数列求和 专题
专题数列求和的几种方法.ppt
1 1(1 1 ) an an1 d an an1
}
满足
Sn b1 b2 b3 bn
1 ( 1 1 ) 1 ( 1 1 ) 1 ( 1 1 )
d a1 a2 d a2 a3
d an an1
1(1 1 1 1 d a1 a2 a2 a3
1 1 ) an an1
数 列 求和
1运用公式法
等差或等比数列直 接应用求和公式
2 分组求和法 3 错位相减法 4 裂项相消法 5 倒序相加法
化归思想转化 成等差、等比 数列求
1 2 2 3 3 4 n(n 1)
分析:设数列的通项为bn,则
bn
n(n 1)
6( 1 n
1) n 1
Sn
b1
b2
bn
6[(1
1) 2
(1 2
1) 3
(1 n
1 )] n 1
6(1 1 ) 6n n1 n1
例4、设{1an bn anan1
解: bn
}是公差d 不为零的等差数列 ,{bn
1(1 1 ) n .
d a1 an1
a1an 1
若
an
( An
1 B)(
An
C)
,则求Sn用 裂项相消法
.
常见的拆项公式有:
1. 1 1 1 n(n 1) n n 1
2. 1 1 ( 1 1 ) n(n k) k n n k
3.
1
1( 1 1 )
(2n 1)(2n 1) 2 2n 1 2n 1
1.公式法:
即直接用求和公式,求数列的前n和Sn
①等差数列的前n项和公式:
Sn
n(a1 2
高考数学专题复习题:数列求和
高考数学专题复习题:数列求和一、单项选择题(共8小题)1.某旅游景区计划将山脚下的一片荒地改造成一个停车场,根据地形,设计7排停车位,靠近山脚的第1排设计9个停车位,从第2排开始,每排设计的停车位个数是上一排的2倍减去8,则设计的停车位的总数是( ) A .172B .183C .286D .3112.在数列{}n a 中,已知112a =,1(2)n n n a na ++=,则它的前30项的和为( ) A .1929B .2829C .2930D .30313.已知{}n a 是递增的等比数列 ,且34528++=a a a ,等差数列{}n b 满足23b a =,542b a =+,85b a =.如果m 为正整数,且对任意的*n ∈N ,都有12231nn b b b m a a a +≥+++,那么m 的最小值为( ) A .8B .7C .5D .44.数列{}n a 的前n 项和为n S ,11a =−,*(1)(N )n n na S n n n =+−∈,设(1)n n n b a =−,则数列{}n b 的前51项之和为( ) A .149−B .49−C .49D .1495.已知递推数列{}n a 满足11a =,()*121n n a a n +=+∈N ,如果n S 是数列{}n a 的前n 项和,那么9S =( ) A .9210−B .9211−C .10210−D .10211−6.如图,某地毯是一系列正方形图案,在4个大正方形中,着色的小正方形的个数依次构成一个数列{a n }的前4项. 记12100111S a a a =++⋅⋅⋅+,则下列结论正确的为( )A .87S >B .87S =C .87S <D .S 与87的大小关系不能确定7.已知首项为2的数列{}n a 满足114522n n n n a a a a ++−−=,当{}n a 的前n 项和16n S ≥时,则n 的最小值为( ) A .40B .41C .42D .438.如图,用相同的球堆成若干堆“正三棱锥”形的装饰品,其中第1堆只有1层,且只有1个球;第2堆有2层4个球,其中第1层有1个球,第2层有3个球;依次递推;第n 堆有n 层共n S 个球,第1层有1个球,第2层有3个球,第3层有6个球,依次递推.已知201540S =,则2021n n ==∑( )A .2290B .2540C .2650D .2870二、多选题(共3小题)9.已知函数()f x 满足22()()()()f x y f x y f x f y +−=−,(1)1f =,(2)0f =,下列说法正确的是( ) A .(3)1f =−B .(2024)0f =C .21()x k k =+∈Z 时,()(1)kf x =−D .20241()2024k f k ==∑10.利用不等式“ln 10x x −+≤,当且仅当x =1时,等号成立”可得到许多与n (2n ≥且*n ∈N )有关的结论,则下列结论正确的是( ) A .111ln 1231n n <+++⋅⋅⋅+− B .1111ln 4562n n>+++⋅⋅⋅+C .()()()()12121412e 2n n n+++⋅⋅⋅+>⋅D .e12e 1n n n n n ++⋅⋅⋅+<⋅− 11.“杨辉三角”是二项式系数在三角形中的一种几何排列,从第1行开始,第n 行从左至右的数字之和记为n a ,如{}12112,1214,,n a a a =+==++=⋅⋅⋅的前n 项和记为n S ,依次去掉每一行中所有的1构成的新数列2,3,3,4,6,4,5,10,10,5,...,记为{b n },{b n }的前n 项和记为n T ,则下列说法正确的有( )A .101022S =B .12n n n a S S +⎧⎫⎨⎬⋅⎩⎭的前n 项和21122n a +−− C .5766b =D .574150T =三、填空题(共3小题)12.在数列{}n a 中,11a =且1n n a a n +=,当20n ≥时,1231112n n na a a a a λ+++⋅⋅⋅+≤+−,则实数λ的取值范围为__________.13.已知数列{}n a 满足111,21n n a a a n +=+=+,则其前9项和9S =__________,数列1n S ⎧⎫⎨⎬⎩⎭的前2024项的和为__________. 14.函数()[]f x x =称为高斯函数,其中[]x 表示不超过x 的最大整数,如][2.32, 1.92⎡⎤=−=−⎣⎦,已知数列{}n a 满足121,5a a ==,2145n n n a a a +++=,若[]21log ,n n n b a S +=为数列18108n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和,则[]2025S =__________.四、解答题(共5小题)15.已知数列{}n a ,{}n b 中,14a =,12b =−,{}n a 是公差为1的等差数列,数列{}n n a b +是公比为2的等比数列. (1)求数列{}n b 的通项公式. (2)求数列{}n b 的前n 项和n T . 16.已知数列{}n a 满足122n n a a n +−=+. (1)证明:数列{}2n a n −是等差数列.(2)若12a =,求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .17.已知数列{}n a 是递增的等差数列,它的前三项和为9,前三项的积为15. (1)求数列{}n a 的通项公式. (2)记b n =1(an+1)2,设数列{}n b 的前n 项和为n T ,求证:14n T <.18.已知{}n a 是等差数列,{}n b 是等比数列,且{}n b 的前n 项和为n S ,1122a b ==,()5435a a a =−,在①()5434b b b =−,②12n n b S +=+这两个条件中任选其中一个,完成下面问题的解答.(1)求数列{}n a 和{}n b 的通项公式.(2)设数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T .19.已知2()cos 2x f x a x =+.(1)若()f x 在π0,2⎡⎤⎢⎥⎣⎦上单调递增,求a 的取值范围.(2)证明:()2*11112111tan1212tan 3tantan 23n nn n n n−++++>∈+N . 参考答案12.(],1−∞13.45,4048202514.202515.(1)23nn b n =−− (2)n T 217222n n n+−−− 16.(1)通过构造()()22111n n a n a n +⎡⎤−+−−=⎣⎦证明即可 (2)1n nS n =+. 17.(1)21n a n =− (2)先求数列{}n b 的通项,放缩后再裂项求和即可证明。
数列与级数的8种求和方法专题讲解
数列与级数的8种求和方法专题讲解简介本文将介绍数列和级数的8种常见求和方法,包括递推公式、几何级数、等差数列求和、等比数列求和、伪等差数列求和、伪等比数列求和、特殊级数求和和无穷级数求和。
1. 递推公式递推公式是通过前一项和该项之间的关系来逐项求和的方法,通常用于求解迭代式数列的和。
递推公式可以通过给定的初始项以及递推关系进行求和。
2. 几何级数几何级数指的是一个数列中的各项与其前一项之比保持恒定的数列。
求解几何级数的和可以通过使用几何级数公式来进行计算。
3. 等差数列求和等差数列是一个数列中的各项与其前一项之差保持恒定的数列。
求解等差数列的和可以通过等差数列求和公式进行计算。
4. 等比数列求和等比数列是一个数列中的各项与其前一项之比保持恒定的数列。
求解等比数列的和可以通过等比数列求和公式进行计算。
5. 伪等差数列求和伪等差数列是一个数列中的各项与其下标之差保持恒定的数列。
求解伪等差数列的和可以通过伪等差数列求和公式进行计算。
6. 伪等比数列求和伪等比数列是一个数列中的各项与其下标之比保持恒定的数列。
求解伪等比数列的和可以通过伪等比数列求和公式进行计算。
7. 特殊级数求和特殊级数指的是具有特殊性质的级数,如调和级数、斐波那契级数等。
求解特殊级数的和需要根据其特定的性质和规律进行计算。
8. 无穷级数求和无穷级数是指一个无穷多项的级数。
求解无穷级数的和需要使用极限的概念,并根据级数的收敛性和发散性进行判断和计算。
以上是数列与级数的8种常见求和方法的专题讲解。
每种求和方法都有其适用的情况和特点,在实际问题中需要选择合适的方法进行求解。
希望本文能为读者提供一些有用的参考和指导。
专题十一数列求和的常用方法
专题十一 数列求和的常用方法一、公式法①等差数列求和公式;②等比数列求和公式;③常用公式:)1(211+==∑=n n k S nk n ,)12)(1(6112++==∑=n n n k S nk n ,213)]1(21[+==∑=n n k S nk n二、.并项求和法:将数列的相邻的两项(或若干项)并成一项(或一组)得到一个新的且更容易求和的数列.三、分组求和法:将数列分成可以求和的几组。
四.裂项相消法:将数列的每一项拆(裂开)成两项之差,使得正负项能互相抵消,剩下首尾若干项. ①111(1)1n n n n =-++ ②1111(k)k k n n n n =-++()③1111[](1)(2)2(1)(1)(2)n n n n n n n =--++++;④n n n n a n -+=++=111五.错位相减法:若}{n a 是等差数列,{n b }是等比数列,则数列{n n b a ⋅}的求和运用错位求和方法,这是仿照推导等比数列前n 项和公式的方法.六.倒序相加法:将一个数列的倒数第k 项(k =1,2,3,…,n )变为顺数第k 项,然后将得到的新数列与原数列相加,这是仿照推导等差数列前n 项和公式的方法. 七、通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和。
【课前热身】1、数列2, ,21,,814,413,2121-+n n 的前n 项之和为n n n+112122⎡⎤+-⎢⎥⎣⎦()() 2、设5033171,)1(4321S S S n S n n ++⋅-++-+-=-则 = 1 ;3、数列1,(1+2),(1+2+22),…,(1+2+22+…+n-12),…的前n 项和等于n+12-2-n4、 已知数列{n a }的通项公式是n n n a n 则前,6512++=项和为n3n 3+() 典型例题:例1、(1)求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值(2)求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 解:(1)设S n =89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++则S n =22222sin 89sin 88sin 87sin 2sin 1+++⋅⋅⋅++ ∴2S n =89,故S n =892(2)设T n =01n-13(21)(21)nn n n n C C n C n C ++⋅⋅⋅+-++,则T n =n-110(21)(21)3n n n n n n C n C C C ++-+⋅⋅⋅++∴2T n =01n-1n(22)n n n n n C C C C ⎡⎤+++⋅⋅⋅++⎣⎦=n(22)2n +⋅ ∴nn n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++注:本例是运用倒序相加法求和。
数列的求和方法(专题)
例析数列求和的常用方法数列求和是数列教学内容的中心问题之一,也是近年高考命题的一个热点问题。
掌握一些求和的方法和技巧可以提高解决此问题的能力。
本文例析了一些求和的方法,仅供参考。
一、倒序相加法将一个数列倒过来排序(倒序),当它与原数列相加时,若有因式可提,并且剩余的项的和易于求得,则这样的数列可用倒序相加法求和。
如等差数列的求和公式2)(1n n a a n S +=的推导。
例1.已知)(x f 满足R x x ∈21,,当121=+x x 时,21)()(21=+x f x f ,若N n f nn f n f n f f S n ∈+-++++=),1()1()2()1()0( ,求n S 解:∵N n f nn f n f n f f S n ∈+-++++=),1()1()2()1()0( ,①. ∴+=)1(f S n N n f nf n f n n f ∈++++-),0()1()2()1( ,②,①+②整理后可得)1(41+=n S n 二、错位相减法(此法是学生错误率最高的,到高三还有近半数还计算错误,教学时要多用几课时练习巩固)这是推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列}{n n b a ⋅的前n 项和,其中}{n a 、}{n b 分别是等差数列和等比数列。
例2.求数列}2{n n ⋅的前n 项和n S 。
解:∵ n n n n n S 22)1(2322211321⨯+⨯-++⨯+⨯+⨯=-①,所以①-①2⨯错位相消得1132122222+-⨯-++++=-n n n n S ,所以12)1(2+⨯-+=n n n S 。
三、分组求和法所谓分组求和法,即将一个数列中的项拆成几项,转化成特殊数列求和。
例3.已知数列}{n a 满足1)21(-+=n n n a ,求其前n 项和n S 。
解:∵1131211)21()21(3)21(2)21(1----++++++++=n n n S )321(n ++++= ])21()21()21[(11211---++++n 12122)1(--++=n n n 四、公式法(恒等式法)利用已知的求和公式来求和,如等差数列与等比数列求和公式,再如n ++++ 3212)1(+=n n 、)12)(1(613212222++=++++n n n n 等公式。
数列求和常用方法(含答案)
数列专题 数列求和常用方法一、公式法例1在数列{a n }中,2a n =a n -1+a n +1(n ≥2),且a 2=10,a 5=-5.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 的最大值.解: (1)因为2a n =a n -1+a n +1(n ≥2),所以a n +1-a n =a n -a n -1(n ≥2),所以数列{a n }为等差数列,设首项为a 1,公差为d ,则⎩⎪⎨⎪⎧a 2=a 1+d =10,a 5=a 1+4d =-5,解得⎩⎪⎨⎪⎧a 1=15,d =-5, 所以a n =a 1+(n -1)d =15-5(n -1)=-5n +20.(2)由(1)可知S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-52n 2+352n ,因为对称轴n =72, 所以当n =3或4时,S n 取得最大值为S 3=S 4=30. 跟踪练习1、已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求b 1+b 3+b 5+…+b 2n -1. 解 (1)设等差数列{a n }的公差为d . 因为a 1=1,a 2+a 4=10, 所以2a 1+4d =10, 解得d =2. 所以a n =2n -1.(2)设等比数列{b n }的公比为q . 因为b 2b 4=a 5, 所以b 1q ·b 1q 3=9. 又b 1=1,所以q 2=3.所以b 2n -1=b 1q 2n -2=3n -1.则b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n -12.二、分组转化法例2、已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n ={b n −n 2,n 为偶数2a n,n 为奇数,求数列{c n }的前2n 项的和T 2n .解:(1)设数列{a n }的公差为d ,由题意得,⎩⎪⎨⎪⎧5a 1+10d =20,(a 1+2d )2=(a 1+d )(a 1+4d ),化简得⎩⎪⎨⎪⎧a 1+2d =4,a 1d =0, 因为d ≠0,所以a 1=0,d =2,所以a n =2n -2(n ∈N *),S n =n 2-n ,n ∈N *, 因为S n +b n =2n 2,所以b n =n 2+n (n ∈N *).(2)由(1)知,c n ={b n −n 2,n 为偶数2a n ,n 为奇数=⎩⎪⎨⎪⎧n ,n 为偶数,4n -1,n 为奇数,所以T 2n =c 1+c 2+c 3+c 4+…+c 2n -1+c 2n =(2+4+…+2n )+(40+42+…+42n -2) =n (2+2n )2+1-16n 1-16=n (n +1)+115(16n -1).跟踪练习1、已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49. (1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围. 解 (1)由等差数列性质知,S 7=7a 4=49,则a 4=7, 故公差d =a 4-a 3=7-5=2, 故a n =a 3+(n -3)d =2n -1.(2)由(1)知b n =22n -1+2n -1, T n =21+1+23+3+…+22n -1+2n -1 =21+23+…+22n -1+(1+3+…+2n -1) =21-22n +11-4+n (1+2n -1)2=22n +13+n 2-23.易知T n 单调递增,且T 5=707<1 000,T 6=2 766>1 000, 故T n ≥1 000,解得n ≥6,n ∈N *.三、并项求和法例3、已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25. (1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .解 (1)设数列{a n }的公差为d ,由S 5=5a 3=25得a 3=a 1+2d =5, 又a 5=9=a 1+4d ,所以d =2,a 1=1, 所以a n =2n -1,S n =n (1+2n -1)2=n 2.(2)结合(1)知b n =(-1)n n 2,当n 为偶数时, T n =(b 1+b 2)+(b 3+b 4)+(b 5+b 6)+…+(b n -1+b n )=(-12+22)+(-32+42)+(-52+62)+…+[-(n -1)2+n 2]=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+[n -(n -1)][n +(n -1)] =1+2+3+…+n =n (n +1)2.当n 为奇数时,n -1为偶数, T n =T n -1+(-1)n·n 2=(n -1)n 2-n 2=-n (n +1)2. 综上可知,T n =(-1)n n (n +1)2.四、裂项相消法例4、已知数列{a n }的前n 项和为S n ,且2S n =3a n -3(n ∈N *).(1)求数列{a n }的通项公式;(2)若b n =1log 3a n ·log 3a n +1,求数列{b n }的前n 项和T n .解:(1)当n =1时,2a 1=3a 1-3,解得a 1=3;当n ≥2时,2a n =2S n -2S n -1=3a n -3-3a n -1+3=3a n -3a n -1,得a n =3a n -1, 因为a n ≠0,所以a na n -1=3,因为a 1=3, 所以数列{a n }是以3为首项,3为公比的等比数列,所以a n =3n . (2)因为log 3a n =log 33n =n ,所以b n =1log 3a n ·log 3a n +1=1n (n +1)=1n -1n +1,所以数列{b n }的前n 项和T n =⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1. 跟踪练习1、已知数列{a n }的前n 项和为S n ,S n =2a n -1,数列{b n }是等差数列,且b 1=a 1,b 6=a 5.(1)求数列{a n }和{b n }的通项公式;(2)若c n =1b n b n +1,记数列{c n }的前n 项和为T n ,证明:3T n <1.解: (1)由S n =2a n -1,可得n =1时,a 1=2a 1-1,解得a 1=1;n ≥2时,S n -1=2a n -1-1,又S n =2a n -1,两式相减可得a n =S n -S n -1=2a n -1-2a n -1+1,即有a n =2a n -1,所以数列{a n }是首项为1,公比为2的等比数列,所以a n =2n -1.设等差数列{b n }的公差为d ,且b 1=a 1=1,b 6=a 5=16,可得d =b 6-b 16-1=3,所以b n =1+3(n -1)=3n -2.(2)证明:c n =1b n b n +1=1(3n -2)(3n +1)=13⎝ ⎛⎭⎪⎫13n -2-13n +1,所以T n =13⎝ ⎛⎭⎪⎫1-14+14-17+17-110+…+13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1<13,则3T n <1.2、设{a n }是各项都为正数的单调递增数列,已知a 1=4,且a n 满足关系式:a n +1+a n =4+2a n +1a n ,n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =1a n -1,求数列{b n }的前n 项和S n .解 (1)因为a n +1+a n =4+2a n +1a n ,n ∈N *,所以a n +1+a n -2a n +1a n =4,即(a n +1-a n )2=4,又{a n }是各项为正数的单调递增数列, 所以a n +1-a n =2,又a 1=2,所以{a n }是首项为2,公差为2的等差数列, 所以a n =2+2(n -1)=2n ,所以a n =4n 2.(2)b n =1a n -1=14n 2-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以S n =b 1+b 2+…+b n =12⎝⎛⎭⎫1-13+12⎝⎛⎭⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.3、已知数列{a n }满足:a 1=2,a n +1=a n +2n . (1)求{a n }的通项公式; (2)若b n =log 2a n ,T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n . 解 (1)由已知得a n +1-a n =2n ,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+2+22+…+2n -1=2+2(1-2n -1)1-2=2n .又a 1=2,也满足上式,故a n =2n . (2)由(1)可知,b n =log 2a n =n , 1b n b n +1=1n (n +1)=1n -1n +1,T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1,故T n =nn +1.五、错位相减法例5、在数列{a n }中,a 1=1,a n +1=a n -2a n a n +1. (1)求{a n }的通项公式;(2)若b n =3na n ,求数列{b n }的前n 项和S n .解:(1)∵a 1=1,a n +1=a n -2a n a n +1,∴a n ≠0,∴1a n =1a n +1-2⇒1a n +1-1a n =2,又∵1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列, ∴1a n =1+2(n -1)=2n -1,∴a n =12n -1(n ∈N *). (2)由(1)知:b n =(2n -1)×3n ,∴S n =1×3+3×32+5×33+7×34+…+(2n -1)×3n , 3S n =1×32+3×33+5×34+7×35+…+(2n -1)×3n +1,两式相减得-2S n =3+2×32+2×33+2×34+…+2×3n -(2n -1)×3n +1 =3+2(32+33+34+…+3n )-(2n -1)×3n +1 =3+2×32(1-3n -1)1-3-(2n -1)×3n +1=3+3n +1-9-(2n -1)×3n +1=2(1-n )×3n +1-6 ∴S n =(n -1)×3n +1+3. 跟踪练习1、已知数列{a n }满足:a 1=1,a n +1=2a n +n -1.(1)证明:数列{a n +n }是等比数列并求数列{a n }的前n 项和S n ; (2)设b n =(2n -1)·(a n +n ),求数列{b n }的前n 项和T n .解: (1)因为a n +1=2a n +n -1,所以a n +1+(n +1)=2a n +2n ,即a n +1+(n +1)a n +n=2,又a 1+1=2,所以数列{a n +n }是以2为首项2为公比的等比数列, 则a n +n =2·2n -1=2n ,故a n =2n -n ,所以S n =(2+22+…+2n )-(1+2+…+n )=2·(1-2n )1-2-n (1+n )2=2n +1-2-n (1+n )2.(2)由(1)得,b n =(2n -1)·(a n +n )=(2n -1)·2n , 则T n =2+3×22+5×23+…+(2n -1)·2n ,①2T n =22+3×23+5×24+…+(2n -3)·2n +(2n -1)·2n +1,②①-②得-T n =2+2×22+2×23+…+2×2n -(2n -1)·2n +1=2×(2+22+…+2n )-2-(2n -1)·2n +1=-(2n -3)·2n +1-6,所以T n =(2n -3)·2n +1+6.2、已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式; (2)设b n =na n ,求数列{b n }的前n 项和T n .解:(1)当n ≥2时,S n =3S n -1-2(n -1)+2,又S n +1=3S n -2n +2, 两式相减可得S n +1-S n =3S n -3S n -1-2,即a n +1=3a n -2, 即有a n +1-1=3(a n -1),令n =1,可得a 1+a 2=3a 1,解得a 2=2a 1=4,也符合a n +1-1=3(a n -1), 则数列{a n -1}是首项为1,公比为3的等比数列, 则a n -1=3n -1,故a n =1+3n -1. (2)由(1)知b n =na n =n +n ·3n -1,则T n =(1+2+…+n )+(1·30+2·31+3·32+…+n ·3n -1), 设M n =1·30+2·31+3·32+…+n ·3n -1, 3M n =1·3+2·32+3·33+…+n ·3n ,两式相减可得-2M n =1+3+32+…+3n -1-n ·3n =1-3n1-3-n ·3n , 化简可得M n =(2n -1)·3n +14.所以T n =12n (n +1)+(2n -1)·3n +14.3、设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项. (1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和. 解 (1)设{a n }的公比为q , ∵a 1为a 2,a 3的等差中项, ∴2a 1=a 2+a 3=a 1q +a 1q 2,a 1≠0, ∴q 2+q -2=0, ∵q ≠1,∴q =-2.(2)设{na n }的前n 项和为S n , a 1=1,a n =(-2)n -1,S n =1×1+2×(-2)+3×(-2)2+…+n (-2)n -1,①-2S n =1×(-2)+2×(-2)2+3×(-2)3+…+(n -1)·(-2)n -1+n (-2)n ,② ①-②得,3S n =1+(-2)+(-2)2+…+(-2)n -1-n (-2)n =1-(-2)n 1-(-2)-n (-2)n =1-(1+3n )(-2)n3,∴S n =1-(1+3n )(-2)n9,n ∈N *.4、设数列{a n }满足a 1=3,a n +1=3a n -4n . (1)计算a 2,a 3,猜想{a n }的通项公式; (2)求数列{2n a n }的前n 项和S n .解 (1)由题意可得a 2=3a 1-4=9-4=5, a 3=3a 2-8=15-8=7,由数列{a n }的前三项可猜想数列{a n }是以3为首项,2为公差的等差数列,即a n =2n +1. (2)由(1)可知,a n ·2n =(2n +1)·2n ,S n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n ,①2S n =3×22+5×23+7×24+…+(2n -1)·2n +(2n +1)·2n +1,② 由①-②得,-S n =6+2×(22+23+…+2n )-(2n +1)·2n +1 =6+2×22×(1-2n -1)1-2-(2n +1)·2n +1=(1-2n )·2n +1-2, 即S n =(2n -1)·2n +1+2.5、已知正项数列{a n }的前n 项和为S n ,且a 2n +1=2S n +n +1,a 2=2. (1)求数列{a n }的通项公式a n ;(2)若b n =a n ·2n ,数列{b n }的前n 项和为T n ,求使T n >2 022的最小的正整数n 的值. 解 (1)当n ≥2时,由a 2n +1=2S n +n +1,a 2=2, 得a 2n =2S n -1+n -1+1,两式相减得a 2n +1-a 2n =2a n +1, 即a 2n +1=a 2n +2a n +1=(a n +1)2.∵{a n }是正项数列,∴a n +1=a n +1. 当n =1时,a 22=2a 1+2=4, ∴a 1=1,∴a 2-a 1=1,∴数列{a n }是以a 1=1为首项,1为公差的等差数列,∴a n =n . (2)由(1)知b n =a n ·2n =n ·2n ,∴T n =1×21+2×22+3×23+…+n ·2n , 2T n =1×22+2×23+…+(n -1)·2n +n ·2n +1, 两式相减得-T n =2·(1-2n )1-2-n ·2n +1=(1-n )2n +1-2, ∴T n =(n -1)2n +1+2.∴T n -T n -1=n ·2n >0, ∴T n 单调递增.当n =7时,T 7=6×28+2=1 538<2 022, 当n =8时,T 8=7×29+2=3 586>2 022, ∴使T n >2 022的最小的正整数n 的值为8.6、已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n ,对任意n ∈N *恒成立,求实数λ的取值范围.解 (1)因为4S n +1=3S n -9,所以当n ≥2时,4S n =3S n -1-9,两式相减可得4a n +1=3a n ,即a n +1a n =34.当n =1时,4S 2=4⎝⎛⎭⎫-94+a 2=-274-9,解得a 2=-2716, 所以a 2a 1=34.所以数列{a n }是首项为-94,公比为34的等比数列,所以a n =-94×⎝⎛⎭⎫34n -1=-3n+14n .(2)因为3b n +(n -4)a n =0, 所以b n =(n -4)×⎝⎛⎭⎫34n.所以T n =-3×34-2×⎝⎛⎭⎫342-1×⎝⎛⎭⎫343+0×⎝⎛⎭⎫344+…+(n -4)×⎝⎛⎭⎫34n ,① 且34T n =-3×⎝⎛⎭⎫342-2×⎝⎛⎭⎫343-1×⎝⎛⎭⎫344+0×⎝⎛⎭⎫345+…+(n -5)×⎝⎛⎭⎫34n +(n -4)×⎝⎛⎭⎫34n +1,② ①-②得14T n =-3×34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -(n -4)×⎝⎛⎭⎫34n +1 =-94+916⎣⎡⎦⎤1-⎝⎛⎭⎫34n -11-34-(n -4)×⎝⎛⎭⎫34n +1 =-n ×⎝⎛⎭⎫34n +1,所以T n =-4n ×⎝⎛⎭⎫34n +1.因为T n ≤λb n 对任意n ∈N *恒成立,所以-4n ×⎝⎛⎭⎫34n +1≤λ⎣⎡⎦⎤(n -4)×⎝⎛⎭⎫34n 恒成立,即-3n ≤λ(n -4)恒成立, 当n <4时,λ≤-3n n -4=-3-12n -4,此时λ≤1; 当n =4时,-12≤0恒成立,当n >4时,λ≥-3n n -4=-3-12n -4,此时λ≥-3. 所以-3≤λ≤1.。
数列求和专题(必考必练,方法全面,有答案)
数列求和专题一.公式法(已知数列是等差或等比数列可以直接使用等差或等比的求和公式求和) 二.分组求和法若数列的通项是若干项的代数和,可将其分成几部分来求.例1:求数列11111246248162n n ++L ,,,,,…的前n 项和n S .- 23411111111(2462)(1)222222n n n S n n n ++⎛⎫=+++++++++=++- ⎪⎝⎭L L .例2: 求数列5,55,555,…,55…5 的前n 项和S n解: 因为55…5=)110(95-n 所以 S n =5+55+555+...+55 (5)=[])110()110()110(952-+⋅⋅⋅+-+-n=⎥⎦⎤⎢⎣⎡---n n 110)110(1095 =815095108150--⨯n n 练习:、求数列11111,2,3,4,392781L 的前n 项和。
解:211223nn n ++-⋅三.错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.例: 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………(0x ≠)解: 当x=1时,23121315171(21)1135(21)n n S n n n -=+∙+∙+∙+⋅⋅⋅+-∙=++++-=当x ≠1时, 132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………. ① ①式两边同乘以x 得n xS = 231135(23)(21)n n x x x n x n x -+++⋅⋅⋅+-+-………② (设制错位)①-②得 n n n x n xx x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+n练习: 1:求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和. 1224-+-=n n n S2. 已知数列.}{,)109()1(n n nn S n a n a 项和的前求⨯+=四.裂项相消法 常见的拆项公式有:1()n n k =+111()k n n k -+=1k,1(21)(21)n n =-+111()22121n n --+,等. 例1:求数列311⨯,421⨯,531⨯,…,)2(1+n n ,…的前n 项和S. 解:∵)2(1+n n =211(21+-n n )S n =⎥⎦⎤⎢⎣⎡+-+⋅⋅⋅+-+-)211()4121()311(21n n =)2111211(21+-+--n n =42122143+-+-n n 例2:设9)(2+=x x f ,(1)若;),2(),(,111n n n u n u f u u 求≥==-(2)若;}{,,3,2,1,11n n k k k S n a k u u a 项和的前求数列 =+=+解:(1)}{),2(9122121n n nu n u u u ∴⎩⎨⎧≥+==- 是公差为9的等差数列,,89,0,892-=∴>-=∴n u u n u n n n(2)),8919(9119891--+=++-=k k k k a k);119(91)]8919()1019()110[(91-+=--+++-+-=∴n n n S n练习: 1、 求数列2112+,2124+,2136+,2148+,…的前n 项和n S .2、求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.五.倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.例1:求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5例2: 求222222222222123101102938101++++++++的和. 解:设222222222222123101102938101S =++++++++ 则222222222222109811012938101S =++++++++.两式相加,得 2111105S S =+++=∴=,.练习:设221)(xx x f +=,求:⑴)4()3()2()()()(111f f f f f f +++++; ⑵).2010()2009()2()()()()(21312009120101f f f f f f f ++++++++ 【解题思路】观察)(x f 及⎪⎭⎫ ⎝⎛x f 1的特点,发现1)1()(=+xf x f 六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .例6: 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ cos(180)cos n n -=- (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0练习:已知:n S n n ⋅-++-+-+-=+1)1(654321 .求n S .(⎪⎪⎩⎪⎪⎨⎧-+=)(2)(21为正偶数为正奇数n n n n S n )。
高中数学《数列》复习专题
1 n 1 练1.若an an 1 1 ( ) , a1 0, 求通项公式. 2 解:
专题2:求通项公式 1.累加型 an an1 f ( n) 2.累乘型 an an1 f ( n)
n 1个 an 1 q an 2 an q a
例3.数列 {an }满足an 3an1 1, a1 1, 求 {an }的通项公式 .
解: 设 为待定系数, an 3an 1 1
1 1 n 1 那么an =(a1 )3 2 2 an 3an1 1 1 1 n 1 即an = 3 1 2 2 an 3(an 1 ) n 1 3 3 +1 也即an = 1 1 2 则 令 , 2 3 1 1 即an 3(an 1 ) 2 2 1 1 {an }是以a1 为首项, 2 2 3为公差的等比数列.
练1.an
1 4n 1
2
, 求S n .
1 1 练 2.an 2 , 证明Sn . 4n 4n 3 3
1 1 1 例2.求和: 2+ 3 3+ 4 4+ 5
1 99+ 100
1 1 1 练3.求和: + 1+ 3 2+ 4 3+ 5
1 n + n+2
2 an an1 an1
专题2:求通项公式 1.累加型 an an1 f ( n) 回顾:求等差数列的通 项公式:— —累加法
由递推公式 an an1 d (n 2)可知, a2 a1 d 当n 2时, a3 a2 d a4 a3 d n 1个 a n 1 a n 2 d a n a n 1 d
(完整版)数列求和合集例题与标准答案)
数列求和汇总答案一、利用常用求和公式求和利用下列常用求和公式求和是数列求和地最基本最重要地方法.1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q qa a qq a q na S n nn 例1、已知,求地前n 项和.3log 1log 23-=x ⋅⋅⋅++⋅⋅⋅+++nx x x x 32解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得(利用常用公式)nn x x x x S +⋅⋅⋅+++=32===1-x x x n --1)1(211)211(21--n n 21练习:求地和.22222222123456...99100-+-+-+--+解:2222222212345699100-+-+-+--+ ()()()()2222222221436510099=-+-+-++- ()()()()()()()()2121434365651009910099=-++-++-++-+ 3711199=+++ +由等差数列地求和公式得()50503199S 50502+==二、错位相减法求和这种方法是在推导等比数列地前n 项和公式时所用地方法,这种方法主要用于求数列{a n ·b n }地前n 项和,其中{a n }、{b n }分别是等差数列和等比数列.例2求和:………………………①132)12(7531--+⋅⋅⋅++++=n n x n x x x S 解:由题可知,{}地通项是等差数列{2n -1}地通项与等比数列{}地通项之积1)12(--n xn 1-n x设……………………….②(设制错位)nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=①-②得(错位相减)n n n x n xx x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--再利用等比数列地求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=--∴21)1()1()12()12(x x x n x n S n n n -+++--=+练习:求数列前n 项地和.⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n解:由题可知,{}地通项是等差数列{2n}地通项与等比数列{}地通项之积n n 22n 21设…………………………………①n n nS 2226242232+⋅⋅⋅+++=………………………………②(设制错位)14322226242221++⋅⋅⋅+++=n n nS ①-②得(错位相减)1432222222222222211(+-+⋅⋅⋅++++=-n n n nS 1122212+---=n n n ∴1224-+-=n n n S 三、反序相加法求和这是推导等差数列地前n 项和公式时所用地方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个.)(1n a a +例3求地值89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++解:设………….①89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S 将①式右边反序得…………..②(反序)1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S 又因为1cos sin ),90cos(sin 22=+-=x x x x ①+②得(反序相加)=89)89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S ∴S=44.52、求和:222222222222222101109293832921101++++++++++ 四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见地数列,然后分别求和,再将其合并即可.例4、求和:⎪⎪⎭⎫ ⎝⎛+++⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛+n n y x y x y x 11122 ()1,1,0≠≠≠y x x 解:原式=()nx x x x ++++ 32⎪⎪⎭⎫ ⎝⎛++++n y y y 1112=()yy y xx x n n 1111111-⎪⎪⎭⎫⎝⎛-+--=nn n n y y y x x x --+--++1111练习:求数列地前n 项和:, (231),,71,41,1112-+⋅⋅⋅+++-n aa a n 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n 将其每一项拆开再重新组合得(分组))23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n 当a =1时,=(分组求和)2)13(n n n S n -+=2)13(nn +当时,=1≠a 2)13(1111n n a a S nn -+--=2)13(11n n a a a n -+---练习:求数列地前n 项和.∙∙∙+∙∙∙),21(,,813,412,211nn 解:n n n n n n n n S 211)1(21)21212121()321()21(81341221132-++=+∙∙∙+++++∙∙∙+++=++∙∙∙+++=五、裂项法求和这是分解与组合思想在数列求和中地具体应用.裂项法地实质是将数列中地每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和地目地.通项分解(裂项)如:例5求数列地前n 项和.⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 解:设(裂项)n n n n a n -+=++=111则(裂项求和)11321211+++⋅⋅⋅++++=n n S n =)1()23()12(n n -++⋅⋅⋅+-+-=11-+n 练习:求13,115,135,163之和.解:94911(21)9171()7151()5131()311(21)9171(217151(21)5131(21)311(2197175153131163135115131=-=⎥⎦⎤⎢⎣⎡-+-+-+-=-+-+-+-=⨯+⨯+⨯+⨯=+++六、合并法求和针对一些特殊地数列,将某些项合并在一起就具有某种特殊地性质,因此,在求数列地和时,可将这些项放在一起先求和,然后再求S n .例6、数列{a n }:,求S 2002.n n n a a a a a a -====++12321,2,3,1解:设S 2002=2002321a a a a +⋅⋅⋅+++由可得n n n a a a a a a -====++12321,2,3,1,2,3,1654-=-=-=a a a ,2,3,1,2,3,1121110987-=-=-====a a a a a a ……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a ∵(找特殊性质项)0665646362616=+++++++++++k k k k k k a a a a a a ∴S 2002=(合并求和)2002321a a a a +⋅⋅⋅+++=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a 2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++=46362616+++++++k k k k a a a a =5练习:在各项均为正数地等比数列中,若地值.103231365log log log ,9a a a a a +⋅⋅⋅++=求解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列地性质(找特殊性质项)q p n m a a a a q p n m =⇒+=+和对数地运算性质得N M N M a a a ⋅=+log log log (合并求和))log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++==)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++=10七、利用数列地通项求和先根据数列地结构及特征进行分析,找出数列地通项及其特征,然后再利用数列地通项揭示地规律来求数列地前n 项和,是一个重要地方法.例7、求5,55,555,…,地前n 项和.解:∵a n =59(10n -1)∴S n =59(10-1)+59(102-1)+59(103-1)+…+59(10n -1)=59[(10+102+103+……+10n )-n]=(10n +1-9n-10)练习:求数列:1,,,地前n 项和.解:=e an dAl l h i ng si nt h er be ng ae od =版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.xHAQX74J0X用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.LDAYtRyKfEUsers may use the contents or services of this article forpersonal study, research or appreciation, and other non-commercialor non-profit purposes, but at the same time, they shall abide bythe provisions of copyright law and other relevant laws, and shallnot infringe upon the legitimate rights of this website and itsrelevant obligees. In addition, when any content or service ofthis article is used for other purposes, written permission andremuneration shall be obtained from the person concerned and the relevant obligee.Zzz6ZB2Ltk转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.。
数列求和专题
数列求和专题一、公式法法求和1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32 (利用常用公式)=xx x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n nS n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、乘公比错项(位)相减法求和(等差⨯等比)这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列}{n n b a ⨯的前n 项和,其中}{n a ,}{n b 分别是等差数列和等比数列。
[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S[例1]:求数列}{1-n nq (q 为常数)的前n 项和。
数列求和-高考复习
③
1 n+1+
= n
n+1-
n,
1 a+
b=a-1 b(
a-
b);
④(2n-1)1(2n+1)=212n1-1-2n1+1;
⑤若{an}为等差数列,d 为公差,其中 an≠0 且 d≠0,则ana1n+1=1da1n-an1+1.
索引
类型三 错位相减法求和 例3 已知{an}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.
索引
类型四 倒序相加法
例4 已知定义在R上的函数f(x)的图象的对称中心为(1 011,2),数列{an} 的前n项和为Sn,且满足an=f(n),n∈N*,则S2 021=___4_0_4_2__.
解析 由条件得f(2×1 011-x)+f(x)=2×2, 即f(2 022-x)+f(x)=4,于是有a2 022-n+an=4(n∈N*). 又S2 021=a1+a2+a3+…+a2 020+a2 021, S2 021=a2 021+a2 020+…+a2+a1, 两式相加得2S2 021=(a1+a2 021)+(a2+a2 020)+…+(a2 020+a2)+ (a2 021+a1)=2 021(a1+a2 021)=2 021×4. 故S2 021=2 021×2=4 042.
索引
思维升华
如果一个数列的前 n 项中,距首末两项“等距离”的两项之和都相等,则可 使用倒序相加法求数列的前 n 项和.
索引
索引
② 由①得 1+q2=5,解得 q=±2. 当 q=2 时,a1=13,所以 an+1=43×2n-1=2n3+1; 当 q=-2 时,a1=-5, 所以 an+1=(-4)×(-2)n-1=-(-2)n+1. 所以 an=2n3+1-1 2)若 an>0,设 bn=log2(3an+3),求数列bnb1n+1的前 n 项和. 解 因为 an>0,所以 an=2n3+1-1, 所以 bn=log2(3an+3)=n+1, 所以bnb1n+1=(n+1)1(n+2)=n+1 1-n+1 2, 所以数列bnb1n+1的前 n 项和为12-13+13-14+…+n+1 1-n+1 2=12-n+1 2=
数列求和题型及解题方法
数列求和题型及解题方法
数列求和是数学中的一个重要概念,其题型和解题方法有很多种。
以下是一些常见的数列求和题型及其解题方法:
1. 等差数列求和
等差数列是一种常见的数列,其相邻两项的差是常数。
等差数列的求和公式为:S = n/2 (a1 + an),其中n是项数,a1是首项,an是尾项。
例如:1+2+3+...+n=n(n+1)/2
2. 等比数列求和
等比数列是一种常见的数列,其相邻两项的比是常数。
等比数列的求和公式为:S = a1 (1 - q^n) / (1 - q),其中a1是首项,q是公比,n是项数。
例如:1+2+4+...+2^(n-1)=2^n-1
3. 错位相减法
对于一些等差数列和等比数列的混合数列,可以使用错位相减法来求和。
具体做法是将原数列的每一项都乘以一个适当的常数,使得新数列成为等差数列或等比数列,然后使用相应的求和公式进行计算。
例如:100+101+102+...+999=99/2=44550
4. 分组求和法
对于一些项数较多、难以直接求和的数列,可以将它们分成若干组,每组有有限项,然后分别求每组的和,最后将各组的和相加即可。
例如:(1+2+3)+(4+5+6)+(7+8+9)=9+18+27=54
5. 倒序相加法
对于一些奇偶项相间的数列,可以将正序和倒序分别求和,再将两个和相加,即可得到原数列的和。
例如:(1+2+3+4)+(3+2+1)=8+6=14
以上是一些常见的数列求和题型及其解题方法,掌握这些方法对于解决数列求和问题非常有帮助。
数列专题:数列求和的6种常用方法(原卷版)
数列专题:数列求和的6种常用方法一、几种数列求和的常用方法1、分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.2、裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.3、错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.4、倒序相加法:如果一个数列{}n a 与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.二、公式法求和常用公式公式法主要适用于等差数列与等比数列.1、等差数列{}n a 的前n 项和11()(1)22++==+n n n a a n n S na d 2、等比数列{}n a 的前n 项和111(1)11,,=⎧⎪=-⎨≠⎪-⎩n n na q S a q q q 3、一些常见的数列的前n 项和:①112123(1)==++++=+∑nk k n n n ;122462(1)==++++=+∑nk k n n n ②21(21)135(21)=-=++++-=∑n k k n n ;③22222116123(1)(21)==++++=++∑nk k n n n n ;④3333321(1)2123[]=+=++++=∑nk n n k n 三、裂项相消法中常见的裂项技巧1、等差型裂项(1)111(1)1=-++n n n n (2)1111()()=-++n n k k n n k(3)21111()4122121=---+n n n (4)1111(1)(2)2(1)(1)(2)⎡⎤=-⎢⎥+++++⎣⎦n n n n n n n (5)211111()(1)(1)(1)2(1)(1)==---+-+n n n n n n n n n(6)22111414(21)(21)⎡⎤=+⎢⎥-+-⎣⎦n n n n (7)1111(1)(2)(3)3(1)(2)(1)(2)(3)⎡⎤=-⎢⎥++++++++⎣⎦n n n n n n n n n n (8)2222211111)(()+=-++n n n n n (9)222211112)42)((⎡⎤+=-⎢⎥++⎣⎦n n n n n 2、根式型裂项=1=-k12=(1)1111(1)1++=+-++n n n n n n 3、指数型裂项(1)11112(21)(21)11(21)(21)(21)(21)2121++++---==-------n n n n n n n n n (2)113111()(31)(31)23131++=-----n nn n n (3)122(1)21111(1)2(1)2122(1)2-++-⎛⎫==-⋅=- ⎪+⋅+⋅+⋅+⋅⎝⎭n n n n nn n n n n n n n n n n (4)1111(41)31911333(2)2(2)22-+--⎛⎫⎡⎤-⋅=-⋅=- ⎪⎢⎥+++⎣⎦⎝⎭n n n n n n n n n n n (5)11(21)(1)(1)(1)(1)++⋅---=-++n n n n n n n n (6)222111(1)2(1)(1)(42)2(1)(42)2(1)2(1)2(1)2+++-++++-++-++==⋅⋅+⋅+⋅+⎡⎤⎣⎦n n n n n n n n n n n n n n n n n n n n n n 1111(1)1111(1)(1)(1))22(1)2222(1)2++++⎡⎤⎡⎤---=+-+=-+⎢⎥⎢⎥⋅+⋅⋅+⋅⎣⎦⎣⎦n n n n n n n n nn n n n n 4、对数型裂项11log log log ++=-n a n aa a n na a a 四、错位相减法求和步骤形如n n n A B C =⋅,其中{}n B 为等差数列,首项为1b ,公差为d ;{}n C 为等比数列,首项为1c ,公比为q .对数列{}n A 进行求和,首先列出n S ,记为①式;再把①式中所有项同乘等比数列{}n C 的公比q ,即得n q S ⋅,记为②式;然后①②两式错开一位作差,从而得到{}n A 的前n 项和。
第六章 数列-专题突破11 数列求和
1 + 4
2
= 1 + 1 + 5 ,化简得21 + 11 2 = 0.又1 = 11,所以 = −2或
= 0(舍去).故 = −2 + 13.
②由①知当 ≤ 6时, > 0;当 ≥ 7时, < 0.
23
2
+ 208
例1(1) 已知数列 = ቊ
则其前21项和为__________.
2 − 1, 为偶数,
3
5
解:21 = 3 2 + 2 + 2 + ⋯ + 2
10× 3+39
2
21
+ 3 + 7 + 11 + ⋯ + 39 = 3 ×
2 1−411
1−4
+
= 223 + 208.故填223 + 208.
=
1
3
1
+ 2
3
所以 =
3
4
1
+ 3
3
1−
则2 − = 2
+
2
32
+
3
33
1
32
+
2
33
+
+
1
⋯+
3
1
+ 4
3
1
3
−
3
4
2+3
4×3
−
2×3
+ ⋯+
3
34
3
4
考向27 数列求和经典题型归纳(十二大经典题型)(原卷版)
考向27 数列求和经典题型归纳经典题型一:通项分析法 经典题型二:公式法 经典题型三:错位相减法 经典题型四:分组求和法 经典题型五:裂项相消法 经典题型六:倒序相加法 经典题型七:并项求和 经典题型八:先放缩后裂项求和 经典题型九:分段数列求和经典题型十:含绝对值、取整、取小数等数列求和 经典题型十一:数列插项求和 经典题型十二:数列奇偶项求和(2022·全国·高考真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112na a a +++<.(2022·天津·高考真题)设{}n a 是等差数列,{}n b 是等比数列,且1122331a b a b a b ==-=-=. (1)求{}n a 与{}n b 的通项公式;(2)设{}n a 的前n 项和为n S ,求证:()1111n n n n n n n S a b S b S b +++++=-;(3)求211(1)nkk k k k a a b +=⎡⎤--⎣⎦∑.一.公式法(1)等差数列{}n a 的前n 项和11()(1)22++==+n n n a a n n S na d ,推导方法:倒序相加法.(2)等比数列{}n a 的前n 项和111(1)11,,=⎧⎪=-⎨≠⎪-⎩n n na q S a q q q,推导方法:乘公比,错位相减法.(3)一些常见的数列的前n 项和: ①112123(1)==++++=+∑nk k n n n ;122462(1)==++++=+∑nk k n n n②21(21)135(21)=-=++++-=∑n k k n n ; ③22222116123(1)(21)==++++=++∑nk k n n n n ;④3333321(1)2123[]=+=++++=∑nk n n k n二.几种数列求和的常用方法(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{}n a 与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.常见的裂项技巧 积累裂项模型1:等差型(1)111(1)1=-++n n n n (2)1111()()=-++n n k k n n k(3)21111()4122121=---+n n n (4)1111(1)(2)2(1)(1)(2)⎡⎤=-⎢⎥+++++⎣⎦n n n n n n n(5)211111()(1)(1)(1)2(1)(1)==---+-+n n n n n n n n n(6)22111414(21)(21)⎡⎤=+⎢⎥-+-⎣⎦n n n n (7)314(1)(3)11114()()(1)(2)(3)(1)(2)(3)2312++-+==---++++++++++n n n n n n n n n n n n n(8)[]1(1)(1)(2)(1)(1).3+=++--+n n n n n n n n (9)[]1(1)(2)(1)(2)(3)(1)(1)(2)4++=+++--++n n n n n n n n n n n (10)1111(1)(2)(3)3(1)(2)(1)(2)(3)⎡⎤=-⎢⎥++++++++⎣⎦n n n n n n n n n n(11)2222211111)(()+=-++n n n n n (12)222211112)42)((⎡⎤+=-⎢⎥++⎣⎦n n n n n 积累裂项模型2:根式型 (111=+++n n n n(21(=+++n k n kn k n(31(2121)22121=+--++n n n n(42211(1)11111(1)(1)1++++==+-+++n n n n n n n n (533322221121+++-+-+n n n n n 3333322233111(21121)+-+-++--+n nn n n n n n n(62(1)1(1)1(1)11(1)(1)+-++-+===++++⎡⎤+-+⎣⎦n n n n n n n n n n n n n n n n n n积累裂项模型3:指数型(1)11112(21)(21)11(21)(21)(21)(21)2121++++---==-------n n n n n n nn n (2)113111()(31)(31)23131++=-----n n n n n(3)122(1)21111(1)2(1)2122(1)2-++-⎛⎫==-⋅=- ⎪+⋅+⋅+⋅+⋅⎝⎭n n n n nn n n n n n n n n n n (4)1111(41)31911333(2)2(2)22-+--⎛⎫⎡⎤-⋅=-⋅=- ⎪⎢⎥+++⎣⎦⎝⎭n n n n n n n n n n n(5)11(21)(1)(1)(1)(1)++⋅---=-++n n n n n n n n (6)1 3-=⋅n n a n ,设1()3[(1)]3-=+--+⋅n n n a an b a n b ,易得11,24==-a b ,于是111(21)3(23)344-=---⋅n n n a n n(7)222111(1)2(1)(1)(42)2(1)(42)2(1)2(1)2(1)2+++-++++-++-++==⋅⋅+⋅+⋅+⎡⎤⎣⎦nn n n n n n n n n n n n n n n n n n n n n1111(1)1111(1)(1)(1)()22(1)2222(1)2++++⎡⎤⎡⎤---=+-+=-+-⎢⎥⎢⎥⋅+⋅⋅+⋅⎣⎦⎣⎦n n n n n n n n n n n n n n 积累裂项模型4:对数型 11log log log ++=-n a n aa a n na a a 积累裂项模型5:三角型 (1)11(tan tan )cos cos sin()=--αβαβαβ(2)[]11tan(1)tan cos cos(1)sin1=+︒-︒︒+︒︒n n n n(3)1tan tan (tan tan )1tan()=---αβαβαβ(4)[]tan tan(1)tan tan(1);tan1tan (1)1tan tan(1)--=⋅-=--=+⋅-n n n a n n n n n ,则tan tan(1)tan tan(1)tan tan(1)1,1tan1tan1----⋅-=-=-n n n n n n n a积累裂项模型6:阶乘(1)1!(1)!1(1)!+=-+n n n n (2)2(2)(2)!(1)!(221111=-!(1)!!(2)!!(2)!2)++++++===++++++n n n n n n n n n n n n n 常见放缩公式: (1)()()21111211<=-≥--n n n n n n ; (2)()2111111>=-++n n n n n ; (3)2221441124412121⎛⎫=<=- ⎪--+⎝⎭n n n n n ; (4)()()()11!111112!!!11+=⋅=⋅<<=-≥---rr n r r n T C r n r n r n r r r r r; (5)()1111111312231⎛⎫+<+++++< ⎪⨯⨯-⎝⎭nn n n;(6(()2121=<=--≥+-+n nn n n n n n ; (7(211=>=++++n n n n n n n ;(8222212111212122=<==--++-++-++n n nn nn n n n ;(9)()()()()()()()1211222211212121212122212121---=<==----------nn n n n n n n n n n n n()2≥n ; (10()()()()3211111111+--=<+---+-+⋅n n n n n n n n n n n n n()()1121111211⎡⎤++-⎢==+---+⎢-+⎣n n n n n n n n n n n ()2211<≥-+n n n ;(11()()()3221111-+--+-⋅+⋅n n n nn n n n nn n n n()()21211--=≥--n nn n nn n;(12)()()01211122221111111=<==--++-+++-n n n n n C C C n n n n ; (13)()()()111121122121212121---<=-≥-----n n n nn n n . (14)21211112()2()+-+++--=<<=-n n n n n nnn n .经典题型一:通项分析法1.(2022·云南民族大学附属中学模拟预测(理))数列112,134,158,1716,,()1212n n -+,的前n 项和n S 的值等于_____________2.(2022·湖南·模拟预测)已知单调递减的正项数列{}n a ,2n ≥时满足()()()22111111210n n n n n n n n n a a a a a a a a a ----+++-++=.112n a S =,为{}n a 前n 项和.(1)求{}n a 的通项公式; (2)证明:11n S n >+3.(2022·全国·高三专题练习)求和()()()22122323322332322n n n n n S --=+++⋅++⋅⋅⋅++⋅+⋅+⋅⋅⋅+.4.数列9,99,999,⋯的前n 项和为( )A .10(101)9nn -+ B .101n - C .10(101)9n- D .10(101)9nn --经典题型二:公式法5.已知等差数列{}n a 中,29a =,521a =. (1)求{}n a 的通项公式;(2)令2na nb =,求数列{}n b 的前n 项和n S .6.如图,从点1(0,0)P 做x 轴的垂线交曲线x y e =于点1(0,1)Q ,曲线在1Q 点处的切线与x 轴交于点2P ,再从2P 做x 轴的垂线交曲线于点2Q ,依次重复上述过程得到一系列点:1P ,1Q ;2P ,2Q ⋯;n P ,n Q ,记k P 点的坐标为(k x ,0)(1k =,2,⋯,)n .(Ⅰ)试求k x 与1k x -的关系(2)k n ; (Ⅱ)求112233||||||||n n PQ P Q PQ P Q +++⋯+.经典题型三:错位相减法7.(2022·浙江·高三开学考试)已知数列{}n a 的前n 项和为n S ,且111,1n n a S a +==-,数列{}n b 为等差数列,且4365231,7a b S b =+=. (1)求{}n a 与{}n b 的通项公式;(2)记nn n b c a=,求{}n c 的前n 项和为n T .8.(2022·广东深圳·高三阶段练习)已知数列{}n a 的前n 项和为n S ,且38n n S a +=. (1)求数列{}n a 的通项公式;(2)若数列{}n na 的前n 项和为n T ,证明:329n T <.9.(2022·河南·高三开学考试(文))在①121n n a a +=+;②122n n S n +=--;③2n n S a n =-,三个条件中任选一个,补充到下面问题的横线处,并解答. 已知数列{}n a 的前n 项和为n S ,且11a =,______. (1)n a ;(2)设n n b na =求数列{}n b 的前n 项和n T .注:如果选择多个条件解答,按第一个解答计分.10.(2022·湖北·应城市第一高级中学高三开学考试)在数列{}n a 中,11111,1,421n n n n a a b a a +==-=-,其中N n *∈. (1)证明数列{}n b 是等差数列,并写出证明过程; (2)设122n nn b b c -=,数列{}n c 的前n 项和为n T ,求n T ;经典题型四:分组求和法11.(2022·河南省杞县高中高三开学考试(文))已知数列{}n a 满足213,21n n a a a +==+,设1n n b a =+.(1)证明:{}n b 是等比数列; (2)求13521n a a a a +++++.12.(2022·广东·高三开学考试)已知数列{}n a 满足13a =,22a =,21,213,2n n n a n k a a n k+-=-⎧=⎨=⎩.(1)求数列{}n a 的通项公式; (2)求数列{}n a 的前2n 项的和2n S .13.(2022·甘肃·高台县第一中学高三开学考试(文))已知公差不为0的等差数列{}n a 满足11a =.若5a ,2a ,1a 成等比数列.(1)求{}n a 的通项公式;(2)设12n n n b a -=+,求数列{}n b 的前n 项和n S14.(2022·河南·高三开学考试(文))已知等比数列{}n a 的公比大于1,26a =,1320a a +=. (1)求{}n a 的通项公式; (2)若12331log log 22n n n n b a a a ++=+,求{}n b 的前n 项和n T .15.(2022·河南·高三开学考试(理))已知等差数列{}n a 的公差为(0)d d >,前n 项和为n S ,等差数列{}n b 的公差为2d ,且13b =,36S =,73a b =. (1)求数列{}n a ,{}n b 的通项公式;(2)设112nan n n c b b +=+,求数列{}n c 的前n 项和n C .经典题型五:裂项相消法16.(2022·安徽·芜湖一中模拟预测)已知数列{}n a 满足:()12121,3,21,n n n a a a a a n *++==+=+∈N .(1)证明数列{}1n n a a +-为等差数列,并求数列{}n a 的通项公式.(2)若524n n c a n ⎛⎫=+- ⎪⎝⎭,证明:121111nc c c +++<.17.(2022·黑龙江·高三开学考试)已知数列{}n a 的首项为1,满足3434a a a a -=,且2n na a +,21n n a a ++,1成等差数列. (1)求{}n a 的通项公式;(2)证明:1232343451214n n n a a a a a a a a a a a a +++++⋅⋅⋅+<.18.(2022·浙江·高三开学考试)已知数列{}n a 为公差不为0的等差数列,且21244,,,a a a a =成等比数列.(1)求数列{}n a 的通项公式;(2)设n S 为数列{}n a 的前n 项和,令1(1)n n n na b S +=-,求数列{}n b 的前2022项和.19.(2022·云南·昆明一中高三开学考试)已知数列{}n a 的前n 项和为,0n n S a >,且2241n n n a a S +=-.(1)求{}n a 的通项公式;(2)设1nn n n S b a a +=的前n 项和为n T ,求n T .20.(2022·安徽·高三开学考试)已知数列{}n a 满足(12122n n a a a a n -+++-=-且)*Nn ∈,且24a =.(1)求数列{}n a 的通项公式;(2)设数列()()1211n n n a a +⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和为n T ,求证:213n T <.21.(2022·全国·高三专题练习)已知数列{}n a 的前n 项和为n S ,且满足12a =,1436n n n a a S ++=+.(1)求n a ;(2)求数列()21n n n n a ⎧⎫+⎪⎪⎨⎬+⎪⎪⎩⎭的前n 项和.22.(2022·河南·高三开学考试(文))已知数列{}n a 是递增的等差数列,3a 是1a 与11a 的等比中项,且25a =.若1n n n b a a +{}n b 的前n 项和n S =( ) A 322n +B 352n +C 325n +D 355n +经典题型六:倒序相加法23.(2022·全国·高三专题练习)德国大数学家高斯年少成名,被誉为数学届的王子,19岁的高斯得到了一个数学史上非常重要的结论,就是《正十七边形尺规作图之理论与方法》.在其年幼时,对123100+++⋯⋯+的求和运算中,提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也称之为高斯算法,现有函数()22x x f x +{}n a 满足()121(0)(1)N n n a f f f f f n n n n *-⎛⎫⎛⎫⎛⎫=+++++∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,若12n n n b a +=,则{}n b 的前n 项和n S =_________.24.(2022·全国·高三专题练习)设函数()12ln xf x x -=+,11a =,()*21N 1,23n n a f f n f f n n n n n -⎛⎫=+++⋅ ⎪⋅⋅+∈≥ ⎪⎝⎛⎫⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭⎝⎭⎭.则数列{}n a 的前n 项和n S =______.25.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)德国大数学家高斯年少成名,被誉为数学界的王子.在其年幼时,对123100++++的求和运算中,提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成;因此,此方法也称之为高斯算法.现有函数4()42xx f x =+,则1232018()()()()2019201920192019f f f f ++++等于( ) A .1008B .1009C .2018D .201926.(2022·全国·高三专题练习)函数()ln f x x =,其中()()2f x f y +=,记()()()11*ln ln ln ln nn n nn S x x y xyy n N --=++++∈,则202211i iS==∑( )A .20222023 B .20232022 C .20234044D .40442023经典题型七:并项求和27.(2022·全国·高三专题练习)数列{}n a 满足12(1)31n n n a a n +++-=-,前16项和为540,则2a =__.28.(2022·全国·高三专题练习(文))在等差数列{an }中,a 3+a 5=a 4+7,a 10=19,则数列{an cos nπ}的前2020项的和为( ) A .1009B .1010C .2019D .202029.(2022·全国·高三专题练习)已知数列{}n a 的通项公式为(1)sin 2n n a n n π=+⋅(n ∈+N ),其前n 项和为n S ,则8S =_______.30.(2022·江苏·高邮市第一中学高三阶段练习)已知数列{}n a 满足120a a +=,(1)22(1)2n n n n a a +++-=,则数列{}n a 的前2020项的和为( )A .0B .1010C .2020D .202431.(2022·河北唐山·一模)已知数列{}n a 满足11a =-,()11112nn n a a n ++-=-,记数列{}n a 的前n 项和为n S . (1)求101S 的值; (2)求n S 的最大值.经典题型八:先放缩后裂项求和32.(2022·黑龙江·哈尔滨市第六中学校高三阶段练习)已知数列{}n a 的前n 项和为n S ,且满足112a =,()1202n n n a S S n -+=≥(1)求n a 和 n S(2)求证:22221231124n S S S S n+++⋯+≤-.33.(2022·全国·高三专题练习)已知数列{}n a 前n 项和为n S 满足12S =,()132n n S S n N *+=+∈.(1)求通项公式n a ; (2)设()n n n a S b n N *=∈,求证:1221 (32)n b b b n +++-≤.34.(2022·全国·高三专题练习)求证:11114313213217n -+++<+⨯+⋅+.经典题型九:分段数列求和35.(2022·湖南·高三阶段练习)已知数列{}n a 中,11a =,12n n n a a +=,令2n n b a =.(1)求数列{}n b 的通项公式;(2)若222,2log log nn n n b n c n b b +⎧⎪⎪=⎨⎪⎪+⎩为奇数为偶数,求数列{}n c 的前14项和.36.(2022·全国·模拟预测)已知数列{}n a 满足11a =,1,,2,.n n na n a a n +⎧=⎨⎩为奇数为偶数 (1)令2n nb a =,求1b ,2b 及{}n b 的通项公式; (2)求数列{}n a 的前2n 项和2n S .37.(2022·全国·高三专题练习)已知数列{}n a 的前n 项和为n S ,且2,,为奇数为偶数⎧=⎨⎩n n n S n n(1)求{}n a 的通项公式;(2)设1n n n b a a +=+,求数列{}n b 的前20项和20T .38.(2022·重庆·高三阶段练习)已知数列{}n a 的前n 项和()2n S n n R λλ=+∈,且36a =,正项等比数列{}n b 满足:11b a =,2324b b a a +=+. (1)求数列{}n a 和{}n b 的通项公式;(2)若2021n n c b =-,求数列{}n c 的前n 项和n T .经典题型十:含绝对值、取整、取小数等数列求和 39.(2022·全国·高三专题练习)已知正项数列{}n a 满足222320nn a a n n--=(n *∈N ). (1)求数列{}n a 的通项公式; (2)令π3|sin |124n n a b =-,记{}n b 的前n 项和为n S ,求2021S .40.(2022·全国·高三专题练习)已知数列{}n a 的前n 项和()2n S n n R λλ=+∈,且36a =,正项等比数列{}n b 满足:11b a =,2324b b a a +=+. (1)求数列{}n a 和{}n b 的通项公式;(2)若2021n n c b =-,求数列{}n c 的前n 项和n T .41.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)已知n S 是数列{}n a 的前n 项和,5(4)n S n n =+(1)求{}n a 的通项公式;(2)设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]2.62=.42.(2022·全国·高三专题练习)若数列{}n a 满足1222a a ==,且21n n n a a a ++=-,则{}n a 的前100项和为( ) A .67B .68C .134D .16743.(2022·上海中学高三期中)已知数列{}n x 满足00x =且112,k k x x k N *-+=+∈,则1232021++++x x x x 的最小值是___________.44.(2022·全国·高三专题练习)已知[]x 表示不超过x 的最大整数,例如:[2.3]2=,[]1.52-=-在数列{}n a 中,[]lg ,n a n n N +=∈,记n T 为数列{}n a 的前n 项和,则2021T = ___________. 45.(2022·浙江·高三专题练习)已知数列24nn a n =-,则数列{}n a 的前n 项和n S =___________.经典题型十一:数列插项求和46.(2022·广东广州·高三开学考试)已知集合{}21,A x x n n *==-∈N ,{}=3,n B x x n *=∈N ,将A 与B 中的所有元素按从小到大的顺序排列构成数列{}n a (若有相同元素,按重复方式计入排列)为1,3,3,5,7,9,9,11,….,设数列{}n a 的前n 项和为n S . (1)若27m a =,求m 的值; (2)求50S 的值.47.(2022·全国·高三专题练习)已知数列{}n a ,{}n b 的通项公式分别为2n a n =,2n n b =,现从数列{}n a 中剔除{}n a 与{}n b 的公共项后,将余下的项按照从小到大的顺序进行排列,得到新的数列{}n c ,则数列{}n c 的前150项之和为( ) A .23804B .23946C .24100D .2461248.(2022·全国·高三专题练习)“提丢斯数列”,是由18世纪德国数学家提丢斯给出,具体如下:0,3,6,12,24,48,96,192,,容易发现,从第3项开始,每一项是前一项的2倍;将每一项加上4得到一个数列:4,7,10,16,28,52,100,196,;再将每一项除以10后得到:“提丢斯数列”:0.4,0.7,1.0,1.6,2.8,5.2,10.0,,则下列说法中,正确的是( ) A .“提丢斯数列”是等比数列B .“提丢斯数列”的第99项为9832410⋅+C .“提丢斯数列”前31项和为30321211010⋅+D .“提丢斯数列”中,不超过20的有9项经典题型十二:数列奇偶项求和49.(2022·全国·高三专题练习)设数列{}n a 是公差大于零的等差数列,已知13a =,22424a a =+.(1)求数列{}n a 的通项公式; (2)设数列{}n b 满足sin ()cos ()n n n a n b a n ππ⎧=⎨⎩为奇数为偶数,求122021b b b ++⋅⋅⋅+.50.(2022·广东佛山·三模)设各项非零的数列{}n a 的前n 项和记为n S ,记123n n T S S S S =⋅⋅⋅⋅⋅,且满足220n n n n S T S T --=.(1)求1T 的值,证明数列{}n T 为等差数列并求{}n T 的通项公式;(2)设(1)nn nc na -=,求数列{}n c 的前n 项和n K .51.(2022·全国·高三专题练习)在数列{}n a 中,15a =,且()*121n n a a n N +=-∈.(1)证明:{}1n a -为等比数列,并求{}n a 的通项公式; (2)令(1)n n n b a =-⋅,求数列{}n b 的前n 项和n S .52.(2022·全国·高三专题练习)已知数列{}n a 满足15a =,214321n n a a n n +=-++.(1)证明:数列{}2n a n-为等比数列.(2)求数列(){}1nn a -的前n 项和n S .53.(2022·江苏·高三专题练习)设n S 为数列{}n a 的前n 项和,*1(1)()2n n n nS a n N +=-∈,则数列{}n S 的前7项和为________.1.(2021·浙江·高考真题)已知数列{}n a 满足)111,N 1nn na a n a *+==∈+.记数列{}n a 的前n 项和为n S ,则( ) A .100332S << B .10034S << C .100942S <<D .100952S <<2.(2020·江苏·高考真题)设{an }是公差为d 的等差数列,{bn }是公比为q 的等比数列.已知数列{an +bn }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是_______.3.(2022·全国·高考真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112na a a +++<.4.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列. (1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <.5.(2020·天津·高考真题)已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;(Ⅲ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.6.(2020·全国·高考真题(理))设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.7.(2020·全国·高考真题(理))设数列{an }满足a 1=3,134n n a a n +=-. (1)计算a 2,a 3,猜想{an }的通项公式并加以证明; (2)求数列{2nan }的前n 项和Sn .8.(2021·全国·高考真题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折n 次,那么1nkk S==∑______2dm .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列求和例1:已知公差不为的等差数列中,,且,,成等比数列.(1)求数列的通项公式; (2)设数列满足,求适合方程的正整数的值.【答案】(1);(2).【解析】(1)由题意可得,即, 解得,则. (2),, , 解得.例2:已知数列的前项和为,,,等差数列中,,且,,,成等比数列.(1)求数列、的通项公式; (2)求数列的前项和.0{}n a 12a =21a +41a +81a +{}n a {}n b 3n nb a =122314531n n b b b b b b ++++=31n a n =-202428(1)(1)(1)a a a +=++2(33)(3)(37)d d d +=++3d =1(1)23(1)31n a a n d n n =+-=+-=-3331n n b a n ==-19113()(31)(32)3132n n b b n n n n +==--+-+1223111111111453()3()2558313223231n n b b b b b b n n n ++++=-+-++-=⨯-=-++20n ={}n a n n S 11a =121()n n a S n *+=+∈N {}n b 0()n b n *>∈N 12315b b b ++=34b 27{}n a {}n b {}n n a b n n T 1、裂项相消求和2、错位相减求和【答案】(1),;(2).【解析】(1)∵,,∴, ∴,即,∴, 而,∴,∴数列是以为首项,为公比的等比数列, ∴.在等差数列中,∵,∴, 又,,成等比数列,得, 又,故公差,所以,,又,∴. (2)由(1)知①,∴②,∴①-②得,∴.例3:已知数列,是其前项的和,且满足.(1)求证:数列为等比数列; (2)记,求的表达式.13()n n a n -*=∈N 21()n b n n *=+∈N 3nn T n =⋅11a =121()n n a S n *+=+∈N 121(,1)n n a S n n *-=+∈>N 1n n a a +-=12()n n S S --12n n n a a a +-=13(,1)n n a a n n *+=∈>N 21213a a =+=213a a ={}n a 1313()n n a n -*=∈N {}n b 12315b b b ++=25b =34b 2749b =±0n b >0d >49b =2d =25b =21()n b n n *=+∈N 221315373(21)3(21)3n n n T n n --=⨯+⨯+⨯++-⋅++333n T =⨯+2315373(21)3(21)3n n n n -⨯+⨯++-++23123123232323(21)3n nn T n --=⨯+⨯+⨯+⨯++⨯-+23133323333(21)33213()nn nn --=+++++-+=+⨯-(21)33(21)323n n n n n n n -+=-+=-⋅3nn T n =⋅{}n a n S n *32()n n a S n n =+∈N {12}n a +12n n T S S S =++⋅⋅⋅+n T 3、分组求和【答案】(1)证明见解析;(2). 【解析】(1)∵,∴, 两式相减得, ∴,∴, 又,∴数列是以为首项,为公比的等比数列. (2)由(1)得,∴, ∴, ∴ .一、解答题1.设等差数列的公差为,等比数列的公比为,且,.(1)求数列的通项公式; (2)求数列的前项和.【答案】(1);(2).2239484n n n nT +-+=-32n n a S n =+11321(2)n n a S n n =+-≥﹣﹣1321(2)()n n n a a a n =+≥-﹣1()312n n a a n =+≥﹣111322()n n a a +=+﹣11322a +={12}n a +323113133222n n n a +=⋅=⋅﹣11133122(2)n n n a =⋅-=﹣12[()](113(13)333332213)42n n nn n S n n +--=++⋅⋅⋅+=--=--23112131(3333)(12)442n n n n n T S S S n +=++⋅⋅⋅+=++⋅⋅⋅++--++⋅⋅⋅+22213(13)3(1)3944134484n n n n n n n +-+-+=⋅--=--{}n n a b -2{}n n a b +212a =11b ={}n a {22}n n a +n n S 121322n n n a --+⨯=2525n n S n =⨯+-【解析】(1)因为,,所以,, 依题意可得,,故.(2)由(1)可知, 故 .2.已知等差数列中,,且,,成等比数列. (1)求数列的通项公式及前项和; (2)设,求数列的前项和.【答案】(1),;(2). 【解析】(1)设等差数列的公差为,∵,且,,成等比数列,∴, 即,解得或. 当时,,不合题意,舍去,∴, ∴,. (2)∵,∴当为偶数时,;当为奇数时,, ∴数列的奇数项是以为首项,为公比的等比数列; 偶数项是以为首项,为公比的等比数列,12a =11b =111a b -=113a b +=12(1)21n n a b n n -=+-=-132n n n a b -+=⨯121322n n n a --+⨯=1222152n n n a n -+=-+⨯113215122(121)()()5(221)n n n S n n n -+-=+=+++-+⨯+++⨯-2525n n =⨯+-{}n a 11a =1a 2a 42a +{}n a n n S (1)2n na nb -={}n b 2n 2n T 21n a n =-2n S n =281(16)1516n n n T =⨯-{}n a d 11a =1a 2a 42a +2214(2)a a a =+2(1)1(132)d d +=⨯++2d =1d =-1d =-20a =2d =12(1)21n a n n =+-=-21()2n n a a nS n +==(1)(1)(21)22n nna n nb ---==n 232212162n n n n b b ++-==n (23)2(21)21216n n n n b b -++--=={}n b 12116816∴数列的前项的和.3.已知函数的图像经过点和,,.(1)求;(2)设数列的前项和为,,求的前项和.【答案】(1),;(2). 【解析】(1)由函数的图象经过点和,得,解得,所以,.(2)由(1)知数列为以为首项,为公差的等差数列, 所以,得,∴.4.在数列中,,且.(1)证明:数列是等差数列; (2)求数列的前项和. {}n b 2n 2135212462()()n n n T b b b b b b b b -=+++++++++11()[1()]8(116)81216(16)11161516116n n n n ⨯-⨯-=+=⨯---3()log ()f x ax b =+(2,1)A (5,2)B n a an b =+*n ∈N n a {}n a n nS 2n b n =+{}n b n n T 21n a n =-*n ∈N 1222n n T n n +=++-3()log ()f x ax b =+(2,1)A (5,2)B 33log (2)1log (5)2a b a b +=⎧⎨+=⎩21a b =⎧⎨=-⎩21n a n =-*n ∈N {}n a 122(1)22n n n S n n -=+⨯=222n n b n n =+=+123(212)(222)(232)(22)n n T n =⨯++⨯++⨯+++⨯+1232(123)(2222)n n =⨯+++++++++12(1)2(12)222212n n n n n n ++-=⨯+=++--{}n a 14a =21(1)22n n na n a n n +-+=+{}na n1{}na n n S【答案】(1)证明见解析;(2). 【解析】(1)的两边同除以, 得, 又,所以数列是首项为,公差为的等差数列. (2)由(1)得,即,∴, 故, 所以. 5.已知数列中,,. (1)设,求数列的通项公式; (2)若,求数列的前项和. 【答案】(1);(2). 【解析】(1)∵,∴, 又,∴,即数列是公差为的等差数列, 又,∴. (2)由(1)知, 2(1)n nS n =+21(1)22n n na n a n n +-+=+(1)n n +121n na a n n+-=+141a ={}n an4212(1)n a a n n =+-22n an n=+222n a n n =+211111()2221na n n n n ==-++11111111[(1)()()](1)22231212(1)n nS n n n n =-+-++-=-=+++}{n a 11a =121nn n a a a +=+1n nb a =}{n b 1n n n c a a +=⋅}{n c n n S 21n b n =-21n nS n =+121n n n a a a +=+121112n n n na a a a ++==+1n nb a =12n n b b +=+}{n b 21111b a ==12(1)21n b n n =+-=-1121n n a b n ==-∴, ∴. 6.已知数列满足,. (1)求数列的通项公式; (2)设,数列的前项和为,求证:. 【答案】(1);(2)证明见解析. 【解析】(1)因为,所以, 从而,,…,, 累加可得,所以,因为适合,所以. (2),,. 7.已知数列前项和为,,. (1)求数列的通项公式;(2)若,求数列的前项和.【答案】(1);(2). 【解析】(1)由题知,即, 111111()212122121n n n c a a n n n n +=⋅=⋅=--+-+11111111[(1)()()](1)2335212122121nnS n n n n =-+-++-=-=-+++{}n a 13a =*123()n n n a a n +=+⋅∈N {}n a 13log n n b a =11{}n n b b +n n T 1n T <*3()n n a n =∈N 123n n n a a +=+⋅123n n n a a +-=⋅12123a a -=⋅23223a a -=⋅1123(2)n n n a a n ---=⋅≥112113(13)23232323313n n n n a a ----=⋅+⋅++⋅=⨯=--3n n a =13a =n a *3()n n a n =∈N 1133log log 3n n n b a n ===-11111(1)1n n b b n n n n +==-++1111111111()()()11(1)122311n n n T b b n n n n n +===-+-++-=-<+++{}n a n n S 12a =13(1)(2)n n n S S n a n+=+++{}n a n n b a n =+{}n b n n T 3nn a n n =⨯-1(21)3344n n n T +-=+113(1)(2)n n n n a a S S n n ++=-=++1321n n a an n+=⨯++即, ∵,∴,∴, ∴数列是首项为,公比为的等比数列, ∴,∴. (2)由(1)知,,∴,①∴,②①②,得, ∴. 8.数列是等比数列,公比不为,,且,,成等差数列.(1)设数列的前项和为,求;(2)设,为数列的前项和,求不超过的最大整数.【答案】(1);(2). 【解析】(1)由题意得,设的公比为(),则,解得, ∴,则, ∴,113(1)1n n a an n++=++12a =1130a +=≠10na n+≠{1}na n+3313n na n+=3n n a n n =⨯-3nn b n =⨯231323333n n T n =⨯+⨯+⨯++⨯23131323(1)33n n n T n n +=⨯+⨯++-⨯+⨯-123113(13)(12)3323333331322n n n n n n n T n n +++---=++++-⨯=-⨯=--1(21)3344n n n T +-=+{}n a 113a =13a 22a 3a {}n na n n S n S 321log n n b a -=n T 2143{}n n n b b ++⋅n 2019T 113(21)344n n S n +=-⋅+202021343a a a =+{}n a q 1q ≠2430q q -+=3q =3n n a =3n n na n =⋅121323(1)33n n n S n n -=+⨯++-⨯+⨯则,两式相减得,∴.(2)由(1)得,令,则, ∴, ∴, 故不超过的最大整数为.9.已知是等差数列,其前项和为,是等比数列,且,,.(1)求数列与的通项公式; (2)记,,证明:(,).【答案】(1),;(2)证明见解析. 【解析】(1)设等差数列的公差为,等比数列的公比为, 由,得,,,由条件,得方程组,解得, 所以,,.2313323(1)33n n n S n n +=+⨯++-⨯+⨯1211233333n n n n S n -+-=++++-⨯113(21)344n n S n +=-⋅+321log 21n n b a n -==-2143n n n n c b b ++=⋅2224344111112()4141(21)(21)2121n n c n n n n n n +==+=+=+----+-+1111112[(1)()()]2(1)335212121n T n n n n n =+-+-++-=+--++201922021(2020,2021)4039T =-∈2019T 2020{}n a n n S {}n b 112a b ==4427a b +=4410S b -={}n a {}n b 112233n n n T a b a b a b a b =++++*n ∈N 118n n n T a b -+-=*n ∈N 2n ≥()*31n a n n =-∈N ()*2n n b n =∈N {}n a d {}n b q 112a b ==423a d =+342b q =486S d =+332322786210d q d q ⎧++=⎪⎨+-=⎪⎩32d q =⎧⎨=⎩31n a n =-2n n b =*n ∈N(2)由(1)得,①,②由①②,得,即,而当时,, 所以,,.23225282(31)2n n T n =⨯+⨯+⨯++-⨯23122252(34)2(31)2n n n T n n +=⨯+⨯++-⨯+-⨯-23122323232(31)2n n n T n +-=⨯+⨯+⨯++⨯--⨯1114(12)3(31)24(34)2812n n n n n -++⨯-=⨯--⨯+=--⨯--18(34)2n n T n +-=-⨯2n ≥111(34)2n n n a b n +-+=-⨯118n n n T a b -+-=*n ∈N 2n ≥。