高考数学讲座.ppt
合集下载
高三数学辅导讲座 函数一.ppt
2)2 3
4 3
x(3x 4)
【解法2】 设x<0,则-x>0 ∴ f (-x) = (-x)·(4 + 3x) ∵ f ( x )是奇函数, ∴ f (-x) = -f ( x ) ∴ x<0时, f ( x ) =-f (-x )=x(4+3x).
若把问题改为: f ( x )满足f ( 1+x ) = f (3- x ) , x>2时,f ( x ) = x ·(4-3x),那么x<2时求 f ( x ) 的解析式.请解答.
例4 函数y = f ( x )在 (-∞,0] 上是减函数,而函数 y = f (x+1)是偶函数.设a f (log 1 4) , b = f ( 3 ) ,
2
c = f (arccos (-1)).那么a,b,c的大小关系是____.
【解】 a f (log 1 4) f (2, )
2
问题:函数f(x)满足f(a+x) =f(b-x)且f(c+x)= f(dx)那么f(x)是不是周期函数?为什么?若是,周期是多
少?
例6.定义在实数集上的函数f(x),对一切实数x都有 f(x+1)=f(2-x)成立,若f(x)=0仅有101个不同的
这里主要研究运用函数的概念及函数的性质 解题,函数的性质通常是指函数的定义域、值 域、解析式、单调性、奇偶性、周期性、对 称性等等,在解决与函数有关的(如方程、不 等式等)问题时,巧妙利用函数及其图象的相 关性质,可以使得问题得到简化,从而达到 解决问题的目的.关于函数的有关性质,这里 不再赘述,请大家参阅高中数学教材 复习, 这里以例题讲解应用
一.函数的对称性
例1 函数y = f ( x ) 对任意实数x,总有 (1)f (a-x) = f ( b + x ),这里a,
高三数学考前辅导专题讲座ppt课件
(A)0 (B)2
(C)4 (D)6
解: 选择支逐个代入题干中验证得a题一样,填空题也属小题,其解题的根本原 那么是“小题不能大做〞。解题根本战略是:巧做. 解题根本方法普通有:直接求解法、图像法、构 造法和特殊化法(特殊值、特殊函数、特殊角、特 殊数列、图形特殊位置、特殊点、特殊方程、特 殊模型)
1、直接求解法
直接从题设条件出发,用定义、性质、定理、 公式等,经变形、推理、计算、判别等得到正确结 论.这是解填空题常用的根本方法,运用时要擅长“透 过景象抓本质〞。力求灵敏、简捷。
例.数列{an}、{bn}都是等差数列,a1=0、b1= -4,用Sk Sk′分别表示{an}、{bn}的前k项和(k是正整数), 假设Sk+ Sk′=0,那么ak+bk=____。
②特殊函数:例.定义在R上的奇函数f(x)为减函数, 设a+b≤0,给出以下不等式:①f(a)·f(-a)≤0 ②f(b)·f(-b)≥0③f(a)+f(b)≤f(-a)+f(-b) ④f(a)+f(b)≥f(-a)+f(-b) 其中正确的不等式序号是〔 〕 A.①②④ B.①④ C.②④ D.①③
14.拆项法 15.错位相减法 16.迭加与连乘
17.等积(面积、体积)法
18.几何变换法:平移、旋转、对称
19.活用定义 20.分析法与综合法
4、化归与转化的思想:就是把不熟习、不规范、复 杂的问题转化为熟习、常规、简单的问题。转化有 等价与非等价转化。等价转化要求转化过程中前因 后果是充要的。非等价转化其过程是充分或必要的, 要对结论进展必要的修正.〔如无理方程化有理方 程要求验根〕转化能给人带来思想的闪光点,找到 解题的突破口。 5、有限与无限的思想:将标题条件扩展到极限情况, 采用极限思想,常给人一种豁然开朗的觉得。
衡水课件:高考数学复习讲座 ppt
脑内投篮
Yao
•
一位心理学家曾做过这样的实验,把一些身 体状况基本相同的学生分成三组,进行不同方式 的投篮技巧训练: • 第一组学生坚持在20天内每天练习投篮,并 把第一天和最后的投篮成绩记录下来。中间练习 时,不提出任何要求,顺其自然。 • 第二组学生也记录下第一天和第二十天投篮 的成绩,但是在此期间不再做任何投篮练习。 • 第三组学生记录下第一天的投篮成绩,然后 每天花20分钟做想象中的投篮。如果投篮不中时, 他们便在想象中对此作相应的纠正。
所以四边形ACBE为正方形. 由PA⊥面ABCD得 ∠PEB=90° P E M 在Rt△PEB中 BE= 2 ,PB= 5 ,
A
BE 10 cos PBE . PB 5
B
D
C
AC与PB所成的角为 arccos
10
.
(Ⅲ)解:作AN⊥CM,垂足为N,连结BN. 在Rt△PAB中,AM=MB,又AC=CB, ∴△AMC≌△BMC, ∴BN⊥CM,故∠ANB为所求二面角的平面角. ∵CB⊥AC,由三垂线定理,得CB⊥PC, 在Rt△PCB中,CM=MB,所以CM=AM.
B.b 0且c 0, D.b 0且c 0.
y
x
0
1
2
• 中学数学中的数学思想方法定为三个层面: (1)一般的数学方法:如配方法,换元法, 消去法割补法,待定系数法,数学归纳法等。 (2)一般的逻辑方法:如综合法,分析法, 归纳法类比法,反证法等。 (3)数学的思想方法:如函数与方程的思想; 数形结合的思想;分类与整合的思想;转化 与化归的思想;特殊与一般的思想;有限与 无限的思想;或然与必然的思想等。
在等腰三角形AMC中, AC 2 AN· MC= 2 CM ( ) AC 2
全高考数学解题技巧讲解课件PPT
������������|cos θ=������������·������������ =
|������������ |
������ 2-1 ������ 2+1
=
������2 + 1 − ������22+1,
令 ������2 + 1=t(t>1),则|������������|= ������������22-+11=t-2������ .令 f(t)=t-2������ ,则有 f'(t)=1+������22.在
A.
5 5
,
2 3
B.
2 3
,
25 5
C.
5 5
,
7 3
D.
7 3
,
25 5
-7-
答案 (1)C (2)D
解析 (1)设等差数列{an}的公差为 d,∵a4=4,S5=15,
∴
������1 + 3������ = 4,
5������1
+
5×4 2
������
=
15,解得
������1 = 1, ������ = 1.
(1)解题策略:小题巧解,不需“小题大做”,在准确、迅速、合理、 简洁的原则下,充分利用题设和选择支这两方面提供的信息作出判 断.先定性后定量,先特殊后一般,先间接后直接,多种思路选最简.对 于选择题可先排除后求解,既熟悉通法又结合选项支中的暗示及知 识能力,运用特例法、筛选法、图解法等技巧求解.
(2)解决方法:主要分直接法和间接法两大类,具体方法为:直接法, 特值、特例法,筛选法,数形结合法,等价转化法,构造法,代入法等.
A.2 019 B.0 C.1 D.-1 (2)平行四边形 ABCD 中,������������, ������������在������������上投影的数量分别为 3,-1, 则������������在������������上的投影的取值范围是( )
|������������ |
������ 2-1 ������ 2+1
=
������2 + 1 − ������22+1,
令 ������2 + 1=t(t>1),则|������������|= ������������22-+11=t-2������ .令 f(t)=t-2������ ,则有 f'(t)=1+������22.在
A.
5 5
,
2 3
B.
2 3
,
25 5
C.
5 5
,
7 3
D.
7 3
,
25 5
-7-
答案 (1)C (2)D
解析 (1)设等差数列{an}的公差为 d,∵a4=4,S5=15,
∴
������1 + 3������ = 4,
5������1
+
5×4 2
������
=
15,解得
������1 = 1, ������ = 1.
(1)解题策略:小题巧解,不需“小题大做”,在准确、迅速、合理、 简洁的原则下,充分利用题设和选择支这两方面提供的信息作出判 断.先定性后定量,先特殊后一般,先间接后直接,多种思路选最简.对 于选择题可先排除后求解,既熟悉通法又结合选项支中的暗示及知 识能力,运用特例法、筛选法、图解法等技巧求解.
(2)解决方法:主要分直接法和间接法两大类,具体方法为:直接法, 特值、特例法,筛选法,数形结合法,等价转化法,构造法,代入法等.
A.2 019 B.0 C.1 D.-1 (2)平行四边形 ABCD 中,������������, ������������在������������上投影的数量分别为 3,-1, 则������������在������������上的投影的取值范围是( )
高考数学复习讲座.ppt
问题的能力、探究数学规律的能力和创造能力,以此体现加 强对学生发展性学力和创造性学力的科学培养。 (2)考查逻辑思维能力、运算能力、空间想象能力,以及运用数 学知识和方法分析问题和解决问题的能力。 (3)考查数学的基本思想和方法。数学的基本思想是指函数与方 程的思想、数形结合的思想、分类讨论的思想和等价转换的 思想。
4、善于对现实世界中的现象和过程进行合理的简化和量化, 建立数学模型的素养。
一、命题的指导思想
数学考试内容改革的指导思想
一、命题的指导思想
数学考试内容改革的指导思想
从测量学生的发展性学力和创造性学力着手,全面评价学生 的数学素养和能力,为高校选拔能适应新世纪挑战的新生;
一、命题的指导思想
数学考试内容改革的指导思想
从测量学生的发展性学力和创造性学力着手,全面评价学生 的数学素养和能力,为高校选拔能适应新世纪挑战的新生;
对中学数学教学的教育观念和教学方法有一个好的导向, 开创一个“面向世界、面向未来、面向现代化”的、崭新 的数学教育新局面。
二、命题的改革思路
二、命题的改革思路
变知识立意为能力立意
二、命题的改革思路
二、命题的改革思路
一、命题的指导思想
什么是数学能力,什么是数学素养? 数学素养
一、命题的指导思想
什么是数学能力,什么是数学素养? 数学素养
1、主动探寻并善于抓住数学问题中的背景和本质的素养;
一、命题的指导思想
什么是数学能力,什么是数学素养? 数学素养
1、主动探寻并善于抓住数学问题中的背景和本质的素养;
2、熟练地用准确的、严密的、简练的数学语言表达自己的 数学思想的素养;
二、命题的改革思路
变知识立意为能力立意
2、能力立意的命题思路 (1)注重考查学习新的数学知识的能力、应用数学知识解决实际
4、善于对现实世界中的现象和过程进行合理的简化和量化, 建立数学模型的素养。
一、命题的指导思想
数学考试内容改革的指导思想
一、命题的指导思想
数学考试内容改革的指导思想
从测量学生的发展性学力和创造性学力着手,全面评价学生 的数学素养和能力,为高校选拔能适应新世纪挑战的新生;
一、命题的指导思想
数学考试内容改革的指导思想
从测量学生的发展性学力和创造性学力着手,全面评价学生 的数学素养和能力,为高校选拔能适应新世纪挑战的新生;
对中学数学教学的教育观念和教学方法有一个好的导向, 开创一个“面向世界、面向未来、面向现代化”的、崭新 的数学教育新局面。
二、命题的改革思路
二、命题的改革思路
变知识立意为能力立意
二、命题的改革思路
二、命题的改革思路
一、命题的指导思想
什么是数学能力,什么是数学素养? 数学素养
一、命题的指导思想
什么是数学能力,什么是数学素养? 数学素养
1、主动探寻并善于抓住数学问题中的背景和本质的素养;
一、命题的指导思想
什么是数学能力,什么是数学素养? 数学素养
1、主动探寻并善于抓住数学问题中的背景和本质的素养;
2、熟练地用准确的、严密的、简练的数学语言表达自己的 数学思想的素养;
二、命题的改革思路
变知识立意为能力立意
2、能力立意的命题思路 (1)注重考查学习新的数学知识的能力、应用数学知识解决实际
高考数学专题讲座ppt课件
重视近五年新课程高考试题的演练。
21
1.选择、填空题的强化训练.
选择题要在速度,准确率上下功夫.定
时定量进行训练(每周1~2次),总量不少 于8次,14(理8+6、文10+4)道选择、填空 题一般用时30~50分钟,“优秀生” 要争取 有更多的时间完成解答题。做选择填空题要
重视直接解法的训练,不要过分依赖特殊解
强化训练 提炼方法
通过专题复习和综合演练(套卷,选择、填空题的专项 训练等),达到对知识的全面整合。在整套试卷的模拟 训练中,对错题所涉及到的知识点,题型方法、数学思 想等方面,自我检查,及时补救。做到“二个强化二个 重视” :
选择、填空题的强化训练.
前三个大题的强化训练。
重视初中与高中、高中与大学衔接知识的复习。
出同样的写出参数方程的要求。
8
减低要求部分
(1)、反函数的处理,只要求以具体的函数为例进行解释和直观理解, 不要求一般地讨论形式化的反函数定义,也不要求求已知函数的反函数;
(2)、仅要求认识柱、锥、台、球及其简单组合体的结构特征,对棱 柱、正棱锥、球的性质由“掌握”降为不作要求;
(3)、不要求使用真值表; (4)、对双曲线的定义、几何图形和标准方程度要求由“掌握”降为
高考数学专题讲座:
科学备考 迈向成功
1
合理规划复习的三个阶段:
I:现在~I模(3月中旬) II :I模(3月中旬)~II模(4月下旬) III :II模(4月下旬)~5月下旬
2
第一阶段【现在~Iห้องสมุดไป่ตู้(3月中旬)】:
夯实基础 形成能力 一、全面复习基本知识和基本技能
第一轮复习,基本上涵盖数学学科的基础知 识,这一阶段应该在老师的带领下,对每一 章的知识进行梳理,构建框架,使知识系统 化、条理化,注重“通理通法”,抓住重点, 总结规律,形成知识板块和网络。
高三数学复习备考讲座 PPT 课件
【考试评析】分析以极坐标方程给出的曲线 性质,会用极坐标方程处理角和距离问题. 会判断柱坐标系、球坐标系中点的位置.
18.参数方程:
【考纲要求】了解参数方程与参数的意义, 能选择适当的参数写出直线、圆和圆锥曲线 的参数方程.了解平摆线、渐开线的生成过程, 能推导出它们的参数方程,了解摆线在实际 问题中的应用,及在表示行星运动轨道中的 作用.
16.直线与圆的位置关系: 【考纲要求】会证明并应用圆周角定理、 圆的切线判定定理与性质定理、相交弦 定理、圆内接四边形性质定理与判定定 理,切割线定理.
【考试评析】以圆为背景求角、线段长, 判断直线与直线、直线与圆的位置关系.
17.坐标系:
【考纲要求】理解坐标系的作用,了解在平 面直角坐标系伸缩变换作用下平面图形的变 化情况.能在极坐标系中用极坐标表示点的位 置,能进行极坐标与直角坐标的互化,能写 出极坐标中简单图形的方程.理解用方程表示 平面图形时选择适当坐标系的意义.了解柱坐 标系、球坐标系中表示空间点的位置的方法.
y
y
O
图1 x
O
图2 x
A.变量x 与y 正相关,u 与v 正相关
B.变量x 与y 正相关,u 与v 负相关
C.变量x 与y 负相关,u 与v 正相关
D.变量x 与y 负相关,u 与v 负相关
7.正态分布:
旧考纲要求了解正态分布、标准正态分 布的意义及主要性质,新考纲只要求了 解正态曲线的特点及曲线所表示的意义.
例(09年上海卷)在发生某公共卫生没有发生大规模群体感染的标志为“连续10
天,每天新增疑似病例不超过7人”.根据过
去10天甲、乙、丙、丁四地新增疑似病例数
据,一定符合该标志的是
()
A.甲地:总体均值为3,中位数为4
18.参数方程:
【考纲要求】了解参数方程与参数的意义, 能选择适当的参数写出直线、圆和圆锥曲线 的参数方程.了解平摆线、渐开线的生成过程, 能推导出它们的参数方程,了解摆线在实际 问题中的应用,及在表示行星运动轨道中的 作用.
16.直线与圆的位置关系: 【考纲要求】会证明并应用圆周角定理、 圆的切线判定定理与性质定理、相交弦 定理、圆内接四边形性质定理与判定定 理,切割线定理.
【考试评析】以圆为背景求角、线段长, 判断直线与直线、直线与圆的位置关系.
17.坐标系:
【考纲要求】理解坐标系的作用,了解在平 面直角坐标系伸缩变换作用下平面图形的变 化情况.能在极坐标系中用极坐标表示点的位 置,能进行极坐标与直角坐标的互化,能写 出极坐标中简单图形的方程.理解用方程表示 平面图形时选择适当坐标系的意义.了解柱坐 标系、球坐标系中表示空间点的位置的方法.
y
y
O
图1 x
O
图2 x
A.变量x 与y 正相关,u 与v 正相关
B.变量x 与y 正相关,u 与v 负相关
C.变量x 与y 负相关,u 与v 正相关
D.变量x 与y 负相关,u 与v 负相关
7.正态分布:
旧考纲要求了解正态分布、标准正态分 布的意义及主要性质,新考纲只要求了 解正态曲线的特点及曲线所表示的意义.
例(09年上海卷)在发生某公共卫生没有发生大规模群体感染的标志为“连续10
天,每天新增疑似病例不超过7人”.根据过
去10天甲、乙、丙、丁四地新增疑似病例数
据,一定符合该标志的是
()
A.甲地:总体均值为3,中位数为4
《高考数学专题讲座》课件
平面几何基本概念
点、线、面、角等基本元素的定义和性质。
几何公理与定理
欧几里得几何的公理、定理及其推论。
几何解题方法与技巧
总结词
掌握几何解题方法与技巧
几何证明方法
演绎法、归纳法、反证法等证明技巧 。
几何计算方法
面积、体积、角度等的计算方法。
辅助线与辅助平面
如何添加辅助线或辅助平面来简化问 题。
几何题型解析与练习
与他人交流
与同学、老师或家长交流备考心得和压力, 寻求支持和帮助,共同进步。
感谢观看
THANKS
的作用。
高考数学考试大纲解析
掌握考试大纲的各项要求,明确考试内容和考试 要求。
了解考试形式和试卷结构,熟悉各类题型和分值 分布。
针对不同知识点,分析其重要程度和考试频率, 合理分配复习时间。
高考数学命题趋势分析
01
分析近年来的高考试题,总结出命题规律和趋势。
02
关注数学与其他学科的交叉点,预测可能的命题方 向。
离散概率分布
列举了几种常见的离散概率分布 ,如二项分布、泊松分布等,并 介绍了它们的概率计算公式。
连续概率分布
介绍了正态分布、指数分布等几 种常见的连续概率分布,并给出 了它们的概率密度函数和性质。
概率与统计解题方法与技巧
古典概型与几何概型的求解方法
古典概型中,事件发生的概率等于该事件所有可能情况的基本事件个数除以全部可能情况的基本事件个数;几何概型 中,事件发生的概率等于该事件对应的长度、面积或体积占全部可能对应的长度、面积或体积的比。
03
针对不同题型,研究解题方法和技巧,提高解题速 度和准确性。
02
代数部分
代数基础知识梳理
高考数学复习备考交流讲座精品PPT课件
36字方针
“明目标,巧安排,做到科学备考” “重反思,勤教研,优化复习过程” “抓细节,重落实,提高复习效率”
再次恳请:各位专家,各位老师批评指正!
谢 谢!
2016.1.14
课件下载后可自由编辑,使用上如有不理 解之处可根据本节内容进行提问
Thank you for coming and listening,you can ask questions according to this section and this courseware can be downloaded and edited freely
时 间 :2016年3月-2016年4月底 专 题 ( 八 个 ) : 每人负责一个讲义(15题)+一
份试卷 目 标 : 打破章节的界限,达到“思想通”,突
出重点,贯穿数学思想、方法的训练,提 高学生综合应用知识的能力。
三轮复习的实践及目标: 第三轮复习(全真模拟,查缺补漏,考前指导)
时 间 :2016年5月-高考
第一轮(基础)复习(单元、章节复习)
时 间 : 2015年8月中旬-2016年1月底 (高三上学期)
(1)构建知识网络 目标:
(2)形成方法体系
夯实基础
三轮复习的实践及目标:
第二轮(专题)复习
时 间 :2016年3月-2016年4月底
专 题 ( 八 个 ) :每人负责一个讲义(15题)+
一 份试卷
➢ 6. 有关回归教材的思考 实践经验:教材是高考命题的基本来源,是高考命题 的主要依据
➢ 6. 有关回归教材的思考
➢ 6. 有关回归教材的思考
➢ 6. 有关回归教材的思考
➢ 7. 有关有关落实的思考 实践经验:
高考数学专题讲座完整版.ppt
现象之三:同一位学生在相隔不长的时间内,参加两
次难度相近的考试,考试成绩一好一差,反差很大这又是
什么原因呢?
现象之四:在同一次考试中,有的学习尖子成绩低的 令人难以置信,而一些以往成绩平平的学生却有不俗的表 现,剔除试卷本身的因素外,还有没有其他原因呢?
精选
考场心态 考前心态 学习方法 学习基础 学习态度 努力学习 临场发挥 思维能力 复习方法
,cosx=
4 5
,
则
tan2x=
A
7 24
B
7 24
C 24
7
D
24 7
另解1(估算)∵x∈( 2
,0
), cosx =
4 5
∈
( 2, 3),∴
22
∴ <2x< ,
4
<x<
6
,
2
3
∴ tan2x< - 3 ,故选 (D)。
精选
新课程理科(7)题 设a>0,f(x)=ax2+bx+c,曲线y=f(x)在
各种因素在高考成功中的作用(百分比)
很小
较小
中等
较大
很大 重要性排名
2
6
20
72
1
7.8 23.5 68.9
2
6
38
56
3
1.9
19.6
45
47
4
1.9 19.6 19.6 58.8
5
5.9 13.7 25.5 54.9
6
5.9
15.6 33.3
45
7
3.9 15.6 43.1 37.2
8
1.9 19.6 41.9 37.2
《高考数学专题讲座》课件
提供大量习题和训练材料,帮助 学生巩固基础知识和提高解题速 度。
问题解决
引导学生进行实际问题的解决, 培养数学思维和创新能力。
数学在科学、工程和金融中的实际应用
1
科学研究
数学在科学研究中起到关键的作用,帮助解决实际问题。
2
工程设计
工程师需要数学来优化设计,确保工程的可靠性和性能。
3
金融投资
数学在金融领域中的应用有助于投资决策和风险管理。
数学教育中的常见误解及应对策略
数学难度
解释数学难度的原因,鼓励学生从容面对挑战。
数学应用
展示数学在日常生活中的实际应用,并消除对数学的误解。
数学智力
解释数学智力的不同表现形式,并鼓励每个人发挥自己的潜力。
不同类型的数学问题及解题方法
代数问题
介绍解决代数问题的关键方法,如方程求解和代数 运算。
几何问题
数据分析
学习统计学知识,掌握数据分析 方法和技巧。
数据可视化
掌握数据可视化工具和技术,将 数据转化为直观的图形呈现。
现代社会中数学素养的重要性
科学研究
数学在科学研究中起到关键的作用,帮
工程设计
2
助解决实际问题。
工程师需要数学来优化设计,确保工程
的可靠性和性能。
3
金融投资
数学在金融领域中的应用有助于投资决 策和风险管理。
《高考数学专题讲座》 PPT课件
介绍高中数学课程和考试格式,让学生了解高考数学的重要性和挑战。
代数和几何的关键概念和技能
代数知识
包括方程、不等式、函数和图形等数学运算。
几何概念
涵盖点、线、面和空间的属性、关系以及常见几何图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题型特点概述
选择题是高考数学试卷的三大题型之一.选择题的分数一 般占全卷的 40%左右,高考数学选择题的基本特点是:
(1)绝大部分数学选择题属于低中档题,且一般按由易到 难的顺序排列,主要的数学思想和数学方法能通过它得到充 分的体现和应用,并且因为它还有相对难度(如思维层次、解 题方法的优劣选择,解题速度的快慢等),所以选择题已成为 具有较好区分度的基本题型之一.
高考数学专题讲座
高考数学讲座
乔素环 乔素环
专题一,高考数学各题型解题方法 专题二,高考数学答题技巧
专题一:高考数学试题各题 型解题方法:
高考数学基本题型包括:选择题, 填空题,解答题(三角函数,概 率与统计,数列,立体几何,函 数与单数,圆锥曲线)三大类型。
第 1 讲 选择题的解题方法与技巧
焦点为圆
C的渐近线相切的圆的半径是 ( B )
心 A.且a与
B.b
C. ab
D. a2+b2
解析 xa22-by22=1的其中一条渐近线方程为:y=-bax,
即bx+ay=0,而焦点坐标为(c,0),根据点到直线的距
离d=|b×a2a+2+b2b2|=b.故选B.
题型二 概念辨析法 概念辨析是从题设条件出发,通过对数学概念的辨析,进 行少量运算或推理,直接选择出正确结论的方法.这类题 目常涉及一些似是而非、很容易混淆的概念或性质,这需 要考生在平时注意辨析有关概念,准确区分相应概念的内 涵与外延,同时在审题时要多加小心,准确审题以保证正 确选择.一般说来,这类题目运算量小,侧重判断,下笔 容易,但稍不留意则易误入命题者设置的“陷阱”.
(2)选择题具有概括性强、知识覆盖面广、小巧灵活及有 一定的综合性和深度等特点,且每一题几乎都有两种或两种
以上的解法,能有效地检测学生的思维层次及观察、 分析、判断和推理能力.
目前高考数学选择题采用的是一元选择题(即有 且只有一个正确答案),由选择题的结构特点,决定 了解选择题除常规方法外还有一些特殊的方法.解 选择题的基本原则是:“小题不能大做”,要充分 利用题目中(包括题干和选项)提供的各种信息,排 除干扰,利用矛盾,作出正确的判断.
一定有b=c,故①为假命题.
②∵a∥b,∴1×6=-2k.∴k=-3.故②为真命题.
③由平行四边形法则知围成一菱形且一角为60°,a+b为其
对角线上的向量,a与a+b夹角为30°,故③为假命题.
题型三 数形结合法 “数”与“形”是数学这座高楼大厦的两块最重要的基 石,二者在内容上互相联系、在方法上互相渗透、在一定 条件下可以互相转化,而数形结合法正是在这一学科特点 的基础上发展而来的.在解答选择题的过程中,可以先根 据题意,做出草图,然后参照图形的做法、形状、位置、 性质,综合图象的特征,得出结论.
例3 (2009·海南)用min{a,b,c}表示a,b,c三个数中的最 小值.设f(x)=min{2x,x+2,10-x}(x≥0),则f(x)的最大
以a∥b;⑤是正确的,由x12y
2 2
+x22y
2 1
≤2x1x2y1y2,可得
(x1y2-x2y1)2≤0,从而x1y2-x2y1=0,于是a∥b.
探究提高 平行向量(共线向量)是一个非常重要和有用的概 念,应熟练掌握共线向量的定义以及判断方法,同时要将 共线向量与向量中的其他知识(例如向量的数量积、向量的 模以及夹角等)有机地联系起来,能够从不同的角度来理解 共线向量.
②是错误的,这是两个向量垂直的条件;③是正确
的,因为由(a+3b)∥(2a-b),可得(a+3a)=λ(2a-
b),当λ≠12时,整理得a=2λλ+-31b,故a∥b,当λ=12时
也可得到a∥b;④是正确的,若设两个向量的夹角为
θ,则由a·b=|a||b|cos θ,可知cos θ=1,从而θ=0,所
例 1 设双曲线xa22-by22=1 的一条渐近线与抛物线 y=x2+1 只
有一个公共点,则双曲线的离心率为
(D )
5 A.4
B.5
5 C. 2
D. 5
思维启迪 求双曲线的一条渐近线的斜率即ba的值,尽而
求离心率.
解析 设双曲线的渐近线方程为y=kx,这条直线与抛物
线y=x2+1相切,联立
y=kx y=x2+1
数学选择题的求解,一般有两条思路:一是从题 干出发考虑,探求结果;二是从题干和选择支联合 考虑或从选择支出发探求是否满足题干条件.
解答数学选择题的主要方法包括直接法、概念辨 析法、数型结合法、特殊值法、排除法、逆向思维 法等,这些方法既是数学思维的具体体现,也是解 题的有效手段.
解题方法例析
题型一 直接法 直接对照型选择题是直接从题设条件出发,利用已知条 件、相关概念、性质、公式、公理、定理、法则等基础知 识,通过严谨推理、准确运算、合理验证,从而直接得出 正确结论,然后对照题目所给出的选项“对号入座”,从 而确定正确的选择支.这类选择题往往是由计算题、应用 题或证明题改编而来,其基本求解策略是由因导果,直接 求解.
,整理得x2-kx+1=
0,则Δ=k2-4=0,解得k=±2,即
b a
=2,故双曲线的离
心率e=ac= ac22= a2+a2b2= 1+(ba)2= 5.
探究提高 关于直线与圆锥曲线位置关系的题目,通常是联 立方程解方程组.本题即是利用渐近线与抛物线相切,求 出渐近线斜率.
变ห้องสมุดไป่ตู้训练 1 已知双曲线 C:xa22-yb22=1(a>0,b>0),以C的右
变式训练 2 关于平面向量 a,b,c,有下列 三个命题:
①若a·b=a·c,则 b=c.
②若a=(1,k),b=(-2,6),a∥b,则 k=- 3.
③非零向量 a和b满足 |a|=|b|=|a-b|, a与a+b的夹角为
60°.
则
则假命题为
(B )
A.①②
B.①③ C .②③
D.①②③
解析 ①a·b=a·c⇔a·(b-c)=0,a与b-c可以垂直,而不
例2 已知非零向量a=(x1,y1),b=(x2,y2),给出下列条
件,①a=kb(k∈R);②x1x2+y1y2=0;③(a+3b)∥(2a-
b);④a·b=|a||b|;⑤x12y22+x22y21≤2x1x2y1y2.
其中能够使得a∥b的个数是
(D )
A.1
B.2
C.3
D.4
解析 显然①是正确的,这是共线向量的基本定理;
选择题是高考数学试卷的三大题型之一.选择题的分数一 般占全卷的 40%左右,高考数学选择题的基本特点是:
(1)绝大部分数学选择题属于低中档题,且一般按由易到 难的顺序排列,主要的数学思想和数学方法能通过它得到充 分的体现和应用,并且因为它还有相对难度(如思维层次、解 题方法的优劣选择,解题速度的快慢等),所以选择题已成为 具有较好区分度的基本题型之一.
高考数学专题讲座
高考数学讲座
乔素环 乔素环
专题一,高考数学各题型解题方法 专题二,高考数学答题技巧
专题一:高考数学试题各题 型解题方法:
高考数学基本题型包括:选择题, 填空题,解答题(三角函数,概 率与统计,数列,立体几何,函 数与单数,圆锥曲线)三大类型。
第 1 讲 选择题的解题方法与技巧
焦点为圆
C的渐近线相切的圆的半径是 ( B )
心 A.且a与
B.b
C. ab
D. a2+b2
解析 xa22-by22=1的其中一条渐近线方程为:y=-bax,
即bx+ay=0,而焦点坐标为(c,0),根据点到直线的距
离d=|b×a2a+2+b2b2|=b.故选B.
题型二 概念辨析法 概念辨析是从题设条件出发,通过对数学概念的辨析,进 行少量运算或推理,直接选择出正确结论的方法.这类题 目常涉及一些似是而非、很容易混淆的概念或性质,这需 要考生在平时注意辨析有关概念,准确区分相应概念的内 涵与外延,同时在审题时要多加小心,准确审题以保证正 确选择.一般说来,这类题目运算量小,侧重判断,下笔 容易,但稍不留意则易误入命题者设置的“陷阱”.
(2)选择题具有概括性强、知识覆盖面广、小巧灵活及有 一定的综合性和深度等特点,且每一题几乎都有两种或两种
以上的解法,能有效地检测学生的思维层次及观察、 分析、判断和推理能力.
目前高考数学选择题采用的是一元选择题(即有 且只有一个正确答案),由选择题的结构特点,决定 了解选择题除常规方法外还有一些特殊的方法.解 选择题的基本原则是:“小题不能大做”,要充分 利用题目中(包括题干和选项)提供的各种信息,排 除干扰,利用矛盾,作出正确的判断.
一定有b=c,故①为假命题.
②∵a∥b,∴1×6=-2k.∴k=-3.故②为真命题.
③由平行四边形法则知围成一菱形且一角为60°,a+b为其
对角线上的向量,a与a+b夹角为30°,故③为假命题.
题型三 数形结合法 “数”与“形”是数学这座高楼大厦的两块最重要的基 石,二者在内容上互相联系、在方法上互相渗透、在一定 条件下可以互相转化,而数形结合法正是在这一学科特点 的基础上发展而来的.在解答选择题的过程中,可以先根 据题意,做出草图,然后参照图形的做法、形状、位置、 性质,综合图象的特征,得出结论.
例3 (2009·海南)用min{a,b,c}表示a,b,c三个数中的最 小值.设f(x)=min{2x,x+2,10-x}(x≥0),则f(x)的最大
以a∥b;⑤是正确的,由x12y
2 2
+x22y
2 1
≤2x1x2y1y2,可得
(x1y2-x2y1)2≤0,从而x1y2-x2y1=0,于是a∥b.
探究提高 平行向量(共线向量)是一个非常重要和有用的概 念,应熟练掌握共线向量的定义以及判断方法,同时要将 共线向量与向量中的其他知识(例如向量的数量积、向量的 模以及夹角等)有机地联系起来,能够从不同的角度来理解 共线向量.
②是错误的,这是两个向量垂直的条件;③是正确
的,因为由(a+3b)∥(2a-b),可得(a+3a)=λ(2a-
b),当λ≠12时,整理得a=2λλ+-31b,故a∥b,当λ=12时
也可得到a∥b;④是正确的,若设两个向量的夹角为
θ,则由a·b=|a||b|cos θ,可知cos θ=1,从而θ=0,所
例 1 设双曲线xa22-by22=1 的一条渐近线与抛物线 y=x2+1 只
有一个公共点,则双曲线的离心率为
(D )
5 A.4
B.5
5 C. 2
D. 5
思维启迪 求双曲线的一条渐近线的斜率即ba的值,尽而
求离心率.
解析 设双曲线的渐近线方程为y=kx,这条直线与抛物
线y=x2+1相切,联立
y=kx y=x2+1
数学选择题的求解,一般有两条思路:一是从题 干出发考虑,探求结果;二是从题干和选择支联合 考虑或从选择支出发探求是否满足题干条件.
解答数学选择题的主要方法包括直接法、概念辨 析法、数型结合法、特殊值法、排除法、逆向思维 法等,这些方法既是数学思维的具体体现,也是解 题的有效手段.
解题方法例析
题型一 直接法 直接对照型选择题是直接从题设条件出发,利用已知条 件、相关概念、性质、公式、公理、定理、法则等基础知 识,通过严谨推理、准确运算、合理验证,从而直接得出 正确结论,然后对照题目所给出的选项“对号入座”,从 而确定正确的选择支.这类选择题往往是由计算题、应用 题或证明题改编而来,其基本求解策略是由因导果,直接 求解.
,整理得x2-kx+1=
0,则Δ=k2-4=0,解得k=±2,即
b a
=2,故双曲线的离
心率e=ac= ac22= a2+a2b2= 1+(ba)2= 5.
探究提高 关于直线与圆锥曲线位置关系的题目,通常是联 立方程解方程组.本题即是利用渐近线与抛物线相切,求 出渐近线斜率.
变ห้องสมุดไป่ตู้训练 1 已知双曲线 C:xa22-yb22=1(a>0,b>0),以C的右
变式训练 2 关于平面向量 a,b,c,有下列 三个命题:
①若a·b=a·c,则 b=c.
②若a=(1,k),b=(-2,6),a∥b,则 k=- 3.
③非零向量 a和b满足 |a|=|b|=|a-b|, a与a+b的夹角为
60°.
则
则假命题为
(B )
A.①②
B.①③ C .②③
D.①②③
解析 ①a·b=a·c⇔a·(b-c)=0,a与b-c可以垂直,而不
例2 已知非零向量a=(x1,y1),b=(x2,y2),给出下列条
件,①a=kb(k∈R);②x1x2+y1y2=0;③(a+3b)∥(2a-
b);④a·b=|a||b|;⑤x12y22+x22y21≤2x1x2y1y2.
其中能够使得a∥b的个数是
(D )
A.1
B.2
C.3
D.4
解析 显然①是正确的,这是共线向量的基本定理;