【生物学】第六章酶的非水相催化
酶的非水相催化
酶在有机介质中起催化作用时,由于有机溶剂的极性与水有很大差 别,对酶的表面结构、活性中心的结合部位和底物性质都会产生一定的 影响,从而显示出与水相介质中不同的催化特性
底物特异性 立体选择性 位置特异性 化学选择性 热稳定性
底物特异性: 底物特异性:是指酶具有区分两个结构相 似的不同底物的能力。 似的不同底物的能力。它取决于底物疏 水性能的差异。 水性能的差异。
底物的种类和浓度
有机溶剂的种类
水含量
温度
pH
离子强度
化学选择性: 化学选择性:酶选择性地催化底物分子 中不同功能基团中某个基团的反应的特 性。
热稳定性:分为两种情况, 热稳定性:分为两种情况,一种是酶处 于高温中, 于高温中,随着时间延长逐步发生的不 可逆的失去活性;另一种是由热诱导产 可逆的失去活性; 生的酶分子整体伸展失活, 生的酶分子整体伸展失活,这种通常是 瞬间的、可逆的失活。 瞬间的、可逆的失活。
本章 目录
6.4 有机介质中酶催化反应的条件及 其控制
酶在有机介质中可以催化多种反应,主要包括:合成反应、转 移反应、醇解反应、氨解反应、异构反应、氧化还原反应、裂 合反应等。 主要应控制的条件有
酶的种类和浓度 底物的种 本章 目录
酶的种类和浓度
在有机介质中进行的酶促反应,可以省略产物的萃取分离过程 提高收率。 在有机介质中进行的酶促反应,可以省略产物的萃取分离过程, 提高收率。
某些酶在有机介质与水溶液中的热稳定性
酶 猪胰脂肪酶 酵母脂肪酶 脂蛋白脂肪酶 胰凝乳蛋白酶 枯草杆菌蛋白酶 核糖核酸酶 酸性磷酸酶 腺苷三磷酸酶 ( F1-ATPase) 限制性核酸内切酶 (Hind Ⅲ) β-葡萄糖苷酶 溶菌酶 介质条件 三丁酸甘油酯 水, pH7.0 三丁酸甘油酯/庚醇 水,pH7.0 甲苯,90℃,400 h 正辛烷,100℃ 水,pH 8.0, 55℃ 正辛烷,110℃ 壬烷,110℃,6 h 水,pH 8.0, 90℃ 正十六烷,80℃ 水,70℃ 甲苯,70℃ 水, 60℃ 正庚烷,55℃,30d 2-丙醇,50℃,30 h 环己烷,110℃ 水90℃ 热稳定性 T1/2 < 26 h T1/2 < 2 min T1/2 =1.5 h T1/2 < 2 min 活力剩余40% T1/2 = 80 min T1/2 = 15 min T1/2 = 80 min 活力剩余95% T1/2 < 10 min T1/2 = 8 min T1/2 = 1 min T1/2 > 24 h T1/2 < 10 min 活力不降低 活力剩余80% T1/2 =140 min T1/2 = 10 min
第六章 酶的非水相催化 PPT
2)具有良好的化学稳定性,对设备没有腐蚀性; 3)超临界温度不能太高或太低,最好在室温附近或在
酶催化的最适温度附近; 4)超临界压力不能太高,可节约压缩动力费用; 5)超临界流体要容易获得,价格要便宜等。
Klibanov A M. Enzyme memory-what is remembered and why? [J]. Nature, 1995, 374: 596-600.
一、酶非水相催化的几种类型
2、气相介质中的酶催化 定义:气相介质中的酶催化是指酶在气相介
质中进行的催化反应。 特点:
酶非水相催化的几种类型
4、离子液介质中的酶催化:
离子液介质中的酶催化是指酶在离子液中进 行的催化作用。
离子液(ionic liquids)是由有机阳离子与有机(无机) 阴离子构成的在室温条件下呈液态的低熔点盐类,挥发 性低、稳定性好。酶在离子液中的催化作用具有良好的 稳定性和区域选择性、立体选择性、键选择性等显著特 点。
卤化物的水解等; (4)容易分离回收; (5)无微生物污染;
酶的非水相催化
非水相酶催化的相关问题
★在完全无水的情况下,酶是无活性的,极少量的水就 会激发酶的活性;但含水量低于最适水量时,酶会失去 催化活性。
★有机溶剂可能直接与酶分子水合层中的必须水发生反 应,影响酶的结构和功能,尤其是极性较强的溶剂,它 可以溶解大量的水,将酶分子水合层中的必须水剥离掉, 导致酶失活,相对来讲,疏水性溶剂对水的溶解能力较 低,故对酶活和结构影响较小。
酶的非水相催化
酶的非水相催化 酶在非水介质中进行的催化作用称为酶的非
水相催化。 在非水相中,酶分子受到非水相介质的影响,
酶非水相催化的名词解释
酶非水相催化的名词解释酶非水相催化是一种特殊的生物化学反应过程,其特点是在无水环境中,通过酶作用催化生物分子的转化。
在酶非水相催化中,不同于传统的酶催化过程,水分子并不直接参与反应,而是由其他非水相溶剂来替代。
这种非水相催化的特性赋予了酶非常高的催化活性和选择性。
酶非水相催化的概念源于生物体内一些特殊的蛋白质,即金属蛋白和脱水酶。
这些蛋白质具有能够在缺水环境下活跃的特性。
在生物体内,金属离子可以起到酶的活性中心的作用,而脱水酶则可以在非常干燥的环境下,通过形成氢键网络来稳定酶的结构,并促进催化反应的进行。
酶非水相催化的研究对于认识生物体内酶催化反应的本质以及开发新型催化剂具有重要的意义。
通过研究酶非水相催化过程,科学家们可以揭示酶活性中心的结构和功能,以及介观生物学的规律。
此外,酶非水相催化还可以为合成有机化合物提供新思路和新方法,通过模拟生物体内的催化反应,可以设计和合成出高效、高选择性的催化剂。
在研究酶非水相催化的过程中,科学家们不仅仅关注酶本身,还对非水相溶剂的选择和影响进行了深入研究。
非水相溶剂可以影响酶非水相催化的活性和选择性,不同的溶剂性质会对酶的构象和催化效果产生直接的影响。
同时,科学家们还研究了不同非水相催化体系之间的相互作用,以及非水相溶剂的理论模拟和定量描述。
酶非水相催化的应用范围非常广泛。
在传统的酶催化反应中,水分子的存在常常会引起反应的副反应,限制了反应的效率和产率。
而在非水相催化反应中,由于水分子的排除,反应体系更为干燥,酶的活性得到了有效提升。
酶非水相催化可以应用于生物医学、制药、有机合成等领域,用于合成生物活性物质、开发新药物和催化有机反应等。
总结起来,酶非水相催化是一种在无水环境中利用酶催化生物分子转化的特殊过程。
通过研究酶非水相催化,我们可以认识酶的活性中心结构和功能,揭示生物催化的规律,为合成有机化合物提供新的思路和方法。
此外,酶非水相催化还有广泛的应用前景,可以应用于医学、制药和有机合成等领域。
酶的非水相催化考研考点总结
酶的非水相催化考研考点总结●水相酶反应的限制●仅限于水溶性底物●大部分有机物在水中溶解性差●水会引发副反应或造成产物分解●不利于反应平衡向产物推进●产物回收困难●非水相催化的优势●增加非极性底物的溶解度●使某些原本在水相不能进行的反应顺利进行,如肽的合成、酯的合成等●可减少在水相容易发生的副反应,如酸酐的水解、卤化物的水解等●容易分离回收●无微生物污染●相关问题●非水相并不代表完全无水,完全无水的情况下酶是无活性的●极性较强的溶剂可能剥离掉酶分子中必须的水,导致酶失活;而疏水性溶剂对水的溶解能力较低●在无水溶剂中,酶蛋白分子的刚性增加,空间构象较难发生改变●非水相催化的类型●有机介质中的酶催化●气相介质中的酶催化●超临界流体介质中的酶催化●离子液介质中的酶催化由有机阳离子与有机(无机)阴离子构成的在室温条件下呈液态的低熔点盐类●非水相催化的体系●与水不溶性有机溶剂组成的两相或多相体系●(正)胶束体系●反胶束体系●与水溶性有机溶剂组成的均一体●微水介质体系●酶非水相催化的影响因素●水●水对酶分子构象的影响酶分子需要一层水化层,以维持其完整的空间构象●水对酶催化反应速度的影响●水活度在有机介质体系中,酶的催化活性随着结合水量的增加而提高●有机溶液●有机溶剂对酶结构与功能的影响在有机溶剂中,酶分子(经过修饰后可溶于有机溶剂者除外)不能直接溶解,而是悬浮在溶剂中进行催化反应●有机溶剂对酶分子表面结构的影响●有机溶剂对酶活性中心结合位点的影响溶剂有可能渗入到酶分子的活性中心,与底物竞争活性中心的结合位点●有机溶剂对酶活性的影响有机溶剂的极性越强,越容易夺取酶分子结合水●有机溶剂对底物和产物分配的影响●酶的催化特性●底物专一性可能受影响●对映体选择性●区域选择性酶能够选择底物分子中某一区域的基团优先进行反应●健选择性●热稳定性更好●pH值特性:pH记忆●非水相催化条件的控制●水含量●酶的选择●底物的选择和浓度控制●有机溶剂的选择●温度控制。
Chapter 6 酶的非水相催化(上)
1984年,克利巴诺夫(Klibanov)等人在“Science”上
报道在有机介质中进行了脂肪酶催化反应的研究,成功地
在利用酶在有机介质中的催化作用获得酯类、肽类、手性 醇等多种有机化合物。 明确指出酶可以在水与有机溶剂的互溶体系中进行催化 反应。
酶非水相催化:酶在非水介质中的催化作用。
20多年来,科技工作者对酶在非水相介质中催化反应研究十 分活跃,并取得突破性进展。
反胶束体系的优点
组成灵活、热力学稳定
漆酶在反胶束体系中的活性约为水中的60倍
过氧化物酶约为水中的100倍 酸性磷酸酶约为水中的200倍
界面积大 可通过相调节来实现产物回收
既能为反应物和产物提供有机相,又能为酶分子维持
其活性提供稳定的微环境
反胶束体系的应用
研究最多的是肽的合成和脂肪酶的催化反应。
合物,与多种溶剂组成两相体系
研究进展
研究1: 硝酸乙基胺(体积分数为10%)对从E.coli中提取碱性 磷酸脂肪酶具有活化作用。 研究2: 嗜热菌蛋白酶在1-丁基-3-甲基咪唑六氟磷酸中转化率
可达40%。
研究3: 南极洲假丝酵母脂肪酶B在离子液PF6 、BF4中跟有和 传统有机溶剂有相同的催化速率。
2、与水互溶的有机溶剂-水单相均一体系
3、非极性有机溶剂—水两相/多相体系 4、胶束体系 正胶束体系 反胶束体系
不管用何种有机介质反应体系,酶催化反应的介质中都含 有机溶剂和一定量的水,都对催化反应有显著的影响。
1、非极性有机溶剂—酶悬浮体系(微水介质体系)
用非极性有机溶剂取代大部分水溶液,使固体酶悬浮在 有机相中,但仍然含有必需的结合水以保持酶的催化活 性(含水量一般小于2%)。
(高考生物)生物学第六章酶的非水相催化
(生物科技行业)生物学第六章酶的非水相催化第六章酶的非水相催化◆人们以往普遍认为只有在水溶液中酶才具有催化活性。
◆酶在非水相介质中催化反应的研究:在理论上进行了非水介质(包括有机溶剂介质,超临界流体介质,气相介质,离子液介质等)中酶的结构与功能、非水介质中酶的作用机制,非水介质中酶催化作用动力学等方面的研究,初步建立起非水酶学(non-aqueousenzymology)的理论体系。
◆非水介质中酶催化作用的应用研究,取得显著成果。
1.酶非水相催化的研究概况◆酶在非水介质中进行的催化作用称为酶的非水相催化。
1.1有机介质中的酶催化:◆有机介质中的酶催化是指酶在含有一定量水的有机溶剂中进行的催化反应。
◆适用于底物、产物两者或其中之一为疏水性物质的酶催化作用。
◆酶在有机介质中由于能够基本保持其完整的结构和活性中心的空间构象,所以能够发挥其催化功能。
◆酶在有机介质中起催化作用时,酶的底物特异性、立体选择性、区域选择性、键选择性和热稳定性等都有所改变。
1.2气相介质中的酶催化:◆气相介质中的酶催化是指酶在气相介质中进行的催化反应。
◆适用于底物是气体或者能够转化为气体的物质的酶催化反应。
◆由于气体介质的密度低,扩散容易,所以酶在气相中的催化作用与在水溶液中的催化作用有明显的不同特点。
1.3超临界流体介质中的酶催化:◆超临界介质中的酶催化是指酶在超临界流体中进行的催化反应。
◆用于酶催化反应的超临界流体应当对酶的结构没有破坏作用,对催化作用没有明显的不良影响;具有良好的化学稳定性,对设备没有腐蚀性;超临界温度不能太高或太低,最好在室温附近或在酶催化的最适温度附近;超临界压力不能太高,可节约压缩动力费用;超临界流体要容易获得,价格要便宜等。
1.4离子液介质中的酶催化:◆离子液介质中的酶催化是指酶在离子液中进行的催化作用。
◆离子液(ionicliquids)是由有机阳离子与有机(无机)阴离子构成的在室温条件下呈液态的低熔点盐类,挥发性低、稳定性好。
酶非水相催化
2、有机溶剂对酶活性的影响
极性较强的有机溶剂,如甲醇,乙醇等,会夺 取酶分子的结合水,影响酶分子微环境的水化层, 从而降低酶的催化活性,甚至引起酶的变性失活。 因此应选择好所使用的溶剂,控制好介质中的含 水量,或者经过酶分子修饰提高酶分子的亲水性, 避免酶在有机介质中因脱水作用而影响其催化活 性。
酶非水相催化
Enzyme non-aqueous actalysis enzyme catalysis in non-aqueous phase
09生物(一)班 薛艳静 0966121135
酶的非水相催化:酶在非水介质中的催 酶的非水相催化 化作用。 反应机理:是通过改变反应介质,影 反应机理 响酶的活性中心,使得酶存在的状态 与酶结构发生了改变,从而改进酶的 催化特性。
三、有机溶剂对有机介质中酶催化的 影响
常用的有机溶剂有辛烷,正己烷,苯,吡 啶,季丁醇,丙醇,乙腈,已酯,二氯甲烷等。 在有机介质酶催化反应中,有机溶剂对酶 的活性、酶的稳定性、酶的催化特性和酶催化 速度等有显著的影响。
1、有机溶剂对酶结构与功能的影响
在水溶液中,酶分子均一地溶解于水溶液中, 可以较好地保持其完整的空间结构。在有机溶剂 中,酶分子不能直接溶解,而是悬浮在溶剂中进 行催化反应。根据酶分子的特性和有机溶剂的特 根据酶分子的特性和有机溶剂的特 性的不同, 性的不同,保持其空间结构完整性的情况也有所 差别
(1)有机溶剂对酶分子表面结构的影响 酶在有机介质中与有机溶剂接触,酶分子的 表面结构将发生变化。例如:枯草杆菌蛋白酶晶 体,原来有119个与酶分子结合的水分子,悬浮 于乙腈后,与酶分子结合的水分子只有99个,而 有12个乙腈分子结合到酶分子中,其中有4个事 原来水分子结合的位点
(2)有机溶剂对酶活性中心结合位点的影响 当悬浮于有机溶剂中,有一部分溶剂能渗入到 酶分子的活性中心,与底物竞争活性中心的结合 位点,降低底物的结合能力,从而影响酶的催化 活性。此外,有机溶剂分子进入没得活性中心, 会降低活性中心的极性,可能降低酶与底物的结 合能力。
酶的非水相催化
离子液介质中的酶催化
酶在离子液中进行的催化作用。离子液(ionic liquids)是由有机
阳离子与有机(无机)阴离子构成的在室温条件下呈液态的低熔点盐类,
挥发性低、稳定性好。酶在离子液中的催化作用具有良好的稳定性和区
域选择性、立体选择性、键选择性等显著特点。
本章
目录
6.2 有机介质反应体系
非极性有机溶剂酶悬浮体系(微水介质体系) 用非极性有机溶剂取代所有的大量水,使固体酶悬浮在有机相中。但
反应体系中水对酶催化反应的影响
酶都溶于水,只有在一定量的水存在的条件下,酶分子才能进行 催化反应。所以酶在有机介质中进行催化反应时,水是不可缺少 的成分之一。有机介质中的水含量多少对酶的空间构象、酶的催 化活性、酶的稳定性、酶的催化反应速度等都有密切关系,水还 与酶催化作用的底物和反应产物的溶解度有关。
本章 目录
6.3 酶在有机介质中的催化特性
酶在有机介质中起催化作用时,由于有机溶剂的极性与水有很大差 别,对酶的表面结构、活性中心的结合部位和底物性质都会产生一定的 影响,从而显示出与水相介质中不同的催化特性
底物特异性 立体选择性 区域选择性 键选择性 热稳定性
有机介质酶催化反应的优点
是否存在非水介质能保证酶催化??
1984年,克利巴诺夫(Klibanov)等人在有机介质中进行了酶催化反 应的研究,他们成功地在利用酶有机介质中的催化作用,获得酯类、肽 类、手性醇等多种有机化合物,明确指出酶可以在水与有机溶剂的互溶 体系中进行催化反应。
酶非水相催化的几种类型
有机介质中的酶催化 有机介质中的酶催化是指酶在含有一定量水的有机溶剂中进行的催 化反应。适用于底物、产物两者或其中之一为疏水性物质的酶催化 作用。酶在有机介质中由于能够基本保持其完整的结构和活性中心 的空间构象,所以能够发挥其催化功能。
酶非水相催化
黏合剂、导电聚合物和发光聚合物等)。
15
3.与水不溶性有机溶剂组成的两相或多相体系
概念:是指由水和疏水性较强的有机溶剂组成的两相
或多相反应体系。
反应体系中酶的存在形式:游离酶以溶解状态存在;
固定化酶以悬浮形式存在。
➢催化反应通常在两相界面进行;
➢适用于底物和产物两者或其中一种属于疏水化合物的催
化反应;
具有与水溶液中可比的催化活性。5用于酶 Nhomakorabea催
化
的
非
水
介
质
包
括
① 含微量水的有机溶剂
② 与水混溶的有机溶剂和水形成的均一体系
③ 水与有机溶剂形成的两相或多相体系
④ 胶束与反胶束体系
⑤ 超临界流体
⑥ 气相
⑦ 离子液
它们不同于标准的水溶液体系,在这些体系中水含量
受到不同程度的严格控制,因此又称为非常规介质。
特性:酶的底物特异性、立体选择性、区域选择
性、键选择性、热稳定性等有所改变。
应用:多肽、酯类、甾体转化、功能高分子合成、
手性药物拆分的研究。
9
二、气相介质中的酶催化
指酶在气相介质中进行的催化反应。
适用范围:底物是气体或者能够转化为气体物质的酶
催化反应。
特性:气体介质密度低,扩散容易;与在水相中明显
离子液是由有机阳离子与有机/无机阴离子构成的在室
温条件下呈液态的低熔点盐类,挥发性好,稳定性好。
酶反应具有良好的稳定性和区域选择性、立体选择性、
键选择性等优点。
13
第二节 有机介质中水和有机溶剂
对酶催化反应的影响
一、有机介质反应体系
1、微水介质体系
酶的非水相催化
一、酶非水相催化的几种类型
1、有机介质中的酶催化
克利巴诺夫(Klibanov)研究表明:酶在一定浓度的 有机溶剂中具有一定的“分子记忆”效应,这种记忆是 因为酶存在配体而产生的,当配体被移走后,由于大量 有机溶剂存在状态下酶构象的高度刚性, 使得这种与 配体具有高亲和性的构象得以保持,而过量水的介入会 加速这种记忆丧失。
空间构象和催化活性至关重要。另外有一部分水分配在 有机溶剂中。 ◆通常所说的有机介质反应体系主要是指微水介质体系。
.
二、酶非水相催化的几种体系
(一)、有机介质反应体系
(2)与水溶性有机溶剂组成的均一体系: ◆这种均一体系是由水和极性较大的有机溶剂互相混溶
组成的反应体系。 ◆酶和底物都是以溶解状态存在于均一体系中。由于极
.
1 酶催化反应的介质
水是酶促反应最常用的反应介质。
但对于大多数有机化合物来说,水并不是一种适宜的溶剂。因为 许多有机化合物(底物)在水介质中难溶或不溶。 由于水的存在,往往有利于如水解、消旋化、聚合和分解等副反 应的发生。
是否存在非水介质能保证酶催化??
1984年,美国MIT的克利巴诺夫(Klibanov)等人在有机介质中进行 了酶催化反应的研究,他们成功地在利用酶有机介质中的催化作用,获 得酯类、肽类、手性醇等多种有机化合物,明确指出酶可以在水与有机 溶剂的互溶体系中进行催化反应。 .
.
酶的非水相催化
类型
有机介质
气相介质
离子介质 超临界介质
.
一、酶非水相催化的几种类型
1、有机介质中的酶催化: 有机介质中的酶催化是指酶在含有一定量水
的有机溶剂中进行的催化反应。 特点:
1)适用于底物、产物两者或其中之一为疏水性物质的 酶催化作用。
酶的非水相催化
异性、立体选择性、区域选择性、键选 在有机介质酶催化反应中,有机溶剂对酶的活力、酶的稳定性、酶的催化特性及酶催化速度等都有显著影响。
产物是:酯类、肽类、手性醇等有机化合物
择性和热稳定性等都有所改变。 因此,作为催化介质使用的有机溶剂必须通过实验进行选择、确定。
二、气相介质中的酶催化
气相介质中的酶催化是指酶在气相介 质中进行的催化反应。
适用于底物是气体或者能够转化为气 体的物质的酶催化反应。
由于气体介质的密度低,扩散容易,
所以酶在气象介质中的酶催化作用与在 水溶液中的催化作用有明显的不同特点 。
。 有机溶剂中酶对底物的对映体选择性由于介质的亲(疏)水性的变化而发生改变,例如胰凝乳蛋白酶,胰蛋白酶、枯草杆菌蛋白酶、弹性
蛋白酶等蛋白水解酶对于底物N—Ac-A1a—OetCl(N—乙酰基丙氨酸氯乙酯)的立体选择因子[即(kcaL/Km)l/(kcat/Km)D的比值]在有
aw=rwXw
体系
是
由
水
和
极
性
较
大
的
有
机
溶
剂
互
相混合组成的反应体系。 三、超临界流体介质中的酶催化
酶催化过程,pH值影响酶活性中心基团和底物的解离状态,直接影响酶的催化活性; 第三节
酶和反 酶在有机介质中的催化特性
而最佳水活度与溶剂的极性大小无关。
应
底
物
都
是
以
溶
解
状
态
存
在
均
一
体
第六章酶的非水相催化
第六章酶的非水相催化教学目的:使学生了解并掌握酶非水相催化的概念及意义,掌握酶非水相催化技术。
教学重点、难点:酶非水相催化机理。
教学方法:讲授教学手段:多媒体第一节酶非水相催化研究概况一、概念及分类(一)、概念:酶在非水介质中进行的催化作用。
1984 年,美国A.M.Klibanov 在《科学》上发表一篇关于酶在有机介质中催化条件和特点的综述,并成功酶促合成了酯、肽、手性醇等许多有机化合物。
指出,酶可在非生物体系的疏水介质中催化天然或非天然的疏水性底物和产物的转化,对酶只能在水溶液中起作用的传统酶学思想提出了挑战。
(二)、分类1、有机介质中的酶催化指酶在含有一定量水的有机溶剂中进行的催化作用适用范围:底物、产物两者或其中之一为疏水性物质的酶催化作用。
主要研究对象2、气相介质中的酶催化指酶在气相介质中进行的酶催化反应。
适用范围:底物是气体或者能够转化为气体物质的酶催化反应。
研究较少。
3、超临界流体介质中的酶催化指酶在超临界流体中进行的催化反应。
, 绿色化学? ——无毒、无害要求,代替有机溶剂4、离子液介质中酶的催化离子液:有机阳离子与有机(无机)阴离子构成的在室温条件下呈液态的低熔点盐类,挥发性低、稳定性好;酶反应具有良好的稳定性和区域选择性、立体选择性、键选择性等优点。
二、有机相酶反应的优点1.有利于疏水性底物的反应。
(主要提高脂溶性底物的溶解度,有利于高浓度底物连续生物转化。
)2.可提高酶的热稳定性,提高反应温度加速反应。
3.能催化在水中不能进行的反应(有许多难溶于水的非极性底物能够溶于有机溶剂中)4.可改变反应平衡移动方向(使许多热力学平衡从加水分解反应转为其逆反应,如酶合成,酯交换等)主要朝着合成而不是水解的方向进行。
5.可控制底物专一性(不同底物反应所选最适溶剂不一定相同)。
6.可防止由水引起的副反应。
7.可扩大反应pH值的适应性。
8.酶易于实现固定化。
9.酶和产物易于回收。
(酶不溶于有机溶剂,有利于产物分离和酶的回收利用,且从低沸点的溶剂中分离纯化产物比水中容易。
酶的非水相催化 ppt课件
ppt课件
3
人类认识的进步
1966 年,Dostoli 和 Siegel 分别报道胰凝乳蛋白酶和辣根
过氧化物酶在几种非极性有机溶剂中具有催化活力 1975~1983 年间,Buckland 和 Martinek 等对游离酶和 固定化酶在有机溶剂中合成类固醇及甾醇转化中的应用进 行了大量的探索 1977 年,Klibanov 等人报道了在水/氯仿两相体系中脂肪 酶催化 N-乙酰-L-色氨酸与乙醇的酯化反应,在水中收率 极低,而在两相体系中竟达到 100% 1984 年,Zaks 和 Klibanov 在 Science 杂志上发表了一篇 关于酶在有机介质中催化条件和特点的文章,他们指出, 只要条件适合,酶可以在非水体系中表现出活性,并催化
ppt课件 4
引起全球关注的“非水相酶催化”的报道
Porcine pancreatic lipase catalyzes the transesterification reaction between tributyrin and various primary and secondary alcohols in a 99 percent organic medium. Upon further dehydration, the enzyme becomes extremely thermo-stable. Not only can the dry lipase withstand heating at 100 degrees C for many hours, but it exhibits a high catalytic activity at that temperature. Reduction in water content also alters the substrate specificity of the lipase: in contrast to its wet c o u n t e r p a r t , t h e d r y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章酶的非水相催化◆人们以往普遍认为只有在水溶液中酶才具有催化活性。
◆酶在非水相介质中催化反应的研究:在理论上进行了非水介质(包括有机溶剂介质,超临界流体介质,气相介质,离子液介质等)中酶的结构与功能、非水介质中酶的作用机制,非水介质中酶催化作用动力学等方面的研究,初步建立起非水酶学(non-aqueous enzymology)的理论体系。
◆非水介质中酶催化作用的应用研究,取得显著成果。
1.酶非水相催化的研究概况◆酶在非水介质中进行的催化作用称为酶的非水相催化。
1.1有机介质中的酶催化:◆有机介质中的酶催化是指酶在含有一定量水的有机溶剂中进行的催化反应。
◆适用于底物、产物两者或其中之一为疏水性物质的酶催化作用。
◆酶在有机介质中由于能够基本保持其完整的结构和活性中心的空间构象,所以能够发挥其催化功能。
◆酶在有机介质中起催化作用时,酶的底物特异性、立体选择性、区域选择性、键选择性和热稳定性等都有所改变。
1.2气相介质中的酶催化:◆气相介质中的酶催化是指酶在气相介质中进行的催化反应。
◆适用于底物是气体或者能够转化为气体的物质的酶催化反应。
◆由于气体介质的密度低,扩散容易,所以酶在气相中的催化作用与在水溶液中的催化作用有明显的不同特点。
1.3超临界流体介质中的酶催化:◆超临界介质中的酶催化是指酶在超临界流体中进行的催化反应。
◆用于酶催化反应的超临界流体应当对酶的结构没有破坏作用,对催化作用没有明显的不良影响;具有良好的化学稳定性,对设备没有腐蚀性;超临界温度不能太高或太低,最好在室温附近或在酶催化的最适温度附近;超临界压力不能太高,可节约压缩动力费用;超临界流体要容易获得,价格要便宜等。
1.4离子液介质中的酶催化:◆离子液介质中的酶催化是指酶在离子液中进行的催化作用。
◆离子液(ionic liquids)是由有机阳离子与有机(无机)阴离子构成的在室温条件下呈液态的低熔点盐类,挥发性低、稳定性好。
酶在离子液中的催化作用具有良好的稳定性和区域选择性、立体选择性、键选择性等显著特点。
◆在酶的非水相催化中,研究最多的非水介质是有机溶剂。
◆酯酶、脂肪酶、蛋白酶、纤维素酶、淀粉酶等水解酶,过氧化氢酶、过氧化物酶、醇脱氢酶、胆固醇氧化酶、多酚氧化酶、细胞色素氧化酶等氧化还原酶以及醛缩酶等转移酶中的十几种酶都可以在适当的有机溶剂介质中起催化作用。
而且酶在有机介质中的热稳定性比水溶液中显著提高。
◆在理论上进行了非水介质(包括有机溶剂介质,超临界流体介质,气相介质,离子液介质等)中酶的结构与功能、非水介质中酶的作用机制,非水介质中酶催化作用动力学等方面的研究,初步建立起非水酶学(non-aqueous enzymology)的理论体系。
◆并进行了非水介质中,特别是在有机介质中酶催化作用的应用研究,利用酶在有机介质中的催化作用进行多肽、酯类等的生产,甾体转化,功能高分子的合成,手性药物的拆分等方面均取得显著成果。
2.有机介质中水和有机溶剂对酶催化反应的影响2.1有机介质反应体系:◆常见的有机介质反应体系包括:(1)微水介质(microaqueous media)体系:◆微水介质体系是由有机溶剂和微量的水组成的反应体系,是在有机介质酶催化中广泛应用的一种反应体系。
◆微量的水主要是酶分子的结合水,它对维持酶分子的空间构象和催化活性至关重要。
另外有一部分水分配在有机溶剂中。
◆通常所说的有机介质反应体系主要是指微水介质体系。
(2)与水溶性有机溶剂组成的均一体系:◆这种均一体系是由水和极性较大的有机溶剂互相混溶组成的反应体系。
◆酶和底物都是以溶解状态存在于均一体系中。
由于极性大的有机溶剂对一般酶的催化活性影响较大,所以能在该反应体系的进行催化反应的酶较少。
(3)与水不溶性有机溶剂组成的两相或多相体系:◆这种体系是由水和疏水性较强的有机溶剂组成的两相或多相反应体系。
游离酶、亲水性底物或产物溶解于水相,疏水性底物或产物溶解于有机溶剂相。
◆如果采用固定化酶,则以悬浮形式存在两相的界面。
◆催化反应通常在两相的界面进行。
一般适用于底物和产物两者或其中一种是属于疏水化合物的催化反应。
(4)(正)胶束体系:◆胶束又称为正胶束或正胶团,是在大量水溶液中含有少量与水不相混溶的有机溶剂,加入表面活性剂后形成的水包油的微小液滴。
◆表面活性剂的极性端朝外,非极性端朝内,有机溶剂包在液滴内部。
◆反应时,酶在胶束外面的水溶液中,疏水性的底物或产物在胶束内部。
反应在胶束的两相界面中进行。
(5)反胶束体系:◆反胶束又称为反胶团,是指在大量与水不相混溶的有机溶剂中,含有少量的水溶液,加入表面活性剂后形成的油包水的微小液滴。
◆表面活性剂的极性端朝内,非极性端朝外,水溶液包在胶束内部。
◆反应时,酶分子在反胶束内部的水溶液中,疏水性底物或产物在反胶束外部,催化反应在两相的界面中进行。
2.2水对有机介质中酶催化的影响:(1)水对酶分子空间构象的影响:◆酶分子需要一层水化层,以维持其完整的空间构象。
◆维持酶分子完整的空间构象所必需的最低水量称为必需水(essential water)。
◆必需水与酶分子的结构和性质有密切关系。
不同的酶,所要求的必需水的量差别很大。
(2)水对酶催化反应速度的影响:◆有机介质中水的含量对酶催化反应速度有显著影响。
◆在催化反应速度达到最大时的水含量称为最适水含量。
◆在实际应用时应当根据实际情况,通过实验确定最适水含量。
(3)水活度:◆在有机介质中含有的水,主要有两类,一类是与酶分子紧密结合的结合水,另一类是溶解在有机溶剂中的游离水。
◆研究表明,在有机介质体系中,酶的催化活性随着结合水量的增加而提高。
◆水活度(water activity, Aw)是指体系中水的逸度(fugacity)与纯水逸度之比。
通常可以用体系中水的蒸汽压与相同条件下纯水的蒸汽压之比表示。
即:Aw = P/P0式中,P为在一定条件下体系中水的蒸汽压,P o为在相同条件下纯水的蒸汽压◆研究表明,在一般情况下,最适水含量随着溶剂极性的增加而增加。
◆而最佳水活度与溶剂的极性大小没有关系。
所以采用水活度作为参数来研究有机介质中水对酶催化作用的影响更为确切。
2.3有机溶剂对有机介质中酶催化的影响:◆常用的有机溶剂有辛烷,正己烷,苯,吡啶,季丁醇,丙醇,乙腈,已酯,二氯甲烷等。
(1)有机溶剂对酶结构与功能的影响:◆酶具有完整的空间结构和活性中心才能发挥其催化功能。
◆在有机溶剂中,酶分子(经过修饰后可溶于有机溶剂者除外)不能直接溶解,而是悬浮在溶剂中进行催化反应。
◆有些酶在有机溶剂的作用下,其空间结构会受到某些破坏,从而使酶的催化活性受到影响甚至引起酶的变性失活。
(2)有机溶剂对酶分子表面结构的影响:◆酶在有机介质中与有机容剂接触,酶分子的表面结构将有所变化。
(3)有机溶剂对酶活性中心结合位点的影响:◆当酶悬浮于有机溶剂中,有一部分溶剂能渗入到酶分子的活性中心,与底物竞争活性中心的结合位点,降低底物结合能力,从而影响酶的催化活性。
◆有机溶剂分子进入酶的活性中心,会降低活性中心的极性,可能降低酶与底物的结合能力。
(4)有机溶剂对酶活性的影响:◆有些有机溶剂,特别是极性较强的有机溶剂,如甲醇,乙醇等,会夺取酶分子的结合水,影响酶分子微环境的水化层,从而降低酶的催化活性,甚至引起酶的变性失活。
◆有机溶剂极性的强弱可以用极性系数lgP表示。
P是指溶剂在正辛烷与水两相中的分配系数。
极性系数越大,表明其极性越小;反之极性系数越小,则极性越强。
◆研究表明,有机溶剂的极性越强,越容易夺取酶分子结合水,对酶活力的影响就越大。
极性系数lg P< 2的极性溶剂一般不适宜作为有机介质酶催化的溶剂使用。
(5)有机溶剂对底物和产物分配的影响:◆有机溶剂与水之间的极性不同,在反应过程中会影响底物和产物的分配,从而影响酶的催化反应。
◆有机容剂能改变酶分子必需水层中底物和产物的浓度。
◆一般选用2≤lg P≤5的有机溶剂作为有机介质为宜。
3.酶在有机介质中的催化特性3.1底物专一性:◆在有机介质中,由于酶分子活性中心的结合部位与底物之间的结合状态发生某些变化,致使酶的底物特异性会发生改变。
◆不同的有机溶剂具有不同的极性,所以在不同的有机介质中,酶的底物专一性也不一样。
◇在极性较强的有机溶剂中,疏水性较强的底物容易反应;而在极性较弱的有机溶剂中,疏水性较弱的底物容易反应。
3.2对映体选择性:◆酶的对映体选择性(enantioselectivity)又称为立体选择性或立体异构专一性,是酶在对称的外消旋化合物中识别一种异构体的能力大小的指标。
◆酶立体选择性的强弱可以用立体选择系数(K LD)的大小来衡量。
立体选择系数越大,表明酶催化的对映体选择性越强。
◆立体选择系数与酶对L-型和D-型两种异构体的酶转换数(K cat)和米氏常数(K m)有关。
即:( K cat/K m)LK LD =(K cat/K m)D式中,K LD :立体选择系数L: L-型异构体D: D-型异构体K m: 米氏常数。
即酶催化反应速度达到最大反应速度一半时的底物浓度。
K cat: 酶的转换数。
是酶催化效率的一个指标。
指每个酶分子每分钟催化底物转化的分子数。
◆酶在有机介质中催化,与在水溶液中催化比较,由于介质的特性发生改变,而引起酶的对映体选择性也发生改变。
◆酶在水溶液中催化的立体选择性较强,而在疏水性强的有机介质中,酶的立体选择性较差。
3.3区域选择性:◆酶在有机介质中进行催化时,具有区域选择性(regioselectivity), 即酶能够选择底物分子中某一区域的基团优先进行反应。
◆酶区域选择性的强弱可以用区域选择系数K rs的大小来衡量。
区域选择系数与立体选择系数相似,只是以底物分子的区域位置1,2,代替异构体的构型L,D。
即:K1,2 =(K cat/K m)1 /(K cat/K m)23.4键选择性:◆酶在有机介质中进行催化的另一个显著特点是具有化学键选择性。
◆键选择性与酶的来源和有机介质的种类有关。
3.5热稳定性:◆许多酶在有机介质中的热稳定性比在水溶液中的热稳定性更好。
◆酶在有机介质中的热稳定性还与介质中的水含量有关。
通常情况下,随着介质中水含量的增加,其热稳定性降低。
◆在有机介质中,酶的热稳定性之所以增强,可能是由于有机介质中缺少引起酶分子变性失活的水分子所致。
◆某些酶在有机介质与水溶液中的热稳定性如表7-1所示。
3.6 pH值特性:◆在有机介质反应中,酶所处的pH 环境与酶在冻干或吸附到载体上之前所使用的缓冲液pH 值相同。
这种现象称之为pH印记(pH-imprinting)或称为pH记忆。
◆酶在有机介质中催化反应的最适pH值通常与酶在水溶液中反应的最适pH 值接近或者相同。