==0mid((ii-point(ii,4))/2,:)=point(ii,1:3);endendfor ii=4*(2*N+1)+1:5*(2*N+1)point(ii,:)=[3*SD LD/2-(ii-4*(2*N+1))*LD/(2*(N+1)) dld 4];if rem(ii+point(ii,4),2)==0mid((ii-point(ii,4))/2,:)=point(ii,1:3);endendfor ii=5*(2*N+1)+1:6*(2*N+1)point(ii,:)=[4*SD LD/2-(ii-5*(2*N+1))*LD/(2*(N+1)) dld 5];if rem(ii+point(ii,4),2)==0mid((ii-point(ii,4))/2,:)=point(ii,1:3);endendV=zeros(n*N,1);V(N+(N+1)/2)=1;U=ones(n*N,1);psi=zeros(n*(2*N+1));for jj=1:n*(2*N+1)for kk=1:n*(2*N+1)if jj==kkpsi(jj,kk)=log(point(jj,3)/a)/(2*pi*point(jj,3))-(j*k)/(4*pi);elsepsi(jj,kk)=exp(-j*k*sqrt((point(kk,1)-point(jj,1))^2+(point(kk,2)-poin t(jj,2))^2))/(4*pi*sqrt((point(kk,1)-point(jj,1))^2+(point(kk,2)-point(j j,2))^2));endendendZ=zeros(n*N);for pp=1:n*Nfor qq=1:n*NZ(pp,qq)=j*w*u*point(pp,3)*point(qq,3)*psi(2*pp+point(pp,4),2*qq +point(qq,4))+(psi(2*pp+point(pp,4)+1,2*qq+point(qq,4)+1)-psi(2*p p+point(pp,4)+1,2*qq+point(qq,4)-1)-psi(2*pp+point(pp,4)-1,2*qq+ point(qq,4)+1)+psi(2*pp+point(pp,4)-1,2*qq+point(qq,4)-1))/(j*w*e );endendsi=Z\V; %Int=1:n*N;figure(1);plot(t,abs(si)),ylabel('I'),title('电流分布')in=U'*(Z\V);i=V'*si;Zin=1/itheta=(-pi:pi/100:pi)+eps;for m=1:length(theta)E1=-j*w*u*exp(-j*k).*exp(j*k.*sqrt(mid(:,1).^2+mid(:,2).^2).*cos(a bs(atan(mid(:,1)./(mid(:,2)+eps))-theta(m)))).*mid(:,3).*sin(theta(m)) /(4*pi);Etheta(m)=E1'*si;endEtheta=Etheta./max(Etheta);figure(2);polar(theta,abs(Etheta)/max(abs(Etheta))),title('E平面方向图(\Phi = 0)');Lo=find((abs(Etheta-1/sqrt(2))<0.05)==1);G=abs(4*pi.*Etheta.*conj(Etheta)/(y*real(Zin).*si((N+1)/2).*co nj(si((N+1)/2))));Gmax=max(G)phi=(0:pi/100:2*pi)+eps;for m=1:length(theta)E2=-j*w*u*exp(-j*k).*exp(j*k.*sqrt(mid(:,1).^2+mid(:,2).^2).*cos(abs(atan(mid(:,1)./(mid(:,2)+eps))-theta(m)))).*mid(:,3).*sin(theta(m)) /(4*pi);Ephi(m)=E2'*abs(si);endfigure(3);polar(theta-pi/2,(abs(Etheta)/120/pi)/max(abs(Etheta)/120/pi)),title('H平面方向图(\theta = \pi / 2)');。
FDTD分析准八木天线的算法实现
Ke r s: q a iYa ia t nn y wo d u s — g n e a; F DTD ; m o e i g; g i e e ai n; a s r i o nd r o dto d ln rd g n r to b o b ngb u a c n iin y
P r cl th d L y rU ML e in wa iie nosxs br go sa d s b rgo a y ef tyMac e a e( P )rgo sdvd di t i u —e in n u —e in ls mmer s e tywa
tk n i t c o n .Th ot g o r e wi u p d r ssa c s a x ia i n i h o r m .Atl s, a e noa c u t e v la e s u c t l m e e i tn e wa s e c t to n t e pr g a h a t
第8 卷 第 3 期
21 0 0年 6月
信 息 与 电 子 工 程
I NF0RM ATI ON AND ELECTRONI C ENGI NEERI NG
VO1 8. . NO. 3
J n. 2 0 u , 01
文 章 编 号 : t 7 . 8 2 2 1 ) 3 0 7 -4 6 2 2 9 ( 0 0 0 —2 30
用 区域 的 对 称 性 简 化 了 程 序 ; 采 用 带 内 阻 的 电 压 源 作 为 激 励 源 ;最 后 从 总 电 压 中 分 离 出 入 射 电 压 和 反 射 电 压 , 得 到 了准 八 木 天 线 的 驻 波 比 。 实 际 制 作 了 一个 准 八 木 天 线 并 进 行 了 测 试 , 计 算结 果 与 实 测 结 果 基 本 一 致 ,表 明 该 实 现 方 法 是 正 确 和 有 效 的 。 关 键 词 :准 八 木 天 线 ; 时域 有 限 差 分 ;建 模 ; 网格 划 分 ; 吸 收 边 界 条 件
弯曲八木天线的矩量法分析与设计的开题报告
弯曲八木天线的矩量法分析与设计的开题报告一、选题背景八木天线是一种常见的定向天线,由于其结构简单、频带宽广、增益高等特点,常被用于无线通信领域。
在实际应用中,需要根据不同的工作频率和设计要求来确定天线的长度、宽度、间距等参数。
矩量法是一种常用的天线分析与设计方法,其主要思想是将天线表面离散化为多个小面元,利用电磁场的内在联系,计算出每个小面元的贡献后求和得到整个天线的辐射场分布。
弯曲八木天线是一种八木天线的变形,其增益更高且能够适应某些特殊的场合,因此相应的矩量法分析与设计方法也需要进一步探究。
二、选题意义1. 加深对八木天线及其变形弯曲八木天线的认识。
2. 探讨并开拓适用于弯曲八木天线的矩量法分析与设计方法。
3. 提高无线通信系统的性能和可靠性,推动无线通信技术的发展。
三、研究内容1. 弯曲八木天线的基本原理和特性分析;2. 矩量法的基本原理和计算方法;3. 弯曲八木天线的矩量法分析与设计方法及其优化;4. 仿真计算和实验验证。
四、研究方法1. 文献调研和资料分析;2. 数值计算和仿真模拟;3. 实验验证和数据分析。
五、预期成果1. 揭示弯曲八木天线的特性和优势;2. 推导适用于弯曲八木天线的矩量法分析与设计方法;3. 仿真计算结果和实验验证数据;4. 论文发表、专利申请及技术报告撰写。
六、研究计划第一年:进行文献调研和资料分析,完成八木天线和弯曲八木天线的基本原理和特性研究;熟悉矩量法的基本原理和计算方法;根据矩量法原理和弯曲八木天线的特点,提出相应的矩量法分析与设计方法。
第二年:进行数值计算和仿真模拟;通过计算和优化,得出相应的重要结论和实用结果;分析和讨论计算结果;提出解决方案、疑点和发展方向等。
第三年:进行实验验证和数据分析;与计算结果进行对比,分析差别原因;总结研究成果,撰写相关论文、报告、论文发表;申请相应的专利。
七、研究经费本研究计划所需经费为30万元,主要用于研究材料、仪器设备采购、实验费用、论文出版和参加学术会议等。
准八木天线的小型化和宽带化研究
准八木天线的小型化和宽带化研究汤炜;孙平【摘要】在传统准八木天线基础上,通过合理布局及容性加载技术,本文首先提出了一种小型化准八木天线,该天线在超高频(Ultra-High Frequency;UHF)射频识别(Radio Frequency Identification;RFID)频段内增益约为6.5dBi,天线基片尺寸仅仅只有中心频点自由空间波长1/3;为了能够进一步拓宽天线带宽,将原天线中的馈源振子改为领结型结构,天线增益降为4dBi左右,但-10dB相对带宽达到42.6%.通过样品测试,天线的仿真结果与测试结果吻合较好,验证了本文所提技术方案的可行性和正确性.【期刊名称】《科技视界》【年(卷),期】2018(000)011【总页数】3页(P19-21)【关键词】准八木天线;小型化天线;宽带天线【作者】汤炜;孙平【作者单位】华侨大学信息科学与工程学院,福建厦门 361021;河南省新乡市公安局警务保障部,河南新乡 453000【正文语种】中文【中图分类】TN823.170 前言八木天线,也称引向天线,具有方向性强,增益高和结构简单的特点,迄今仍被大量使用在通信,测速,遥感,定向等领域[1]。
但传统八木天线通常体积较大,重量较重,限制了该天线的应用范围。
另一方面随着微带天线的兴起,无法与微波电路集成成为八木天线一大缺陷。
1998年加州大学Itoh教授提出准八木天线(Quasi Yagi-Uda Antenna)[2],该天线兼具微带天线易集成和八木天线高增益的优点。
随后的工作围绕提高天线增益和拓展带宽两方面展开,Itoh教授小组对准八木天线阵的互耦进行研究,在阵列上部设置狭长切口减小耦合,维持天线良好的后向性能[3,4];S.X.Ta[5]利用地线间设置凸金属条以减轻耦合;清华大学冯正和教授[6]采用6引向器天线获得11.6dBi增益;苏州大学刘学观教授[7]完成一款较宽频带4引向器天线其增益 9dBi;频带宽度方面,北理工采用类似微带天线中的附加贴片技术,得到了跨越S-C(2.8GHz~5.2GHz)的优化结果,但增益较低,Y.Kou[8]中提出利用微带魔T的概念进行馈电,J.G.Estrada[9]利用EBG结构作为衬底,相对带宽达到45%。
八木天线的设计仿真与测试
八木天线的设计仿真与测试一、本文概述本文旨在深入探讨八木天线的设计、仿真与测试。
八木天线,又称作Yagi-Uda天线,是一种广泛应用于无线通信、雷达、卫星通信等领域的定向天线。
其高效、紧凑和易于调整的特性使得它在众多天线类型中脱颖而出。
本文首先将对八木天线的基本原理和结构进行概述,接着详细介绍其设计过程,包括天线元素的选择、尺寸优化以及馈电方式等。
随后,本文将阐述如何利用仿真软件对八木天线进行性能预测和优化,这包括电磁场仿真、S参数分析、辐射方向图计算等关键步骤。
本文将介绍八木天线的实际测试方法,包括测试环境的搭建、测试设备的选择以及测试结果的分析和解读。
通过本文的阐述,读者将对八木天线的设计、仿真与测试有一个全面而深入的理解,为实际工程应用提供有力的技术支持。
二、八木天线设计基础八木天线,也称为Yagi-Uda天线,是一种定向天线,以其高效、紧凑和易于构造的特性而广泛应用于无线通信系统中。
其设计基础主要包括天线振子的排列、相位控制和馈电方式等方面。
八木天线由一根驱动振子(Driven Element)和若干根反射振子(Reflector)与引向振子(Director)组成。
驱动振子负责接收或发射电磁波,而反射振子和引向振子则通过调整与驱动振子的相对位置和相位,来改变天线的辐射特性。
反射振子通常位于驱动振子的后方,用于抑制后向辐射,提高天线的前向增益。
引向振子则位于驱动振子的前方,用于增强前向辐射。
相位控制在八木天线设计中至关重要。
通过调整各振子间的相位关系,可以控制天线的波束指向和宽度。
通常情况下,反射振子与驱动振子之间的相位差为180度,以产生反向电流,抵消后向辐射。
而引向振子与驱动振子之间的相位差则逐渐减小,以产生同向电流,增强前向辐射。
八木天线的馈电方式通常采用同轴电缆或波导。
馈电点的位置对天线的性能有重要影响。
通常,馈电点位于驱动振子的中点,以保证电流的均匀分布。
馈电线的阻抗匹配也是设计的关键,以确保最大功率的传输。
资料:14双位法求三元八木天线参数
作业14: 双位法求三元八木天线参数曹珂1、问题描述试用双位法求三元八木天线的电流分布、输入阻抗、方向图、前后比和增益。
(天线的结构如图1所示)图1 三元八木天线结构图2、计算结果当λ=1m,天线半径a=0.0025m时,按照书中给出的数据,天线的电流分布如图2所示,其方向图如图3、图4所示。
天线的输入阻抗为Z in=30.82+j1.38Ω(理论值33-j7.5Ω),驻波比SWR=1.62(理论值1.57),前后比FBR=18.05dB(理论值18.6dB),增益G=7.7815dBi (理论值7.6dBi),如表1所示。
表1 计算结果和理论值的比较Rin(Ω)Xin(Ω)驻波比前后比(dB)增益(dB)理论值33-7.5 1.5718.67.6计算值30.82 1.38 1.6218.057.7815误差7.07%- 3.09% 3.05% 2.33%图2 用双位法计算的三元八木天线电流分布图3 用双位法计算的三元八木天线E面方向图图4 用双位法计算的三元八木天线H面方向图图5 用双位法计算的三元八木天线立体方向图3、结果讨论1.用双位法计算出来的天线方向图与理论值相近,证明计算具有一定精度;2.天线的增益、前后比与理论值接近;3.输入电阻的大小与理论值接近,输入电抗与理论值有较大差距。
4、程序代码clear;clc;miu=pi*4e-7;epsilon=8.854e-12;c=3e8;lambda=1;a=0.005*lambda/2;f=c/lambda;omega=2*pi*f;k=2*pi/lambda;eta=120*pi;Lref=0.5*lambda;Ldiv=0.46*lambda;Ldir=0.419*lambda;Ndiv=51;dl=Ldiv/(Ndiv+1);Nref=fix(Lref/dl);Ndir=fix(Ldir/dl);N=Ndir+Ndiv+Nref;zref=linspace(-Lref/2+dl,Lref/2-dl,Nref);zdiv=linspace(-Ldiv/2+dl,Ldiv/2-dl,Ndiv);zdir=linspace(-Ldir/2+dl,Ldir/2-dl,Ndir);zpos=[zref zdiv zdir];zposm=zpos-dl/2;zposp=zpos+dl/2;xref=-0.2*lambda*ones(1,Nref);xdiv=zeros(1,Ndiv);xdir=0.2*lambda*ones(1,Ndir);xpos=[xref xdiv xdir];z=zeros(N);psi01=z;%1为+,0为- =psi00psi10=z;psi=z;%psi(m,n)for m=1:Nfor n=1:Nif(m==n)psi(m,n)=1/(2*pi*dl)*log(dl/a)-1j*k/4/pi;elseRmn=sqrt((xpos(m)-xpos(n))^2+(zpos(m)-zpos(n))^2);psi(m,n)=(exp(-1j*k*Rmn))/(4*pi*Rmn);end;end;end;%psi(m+,n-)for m=1:Nfor n=1:Nif ( n-m==1 && xpos(m)==xpos(n))psi10(m,n)=1/(2*pi*dl)*log(dl/a)-1j*k/4/pi;elseRmn=sqrt((xpos(m)-xpos(n))^2+(zposp(m)-zposm(n))^2);psi10(m,n)=(exp(-1j*k*Rmn))/(4*pi*Rmn);endendend%psi(m-,n+)for m=1:Nfor n=1:Nif (m-n==1 && (xpos(m)==xpos(n)))psi01(m,n)=1/(2*pi*dl)*log(dl/a)-1j*k/4/pi;elseRmn=sqrt((xpos(m)-xpos(n))^2+(zposm(m)-zposp(n))^2);psi01(m,n)=(exp(-1j*k*Rmn))/(4*pi*Rmn);endendend%z矩阵for m=1:Nfor n=1:Nz(m,n)=1j*omega*miu*dl*dl*psi(m,n)+(psi(m,n)-psi10(m,n)-psi01(m,n)+ps i(m,n))/(1j*omega*epsilon);endend%电流分布one=zeros(N,1);one(Nref+round((Ndiv+1)/2))=1;Iref=I(1:Nref);Idiv=I(Nref+1:Nref+Ndiv);Idir=I(Nref+Ndiv+1:Nref+Ndir+Ndiv);figure(1);plot(zref,abs(Iref),'x-b',zdiv,abs(Idiv),'x-r',zdir,abs(Idir),'x-k');legend('反射器','激励器','引向器');xlabel('天线位置(m)');ylabel('电流幅值(A)');grid on;Zin=1/I(Nref+((Ndiv+1)/2))gamma=(Zin-50)/(Zin+50);SWR=(1+abs(gamma))/(1-abs(gamma))Ntheta=360;theta=linspace(0,2*pi,Ntheta);Ftheta=zeros(1,Ntheta);for ii=1:Nthetatemp=0;for jj=1:Ntemp=temp+I(jj)*dl*exp(1j*k*zpos(jj)*cos(theta(ii))+1j*k*xpos(jj)*sin (theta(ii)));end;Ftheta(ii)=-sin(theta(ii))*temp;G(ii)=4*pi*Ftheta(ii)^2/eta/real(Zin)/abs(I(Nref+((Ndiv+1)/2)))^2;end;Isigma=sum(I)*dl;uniFtheta=abs(Ftheta)/abs(Isigma);figure(2);polar(theta-pi/2,uniFtheta/max(uniFtheta));title('E面方向图');FBR=10*log(uniFtheta(90)/uniFtheta(270))maxFtheta=abs(max(uniFtheta));G=10*log(maxFtheta^2/eta/real(Zin)/abs(I(Nref+((Ndiv+1)/2)))^2)Nphi=360;phi=linspace(0,2*pi,Nphi);Fphi=zeros(1,Nphi);for ii=1:Nphifor jj=1:Ntemp=temp+I(jj)*dl*exp(1j*k*xpos(jj)*cos(phi(ii)));end;Fphi(ii)=-temp;end;uniFphi=abs(Fphi)/abs(Isigma);figure(3);polar(theta,uniFphi/max(uniFphi));title('H面方向图');for m=1:360 %thetamfor n=1:360 %phitemp=0;for jj=1:Ntemp=temp+I(jj)*dl*exp(1j*k*zpos(jj)*cos(theta(m))+1j*k*xpos(jj)*cos( phi(n)));end;Ftheta2(m,n)=-sin(theta(m))*temp;end;end;figure(4);maxf=max(max(real(Ftheta2)))Ftheta2=real(Ftheta2)/maxf;[phi,theta]=meshgrid(phi,theta);X=Ftheta2.*sin(theta).*cos(phi);Y=Ftheta2.*sin(theta).*sin(phi);Z=Ftheta2.*cos(theta);mesh(Y,X,Z);axis('square')。
八木天线的设计仿真与测试(2)
1.5;另外,也要使其满足移动检测的便携式要求。
八木天线有很多分析方法,本文主要介绍了感应电动势法、行波天线的观点、
矩量法与优化算法相结合的方法及现代仿真技术应用于天线设计方法。本文八木
天线的分析与设计包括天线部分的设计和平衡不平衡转换结构的设计。通过理论
分析和基于矩量法的仿真软件FEKO和基于有限元法的HFsS设计仿真,得到符
本文的第一个主要部分是八木天线的设计仿真,设计基于GSM—R干扰检测定
向用天线的要求。要在GsM.R频段的下行885MHz.889MHz频段内和上行
930MHz.934MHz频段内有高的方向性系数;方向图主瓣半功率角小于40。,并
且副瓣电平足够低(<.9dm;阻抗带宽要覆盖885.934MHz的频带,驻波比小于
对于定向高增益天线,八木天线是经典的种类之一,它由一根有源振子和多 根无源振子组成,有源振子可以是半波振子,也可以是折合振子。无源振子通常 由~个比有源扳子长的反射器和多个比有源振子短的引向器组成。有源振子被馈 电后向空间辐射电磁波,使无源振子中产生感应电流来产生辐射,辐射方向指向 引向器方向。当改变无源振子的长度及其与有源振子之间的距离时,无源振子上 感应电流的幅度及相位也随之而变化,可以影响有源振子的方向图。它的优点是 结构简单、增益高、方向性强,其次用它来测向、远距离通信效果特别好。如果 再配上仰角和方位旋转控制装置,就能得到良好的干扰检测性能。本文就是选择 八本天线作为设计和研究对象,通过理论分析和数值软件工具仿真得到符合要求 的干扰接收检测定向天线的实例。
measurement.The measufcment method and step wefc describe ill detail t量Il_ough theory
八木天线设计-BD6ABP粗译版概要
美国标准局技术报告688八木天线设计Peter P. ViezbickeBG6ABP译内容1、介绍 12、测量方法 13、结果 1 3.1反射器间距对天线增益的影响 23.2 不同的等长度引向器和间距对不同长度八木天线增益的影响 23.3不同直径和长度的引向器对天线增益的影响 63.4寄生元为最佳尺寸时横梁的尺寸对天线的影响 63.5间距和分层对可实现的增益的影响 64、设计八木天线165、结论216、感谢217、参考资料21表格和图列表表1六种不同的八木天线的寄生元的最佳长度7图1半波对称振子和反射器在不同间距单元间距下的增益3图2 4.2λ长的天线的三个反射单元的安排3图3 4.2λ长的天线的三角形健分布的反射器的安装4图4天线增益作为天线长度(引向器数)的函数在0.382λ长引向器下与不同等单元间距的关系4图5天线增益作为天线长度(引向器数)的函数在0.411λ长引向器下与不同等单元间距的关系5图6天线增益作为天线长度(引向器数)的函数在0.424λ长引向器下与不同等单元间距的关系5图7不同长度八木天线的增益比较,以显示最大增益下的引向器最佳长度与最佳的统一引向器长度之间的关系8图8 1.25λ长、三单元不同长度与直径的引向器、引向器间距为0.35λ的八木天线增益8图9显示单元直径-波长比与单元长度的不同关系的不同天线的设计数据9图10横梁对天线单元长度的影响10图11层叠型八木天线阵间距与增益的函数关系11图12用两副上下间距为1.6λ的层叠组合组成的天线阵的水平距离与增益的函数关系11图13对称振子与反射器间距为0.2λ的方向图12图14三单元、0.4λ天线的方向图12图15五单元、0.8λ天线的方向图12图16六单元、1.2λ天线的方向图13图17十二单元、2.2λ天线的方向图14图18十七单元、3.2λ天线的方向图14图19十五单元、4.2λ天线的方向图15图20例1中计算各单元长度时设计曲线的使用18图21例2中计算各单元长度时设计曲线的使用20八木天线设计此报告使用建模的技巧,给出不同长度八木天线的最佳设计方案。
一种应用于WiFi频段的高增益新型微带准八木天线
一种应用于WiFi频段的高增益新型微带准八木天线黄文静;孙俊;杨唐钢【摘要】利用电磁仿真软件,设计了一种新型的微带准八木天线.利用一排金属圆柱连接上下反射贴片,简化了复杂的巴伦结构;利用微带线对天线进行馈电,通过优化,使该天线的中心频率为2.45 GHz,并覆盖2.4~2.483 GHz的WiFi频段;为了进一步提高增益,在引向阵子前端正反面加入8个开口谐振环单元,使谐振环结构形成特殊谐振能力的引向器,将天线表面电流集中于端射方向,实现了天线增益的有效提升.仿真结果表明,新型微带准八木天线在WiFi频段的回波损耗明显降低,增益提高.该结构设计简单,便于加工,尤其是较高的增益,使之在狭长隧道或矿井中的通信中有较好的应用.【期刊名称】《通信技术》【年(卷),期】2018(051)010【总页数】8页(P2521-2528)【关键词】准八木天线;微带线;WiFi频段;开口谐振环;回波损耗【作者】黄文静;孙俊;杨唐钢【作者单位】昆明理工大学信息工程与自动化学院,云南昆明650504;昆明理工大学信息工程与自动化学院,云南昆明650504;昆明理工大学信息工程与自动化学院,云南昆明650504【正文语种】中文【中图分类】TN823+.240 引言八木天线是八木-宇田天线的简称,是1926年由一名日本学生和他的导师八木设计提出的。
八木天线作为一种结构简单、定向性较好的天线,一直以来都被国内外很多专家学者研究,也被广泛应用于各种通信系统[1-2]。
但是,八木天线通常体积庞大、重量较大且调整相对较困难,限制了其在某些场合的应用。
1953年,微带天线的概念被Deschamp提出。
但是,直到20世纪70年代初,由于微波集成技术的发展和各种低耗材质的生产,才使得微带天线的制作工艺得到保障。
由于微带天线质量轻、体积小、易于共形、易于集成、易于生产等优点,被应用于各种场合。
但是,微带天线一般存在辐射效率低、性能受基片材料的影响较大等缺点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八木天线计算器验证
最近,应坛友之请,把八木天线计算器的使用做了图示。
并按照坛友提供的数据,使用该计算器实际计算了两款八木天线。
这位坛友想用6mm的铜管,DIY 一款8单元、一款11单元八木天线。
计算结果如下:
选择多元件的选项,计算结果显示了从5单元到23单元八木天线的数据,看来只要计算一次就行了。
为了验证计算的准确性,用4NEC2仿真软件对8单元八木天线进行了仿真。
这下可发现了问题。
这款八木天线的方向图,竟然指向后面,就是反射器那面。
请看仿真结果:
而且增益只有5.9dBi ,驻波比高达16.1 。
难道是仿真有误?还是这个计算器有问题?
改用2mm直径,再次进行仿真,结果如下:
这次就对了。
辐射方向朝向了引向器一边,增益12.5dBi ,驻波比1.57。
看来是线径惹的祸。
干脆,再进行几种线径的实验。
线径3.2mm的仿真结果如下:
4.8mm线径的仿真结果如下:
看出问题了吧。
随着线径的加粗,增益逐渐降低,驻波比逐渐加大,方向图越往后面移动。
到了6.4mm线径时,方向图已经完全转移到反方向了。
看来,这个计算器的数据,比较适合3mm以下线径的八木天线。
这点请大家严重注意!!
还发现一个问题。
请看不同线径计算出的数据:
2mm线径:
3.2mm线径:
4.8mm线径:
6.4mm线径:
看出什么问题呢?
1、振子之间的距离,和线径无关,和振子数目也无关。
所有单元、所有线径的八木天线,振子之间的距离都是恒定不变的。
2、3.2mm以上的线径的八木天线,不管是多少单元,其振子的长度也都相同。
我没有系统研究过八木天线,也许八木天线就应该是这个样子的,或许不是。
所以,最终我也无法判断,这个八木天线计算器是否有问题。
但是,在此我要提醒准备DIY八木天线的同学注意——
1、在WIFI频段,最好不要选用较粗的线径,超过6mm就绝
对不要用了。
2、DIY之前,最好仿真一下。
因为即使计算结果可用,也没
有达到最佳。
这就是今天我的实验得到的结论。
激情无线 2010年4月。