高考物理易错题精选-法拉第电磁感应定律练习题附详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理易错题精选-法拉第电磁感应定律练习题附详细答案
一、法拉第电磁感应定律
1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求:
(1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R .
【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】
(1)由题意及图象可知,当0t =时刻ab 边的受力最大,为:
10.02N F BIL ==
可得:
10.02A 0.2A 1.00.1
F I BL =
==⨯ 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒:
Q W =安310.020.1J 2.010J F L -==⨯=⨯
(2) 金属框拉出的过程中产生的热量:
2Q I Rt
=
线框的电阻:
3
22
2.010Ω 1.0Ω0.20.05
Q R I t -⨯===⨯
2.如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。
在区域I 内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b )所示。
t =0时刻在轨道上端的金属细棒ab 从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd 在位于区域I 内的导轨上由静止释放。
在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好。
已知cd 棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g 。
求:
(1)通过cd 棒电流的方向和区域I 内磁场的方向; (2)ab 棒开始下滑的位置离EF 的距离;
(3)ab 棒开始下滑至EF 的过程中回路中产生的热量。
【答案】(1)通过cd 棒电流的方向从d 到c ,区域I 内磁场的方向垂直于斜面向上;(2)3l (3)4mgl sin θ。
【解析】 【详解】
(1)由楞次定律可知,流过cd 的电流方向为从d 到c ,cd 所受安培力沿导轨向上,由左手定则可知,I 内磁场垂直于斜面向上,故区域I 内磁场的方向垂直于斜面向上。
(2)ab 棒在到达区域Ⅱ前做匀加速直线运动,
a =
sin mg m
θ
=gs in θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后,回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得:
1Blv t
∆Φ
=∆ 2(sin )x x
B l I
BI g t t θ⋅⋅= 解得
2sin x l
t g θ
=
ab 棒在区域Ⅱ中做匀速直线运动的速度
12sin v gl θ
则ab 棒开始下滑的位置离EF 的距离
2
1232
x h at l l =
+= (3)ab 棒在区域Ⅱ中运动时间
222sin x
l l
t v g θ=
= ab 棒从开始下滑至EF 的总时间
222
sin x l
t t t g θ
=+=
感应电动势:
12sin E Blv Bl gl θ==
ab 棒开始下滑至EF 的过程中回路中产生的热量:
Q =EIt =4mgl sin θ
3.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求
(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.
【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220
B l t m
【解析】 【分析】 【详解】
(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②
当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ⎛⎫
=-
⎪⎝⎭
④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=E
R
⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦
联立④⑤⑥⑦式得: R =220
B l t m
4.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)
(1)求导体棒下滑的最大速度;
(2)求当速度达到5m/s 时导体棒的加速度;
(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).
【答案】(1)18.75m/s (2)a=4.4m/s 2
(32
22mgs mv Rt
-
【解析】
【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;
解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R
θ==, 解得: 222
sin 18.75cos mgR v B L θ
θ
=
=; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R
θ
=
=, 0.2F BIL N ==, 24.4/a m s =;
(3)根据能量守恒有:22012
mgs mv I Rt =
+ , 解得: 2
02mgs mv
I Rt
-=
5.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=
1
8
(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不
计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.
(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.
(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.
【答案】(1)11.5U B d (2)2
221934-mU mgL B d
;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】
(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:
1 1.52U
E U R U R
=+
⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:
111E B dv =
计算得出:111.5U
v B d
=
. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:
12
222B dv R U R R
⋅=+ 计算得出:213U
v B d
=
;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722
mg L mg L W mv mv μ︒︒⨯-⨯-=
-安 根据功能关系可得产生的总的焦耳热 :
=Q W 总安
根据焦耳定律可得定值电阻产生的焦耳热为:
122R
Q Q R R =
+总
联立以上各式得出:
2
12211934mU
Q mgL B d
=-
(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:
221sin 37cos3702B d v
mg mg R
μ︒
︒
--=
计算得出:22
1mgR
v B d =
对cd 棒分析因为:
2sin 372cos370mg mg μ︒︒-⋅>
故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:
1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫
-+⨯⨯⨯= ⎪⎝⎭
将22
1mgR
v B d =
代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为
11.5U
B d
; (2)定值电阻上产生的热量为2
22
11934mU mgL B d -;
(3)2B 的大小为132B ,方向沿导轨平面向上.
6.水平面上平行固定两长直导体导轨MN 和PQ ,导轨宽度L =2m ,空间存在竖直向下的匀强磁场,磁感应强度B =0.5T ,在垂直于导轨方向静止放置两根导体棒1和2,其中1的质量M =4kg,有效电阻R =0.6Ω,2的质量m =1kg ,有效电阻r =0.4Ω,现使1获得平行于导轨的初速度v 0=10m/s ,不计一切摩擦,不计其余电阻,两棒不会相撞.请计算:
(1)初始时刻导体棒2的加速度a 大小. (2)系统运动状态稳定时1的速度v 大小.
(3)系统运动状态达到稳定的过程中,流过导体棒1某截面的电荷量q 大小. (4)若初始时刻两棒距离d =10m ,则稳定后两棒的距离为多少? 【答案】(1)10m/s 2(2)8m/s (3)8C (4)2m 【解析】 【详解】
解:(1)初始时:0E BLv =
E
I R r
=
+ 对棒2:F 安BIL ma ==
解得:2220
10m/s B L v a R r
==+
(2)对棒1和2的系统,动量守恒,则最后稳定时:0()Mv m M v =+ 解得:8m/s v =
(3)对棒2,由动量定理:BIL t mv ∆= ,其中q I t =∆ 解得:8C mv
q BL
== (4)由E t φ∆=
∆ 、E I R r
=+、 q I t =∆ 联立解得:BL x
q R r R r
φ∆∆==++ 又mv q BL
=
解得:22
()
mv R r x B L +∆=
则稳定后两棒的距离:22
()
2m mv R r d d x d B L +'=-∆=-
=
7.研究小组同学在学习了电磁感应知识后,进行了如下的实验探究(如图所示):两个足够长的平行导轨(MNPQ 与M 1P 1Q 1)间距L =0.2m ,光滑倾斜轨道和粗糙水平轨道圆滑连接,水平部分长短可调节,倾斜轨道与水平面的夹角θ=37°.倾斜轨道内存在垂直斜面方向向上的匀强磁场,磁感应强度B =0.5T ,NN 1右侧没有磁场;竖直放置的光滑半圆轨道PQ 、P 1Q 1分别与水平轨道相切于P 、P 1,圆轨道半径r 1=0.lm ,且在最高点Q 、Q 1处安装了压力传感器.金属棒ab 质量m =0.0lkg ,电阻r =0.1Ω,运动中与导轨有良好接触,并且垂直于导轨;定值电阻R =0.4Ω,连接在MM 1间,其余电阻不计:金属棒与水平轨道间动摩擦因数μ=0.4.实验中他们惊奇地发现:当把NP 间的距离调至某一合适值d ,则只要金属棒从倾斜轨道上离地高h =0.95m 及以上任何地方由静止释放,金属棒ab 总能到达QQ 1处,且压力传感器的读数均为零.取g =l 0m /s 2,sin37°=0.6,cos37°=0.8.则:
(1)金属棒从0.95m 高度以上滑下时,试定性描述金属棒在斜面上的运动情况,并求出
它在斜面上运动的最大速度;
(2)求从高度h =0.95m 处滑下后电阻R 上产生的热量; (3)求合适值d .
【答案】(1)3m /s ;(2)0.04J ;(3)0.5m . 【解析】 【详解】
(1)导体棒在斜面上由静止滑下时,受重力、支持力、安培力,当安培力增加到等于重力的下滑分量时,加速度减小为零,速度达到最大值;根据牛顿第二定律,有:
A 0mgsin F θ-=
安培力:A F BIL = BLv
I R r
=+ 联立解得:2
222
()sin 0.0110(0.40.1)0.6
3m /s 0.50.2
mg R r v B L θ+⨯⨯+⨯=
==⨯ (2)根据能量守恒定律,从高度h =0.95m 处滑下后回路中上产生的热量:
2211
0.01100.950.0130.05J 22
Q mgh mv ==⨯⨯-⨯⨯=-
故电阻R 产生的热量为:0.4
0.050.04J 0.40.1
R R Q Q R r =
=⨯=++ (3)对从斜面最低点到圆轨道最高点过程,根据动能定理,有:
()221111
222
mg r mgd mv mv μ--=-①
在圆轨道的最高点,重力等于向心力,有:2
11
v mg m r =②
联立①②解得:221535100.1
0.5m 220.410
v gr d g μ--⨯⨯=
==⨯⨯
8.如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计。
匀强磁场与导轨平面垂直。
阻值为R 的导体棒垂直于导轨静止放置,且与导轨接触。
t =0时,将开关S 由1掷到2。
用q 、i 、v 和a 分别表示电容器所带的电荷量、棒中的电流、棒的速度和加速度。
请定性画出以上各物理量随时间变化的图象(q-t 、i-t 、v-t 、a-t 图象)。
【答案】图见解析. 【解析】 【详解】
开关S 由1掷到2,电容器放电后会在电路中产生电流。
导体棒通有电流后会受到安培力
的作用,会产生加速度而加速运动。
导体棒切割磁感线,速度增大,感应电动势E=Blv,即增大,则实际电流减小,安培力F=BIL,即减小,加速度a=F/m,即减小。
因导轨光滑,所以在有电流通过棒的过程中,棒是一直加速运动(变加速)。
由于通过棒的电流是按指数递减的,那么棒受到的安培力也是按指数递减的,由牛顿第二定律知,它的加速度是按指数递减的,故a-t图像如图:
由于电容器放电产生电流使得导体棒受安培力运动,而导体棒运动产生感应电动势会给电容器充电。
当充电和放电达到一种平衡时,导体棒做匀速运动。
则v-t图像如图:
;
当棒匀速运动后,棒因切割磁感线有电动势,所以电容器两端的电压能稳定在某个不为0的数值,即电容器的电量应稳定在某个不为0的数值(不会减少到0),故q-t图像如图:
这时电容器的电压等于棒的电动势数值,棒中无电流。
I-t图像如图:
9.如图甲所示,两根间距L=1.0m、电阻不计的足够长平行金属导轨ab、cd水平放置,一端与阻值R=2.0Ω的电阻相连.质量m=0.2kg的导体棒ef在恒定外力F作用下由静止开始运动,已知导体棒与两根导轨间的最大静摩擦力和滑动摩擦力均为f=1.0N,导体棒电阻为r=1.0Ω,整个装置处于垂直于导轨平面向上的匀强磁场B中,导体棒运动过程中加速度a 与速度v的关系如图乙所示(取g=10m/s2).求:
(1)当导体棒速度为v时,棒所受安培力F安的大小(用题中字母表示).
(2)磁场的磁感应强度B.
(3)若ef棒由静止开始运动距离为S=6.9m时,速度已达v′=3m/s.求此过程中产生的焦耳热Q.
【答案】(1);(2);(3)
【解析】
【详解】
(1)当导体棒速度为v时,导体棒上的电动势为E,电路中的电流为I.
由法拉第电磁感应定律
由欧姆定律
导体棒所受安培力
联合解得:
(2)由图可以知道:导体棒开始运动时加速度 ,初速度 ,导体棒中无电流.
由牛顿第二定律知
计算得出:
由图可以知道:当导体棒的加速度a=0时,开始以做匀速运动
此时有:
解得:
(3)设ef棒此过程中,产生的热量为Q,
由功能关系知 :
带入数据计算得出
故本题答案是:(1);(2);(3)
【点睛】
利用导体棒切割磁感线产生电动势,在结合闭合电路欧姆定律可求出回路中的电流,即可求出安培力的大小,在求热量时要利用功能关系求解。
10.如图1所示,MN和PQ为竖直放置的两根足够长的光滑平行金属导轨,两导轨间距为l,电阻均可忽略不计.在M和P之间接有阻值为R的定值电阻,导体杆ab质量为m、电阻不计,并与导轨接触良好.整个装置处于磁感应强度为B、方向垂直纸面向里的匀强磁场中.将导体杆ab由静止释放.求:
(1)a. 试定性说明ab 杆的运动;b. ab 杆下落稳定后,电阻R 上的热功率.
(2)若将M 和P 之间的电阻R 改为接一电动势为E ,内阻为r 的直流电源,发现杆ab 由静止向上运动(始终未到达MP 处),如图2所示.
a. 试定性说明ab 杆的运动:
b. 杆稳定运动后,电源的输出功率.
(3)若将M 和P 之间的电阻R 改为接一电容为C 的电容器,如图3所示.ab 杆由静止释放.请推导证明杆做匀加速直线运动,并求出杆的加速度.
【答案】(1)加速度逐渐减小的变加速直线运动;P=2222
m g R
B l (2)加速度逐渐减小的加速;P=mgE Bl -2222
m g r B l
(3)a=22mg
m B l C + 【解析】
(1)a 、对ab 杆下滑过程,由牛顿第二定律22B l v
mg ma R
-=,可知随着速度的增大,加速
度逐渐减小,当22B l v
mg R
=时,加速度为零,杆做匀速直线运动;故杆先做加速度逐渐
减小的加速,再做匀速直线运动.
b 、ab 杆稳定下滑时,做匀速直线运动:22B l v
mg R
=,可得22mgR v B l =
故22222222
B l v mgR m g R
P v mg R B l B l =⋅=⋅=
(2)a 、对ab 杆上滑过程,由牛顿第二定律:BIL mg ma -=,上滑的速度增大,感应电流与电源提供的电流方向相反,总电流逐渐减小,故加速度逐渐减小;同样加速度为零时杆向上匀速直线运动.
B 、杆向上匀速时,BIl mg = mg I Bl
=
电源的输出功率2P EI I r =- 解得:2
()Emg mg P r Bl Bl
=
- (3)设杆下滑经t ∆时间,由牛顿第二定律:mg BIl ma -=,
电容器的充电电流Q
I t
∆=∆ 电容器增加的电量为:Q C U CBL v ∆=∆=∆
而
v
a t
∆=∆ 联立解得:mg B CBla l ma -⋅⋅=
可知杆下滑过程给电容器充电的过程加速度恒定不变,故为匀加速直线运动. 解得:22mg
a m B l C
=
+
【点睛】对于电磁感应问题研究思路常常有两条:一条从力的角度,重点是分析安培力作用下物体的平衡问题;另一条是能量,分析电磁感应现象中的能量如何转化是关键.
11.如图所示,质量为2m 的 U 形线框ABCD 下边长度为L ,电阻为R ,其它部分电阻不计,其内侧有质量为m ,电阻为R 的导体棒PQ ,PQ 与线框相接触良好,可在线框内上下滑动.整个装置竖直放置,其下方有垂直纸面的匀强磁场,磁感应强度为B .将整个装置从静止释放,在下落过程线框底边始终水平.当线框底边进入磁场时恰好做匀速运动,此时导体棒PQ 与线框间的滑动摩擦力为
.经过一段时间,导体棒PQ 恰好到达磁场上
边界,但未进入磁场,PQ 运动的距离是线框在磁场中运动距离的两倍.不计空气阻力,重力加速度为g .求:
(1)线框刚进入磁场时,BC 两端的电势差; (2)导体棒PQ 到达磁场上边界时速度大小;
(3)导体棒PQ 到达磁场上边界前的过程线框中产生的焦耳热.
【答案】(1)52mgR BL (2)2215mgR B L (3)322
44
125m g R B L
【解析】
试题分析:(1)线框刚进入磁场时是做匀速运动.由平衡知识可列:
1
22
mg mg BIL +=
52BC mgR
U IR BL
==
(2)设导体棒到达磁场上边界速度为,线框底边进入磁场时的速度为
;导体棒相
对于线框的距离为
,线框在磁场中下降的距离为
.
52mgR
IR BL
ε==
联解上述方程式得:22
15PQ mgR
B L υ=
(3)线框下降的时间与导体棒下滑的时间相等
联解上述方程式得:322
44
125m g R Q B L
= 考点:法拉第电磁感应定律;物体的平衡.
12.如图所示,两根足够长的直金属MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L .M 、P 两点间接有阻值为R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.
(1)在加速下滑过程中,当ab 杆的速度大小为v 时,ab 杆中的电流及其加速度的大小; (2)求在下滑过程中ab 杆可达到的最大速度.
(3)从开始下滑到达到最大速度的过程中,棒沿导轨下滑了距离s ,求整个装置生热多少. 【答案】
(1)Blv I R =,22sin B l v
mg R a m
θ-
=(2)22
sin m mgR v B l θ=(3)322244
sin 2m g R Q mgh B l θ=- 【解析】
(1)在加速下滑过程中,当 ab 杆的速度大小为 v 时,感应电动势E =BLv
此时 ab 杆中的电流Blv
I R
=
金属杆受到的安培力:22B L v
F BIL R ==
由牛顿第二定律得:22sin B l v
mg R a m
θ-
=
(2) 金属杆匀速下滑时速度达到最大,由平衡条件得:22sin m
B L v mg R
θ=
则速度的最大值22
sin m mgR v B l
θ
=
(3)若达到最大速度时,导体棒下落高度为 h ,由能量守恒定律得:
2
1sin 2
m mgs mv Q θ⋅=
+ 则焦耳热322244
sin 2m g R Q mgh B l θ
=-
【点睛】当杆匀速运动时杆的速度最大,分析清楚杆的运动过程是解题的前提;分析清楚杆的运动过程后,应用E =BLv 、欧姆定律、安培力公式、牛顿第二定律、平衡条件与能量守恒定律即可解题;求解热量时从能量角度分析可以简化解题过程.
13.53.如图所示,竖直平面内有一半径为r 、内阻为R 1,粗细均匀的光滑半圆形金属环,在M 、N 处于相距为2r 、电阻不计的平行光滑金属轨道ME 、NF 相接,EF 之间接有电阻R2,已知R1=12R ,R2=4R .在MN 上方及CD 下方有水平方向的匀强磁场I 和II ,磁感应强度大小均为B .现有质量为m 、电阻不计的导体棒ab ,从半圆环的最高点A 处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,且平行轨道中够长.已知导体棒ab 下落r/2时的速度大小为v 1,下落到MN 处的速度大小为v 2.
(1)求导体棒ab从A下落r/2时的加速度大小.
(2)若导体棒ab进入磁场II后棒中电流大小始终不变,求磁场I和II之间的距离h和R2上的电功率P2.
(3)若将磁场II的CD边界略微下移,导体棒ab刚进入磁场II时速度大小为v3,要使其在外力F作用下做匀加速直线运动,加速度大小为a,求所加外力F随时间变化的关系式.
【答案】(1) (2)
【解析】试题分析:(1)以导体棒为研究对象,棒在磁场I中切割磁感线,棒中产生感应电动势,导体棒ab从A下落r/2时,导体棒在重力与安培力作用下做加速运动,由牛顿第二定律,得
式中由各式可得到
(2)当导体棒ab通过磁场II时,若安培力恰好等于重力,棒中电流大小始终不变,即
式中
解得
导体棒从MN到CD做加速度为g的匀加速直线运动,
有得
此时导体棒重力的功率为
根据能量守恒定律,此时导体棒重力的功率全部转化为电路中的电功率,即
所以,
(3)设导体棒ab进入磁场II后经过时间t的速度大小为,
此时安培力大小为
由于导体棒ab做匀加速直线运动,
有根据牛顿第二定律,有
即:
由以上各式解得
考点:电磁感应,牛顿第二定律,匀加速直线运动。
【名师点睛】本题考查了关于电磁感应的复杂问题,对于这类问题一定要做好电流、安培力、运动情况、功能关系这四个方面的问题分析;也就是说认真分析物理过程,搞清各个力之间的关系,根据牛顿定律列方程;分析各种能量之间的转化关系,根据能量守恒定律列出方程;力的观点和能量的观点是解答此类问题的两大方向.
视频
14.如图(a)所示,足够长的光滑平行金属导轨JK、PQ倾斜放置,两导轨间距离为L=l.0 m,导轨平面与水平面间的夹角为θ=30°,磁感应强度为B的匀强磁场垂直于导轨平面向上,导轨的J、P两端连接阻值为R=3.0Ω的电阻,金属棒ab垂直于导轨放置并用细线通过光滑定滑轮与重物相连,金属棒ab的质量m=0.20 kg,电阻r=0.50 Ω,重物的质量M=0.60 kg,如果将金属棒和重物由静止释放,金属棒沿斜面上滑距离与时间的关系图像如图(b)所示,不计导轨电阻, g=10 m/s 2。
求:
(1)t=0时刻金属棒的加速度
(2)求磁感应强度B的大小以及在0.6 s内通过电阻R的电荷量;
(3)在0.6 s内电阻R产生的热量。
【答案】(1)a=6.25m/s2 2
5
5
C (3)Q R=1.8J
【解析】 【分析】
根据电量公式q=I•△t ,闭合电路欧姆定律E
I R r
=
+,法拉第电磁感应定律:E t ∆Φ=∆,
联立可得通过电阻R 的电量;由能量守恒定律求电阻R 中产生的热量。
【详解】
(1) 对金属棒和重物整体 Mg-mgsinθ=(M+m)a 解得:a=6.25m/s 2 ;
(2) 由题图(b)可以看出最终金属棒ab 将匀速运动,匀速运动的速度
3.5s
m v s t
∆=
=∆
感应电动势E=BLv 感应电流E
I R r
=
+ 金属棒所受安培力22B L v
F BIL R r
==
+ 速运动时,金属棒受力平衡,则可得
22sin B L v
mg Mg R r
θ+=+
联立解得:B =
在0.6 s 内金属棒ab 上滑的距离s=1.40m 通过电阻R 的电荷量
BLs q R s =
=+; (3) 由能量守恒定律得
21
sin ()2
Mgx mgx Q M m v θ=+++
解得Q=2.1 J
又因为
R R
Q Q R r
=
+ 联立解得:Q R =1.8J 。
【点睛】
本题主要考查了电磁感应与力学、电路知识的综合,抓住位移图象的意义:斜率等于速度,根据平衡条件和法拉第定律、欧姆定律等等规律结合进行求解。
15.两根足够长的固定平行金属导轨位于同一水平面内,两导轨间的距离为l ,导轨上面垂直放置两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量均为m ,电阻均为R ,回路中其余部分的电阻不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感
应强度为B .两导体棒均可沿导轨无摩擦地滑行,开始时cd 棒静止,棒ab 有指向cd 的速度v 0.两导体棒在运动中始终不接触.求:
(1)在运动中产生的最大焦耳热; (2)当棒ab 的速度变为
3
4
v 0时,棒cd 的加速度. 【答案】(1) 2014mv ;(2) 220
4B L v mR
,方向是水平向右
【解析】 【详解】
(1)从初始到两棒速度相等的过程中,两棒总动量守恒,则有:02mv mv = 解得:02
v v =
由能的转化和守恒得:222001211224
Q mv mv mv =⨯=- (2)设ab 棒的速度变为
03
4
v 时,cd 棒的速度为v ',则由动量守恒可知:003
4
mv m v mv =+'
解得:014
v v '=
此时回路中的电动势为: 000311
442
E BLv BLv BLv =-= 此时回路中的电流为: 024BLv E I R R
=
= 此时cd 棒所受的安培力为 :220
4B L v F BIL R == 由牛顿第二定律可得,cd 棒的加速度:220
4B L v F a m mR
==
cd 棒的加速度大小是220
4B L v mR
,方向是水平向右。