常微分方程习题集
数学参考书
科大学长对数学系学弟学妹的忠告 <转发>有些科大学生,尤其是新生,抱怨科大教材偏难;而且新生通常缺乏学习方法,对如何在大学中学习还没有清楚的概念。
下面是一位科大数学系学长给科大数学专业学生的一些建议。
我转发过来,仅供参考。
1、老老实实把课本上的题目做完。
其实说科大的课本难,我以为这话不完整。
科大的教材,就数学系而言还是讲得挺清楚的,难的是后面的习题。
事实上做1道难题的收获是做10道简单题所不能比的。
2、每门数学必修课至少要看一本参考书,尽量做一本习题集。
3、数学分析别做吉米,除非你太无聊,推荐北大方企勤的习题集。
此外注意一下有套波兰的数学分析习题集,是不是搞得到中文或英文版。
4、线性代数推荐普罗斯库列科夫的<<线性代数习题集>>和法捷耶夫的<<高等代数习题集>>。
莫斯科大学要求把上面的题全做光。
建议大家在搞定亚洲第一难书的同时也把里面的题打通。
5、解析几何不要不重视。
现在有种削弱几何课的倾向,甚至有的学校把解析几何课改成只有两课时,这样一来,几何训练不足,会很吃亏的。
6、常微要看看阿诺尔德的书,打通菲利波夫的习题集。
7、数论课是很重要的,起码可以锻炼思维能力。
8、数学分析、线性代数、解析几何、泛函、拓扑、抽象代数、实变、微分几何是最重要的课,大家脱层皮也要学好。
要尽量加强这方面的工底,不然的话以后很吃亏。
9、有时间去物理系多听课,千万不要毕业了连量子力学也不懂,这样的数学家注定要被淘汰的。
读读费曼物理讲义和郎道的理论物理教程。
10、华罗庚的<<数论导引>>的前言大家好好看看,多多领会!11、想读数理统计和计算数学的要注意,统计和计算数学同样是数学类的专业,不要以为加上计算和统计就可以降低要求。
12、推荐一些参考书:B.A.卓里奇《数学分析》(第一卷有中文版,第二卷未翻译,会俄文的一定要看)S.M.Nikolsky,A course of mathematicalanalysis(有中文版)A.I.Kostrikin,Introduction to algebra(有中文版)M.Postnikov,Analytic geometry(有中文版) M.Postnikov,Linear algebra and differentialgeometry(有中文版)G.H.Hardy,An Introduction to the Theory ofNumbersV.I.Arnold,Ordinary differential equation(有中文版)H.嘉当,解析函数论初步Kolmogorov,Elements of the Theory of Functions and Functional Analysis(有中文版,亚马逊上出售英文版,20美元一套)Fomenko,Differential geometry and topology Kelley,General Topology(有中文版)Bott,Differential forms in algebraic topology莫宗坚《代数学》Atiyah,Introduction to Commutative Algebra(有中文版)Riesz,Functional Analysis(有中文版)Landau,Mechanics(有中文版)Goldstein,Classical Mechanics(有中文版) Landau,The Classical Theory of Fields(有中文版) Jackson,Classical Electrodynamics(有中文版) Landau,Statistical Physics Part1(有中文版) Kerson Huang,Statistical MechanicsLandau,QuantumMechanics(Non-relatisticTheory)(有中文版) Greiner,Quantum Mechanics:A Introduction(有中文版)黄昆《固体物理学》Kittel,Introduction to Solid State Physics(有中文版)费曼《费曼物理讲义》玻恩《光学原理》王梓坤《概率论基础及其应用》方企勤《数学分析习题集》普罗斯库列科夫《线性代数习题集》法捷耶夫《高等代数习题集》菲利波夫《常微分方程习题集》沃尔维科斯基《复变函数习题集》鄂强《实变函数的例题与习题》符拉基米诺夫《偏微分方程习题集》巴兹列夫《几何与拓扑习题集》菲金科《微分几何习题集》回复 引用 TOP来看看会员2#发表于 2005-9-1 01:49 | 只看该作者1,迪亚库的《天遇--混沌与稳定性的起源》,上海科技教育出版社。
常微分方程习题集
《常微分方程》测试题1一、填空题30%1、形如的方程,称为变量分离方程,这里.分别为的连续函数。
2、形如-的方程,称为伯努利方程,这里的连续函数.n3、如果存在常数-对于所有函数称为在R上关于满足利普希兹条件。
4、形如-的方程,称为欧拉方程,这里5、设的某一解,则它的任一解- 。
二、计算题40%1、求方程2、求方程的通解。
3、求方程的隐式解。
4、求方程三、证明题30%1.试验证=是方程组x=x,x= ,在任何不包含原点的区间a上的基解矩阵。
2.设为方程x=Ax(A为nn常数矩阵)的标准基解矩阵(即(0)=E),证明: (t)=(t- t)其中t为某一值.<%建设目标%>《常微分方程》测试题2一、填空题:(30%)1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的8、已知是二阶齐次线性微分方程的一个非零解,则与线性无关的另一10、线性微分方程组的解是的基本解组的充要条件是.二、求下列微分方程的通解:(40%)1、2、3、4、5、求解方程.三、求初值问题的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计.(10分)四、求解微分方程组满足初始条件的解. (10%)五、证明题:(10%)设,是方程的解,且满足==0,,这里在上连续,.试证明:存在常数C使得=C《常微分方程》测试题31.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________.3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A) 一个解(B)两个解(C) 无数个解(D)三个解(3).方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是().(A)y=±1,x=±1, (B)y=±1(C)x=±1 (D)y=1,x=1(4).若函数y(x)满足方程,且在x=1时,y=1, 则在x = e时y=( ).(A) (B) (C)2(D) e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6). 方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5. 计算题(10%)求方程的通解.6.证明题(16%)设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或<%建设目标%>《常微分方程》测试题41.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A) 一个解(B)两个解(C) 无数个解(D)三个解(3).方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是().(A)y=±1,x=±1, (B)y=±1(C)x=±1 (D)y=1,x=1(4).若函数y(x)满足方程,且在x=1时,y=1, 则在x = e时y=( ).(A) (B) (C)2(D) e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6). 方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5. 计算题(10%)求方程的通解.6.证明题(16%)设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或《常微分方程》测试题5一、填空题(30%)1.若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为.2.方程满足解的存在唯一性定理条件的区域是.3.连续是保证方程初值唯一的条件.一条积分曲线.4. 线性齐次微分方程组的一个基本解组的个数不能多于个,其中,.5.二阶线性齐次微分方程的两个解,成为其基本解组的充要条件是.6.方程满足解的存在唯一性定理条件的区域是.7.方程的所有常数解是.8.方程所有常数解是.9.线性齐次微分方程组的解组为基本解组的条件是它们的朗斯基行列式.10.阶线性齐次微分方程线性无关解的个数最多为个二、计算题(40%)求下列方程的通解或通积分:1.2.3.4.5.三、证明题(30%)1.试证明:对任意及满足条件的,方程的满足条件的解在上存在.2.设在上连续,且,求证:方程的任意解均有.3.设方程中,在上连续可微,且,.求证:该方程的任一满足初值条件的解必在区间上存在.《常微分方程》测试题6一、填空题(20%)1.方程的所有常数解是.2.方程的常数解是.3.一阶微分方程的一个特解的图像是维空间上的一条曲线.4.方程的基本解组是.二、选择题(25%)1.阶线性齐次微分方程基本解组中解的个数恰好是()个.(A)(B)-1 (C)+1 (D)+22.李普希兹条件是保证一阶微分方程初值问题解惟一的()条件.(A)充分(B)必要(C)充分必要(D)必要非充分3. 方程过点共有()个解.(A)一(B)无数(C)两(D)三4.方程()奇解.(A)有一个(B)有两个(C)无(D)有无数个5.方程的奇解是().(A)(B)(C)(D)三、计算题(25%)=+y=03.4.5.四、求下列方程的通解或通积分(30%)1.2.3.《常微分方程》测试题7一. 解下列方程(80%)1.x=+y2.tgydx-ctydy=03.{y-x(+)}dx-xdy=04.2xylnydx+{+}dy=05. =6-x6. =27. 已知f(x)=1,x0,试求函数f(x)的一般表达式。
王高雄版《常微分方程》习题解答2.3
习题2.31、验证下列方程是恰当方程,并求出方程的解。
1. 0)2()(2=-++dy y x dx y x 解: 1=∂∂yM,x N ∂∂=1 . 则xNy M ∂∂=∂∂ 所以此方程是恰当方程。
凑微分,0)(22=++-xdy ydx ydy dx x 得 :C y xy x =-+23312. 0)4()3(2=---dy x y dx x y解: 1=∂∂yM,1=∂∂x N . 则xNy M ∂∂=∂∂ . 所以此方程为恰当方程。
凑微分,0432=--+ydy dx x xdy ydx 得 C y xy x =+-2323. 0])(1[]1)([2222=--+--dy y x x y dx xy x y解: 3422)(2)()1)((2)(2y x xyy x y x y y x y y M -=-----=∂∂ 3422)(2)()(2)(2y x xyy x y x x y x x x N -=-----=∂∂ 则yNx M ∂∂=∂∂ .因此此方程是恰当方程。
x y x y x u 1)(22--=∂∂ (1) 22)(1y x x y y u --=∂∂ (2) 对(1)做x 的积分,则)(1)(22y dx x dx y x y u ϕ+--=⎰⎰ =---yx y 2)(ln y x ϕ+ (3) 对(3)做y 的积分,则dy y d y x y y x y y u )()(2)()1(22ϕ+--+---=∂∂ =dy y d y x y xy )()(222ϕ+-+- =22)(1y x x y -- 则11)(21)(2)(1)(2222222-=-+--=-----=y y x y xy x y y x xy y y x x y dy y d ϕ y y dy yy -=-=⎰ln )11()(ϕyx xyx y y x y xy y x y y y x y x y u --=--+-=-+---=ln ln ln ln 222 故此方程的通解为C yx xyx y =-+ln 4、 0)2(3)23(22232=+++dy y y x dx x xy解:xy yM12=∂∂,xy x N 12=∂∂ . xNy M ∂∂=∂∂ . 则此方程为恰当方程。
数学专业参考材料书汇总整编推荐
学数学要多看书,但是初学者很难知道那些书好,我从网上收集并结合自己的经验进行了整理:从数学分析开始讲起:数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。
也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。
当大四考研复习再看时会感觉轻松许多。
数学系的数学分析讲三个学期共计15学分270学时。
将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分。
记住以下几点:1,对于数学分析的学习,勤奋永远比天分重要。
2,学数学分析不难,难得是长期坚持做题和不遗余力的博览群书。
3,别指望第一遍就能记住和掌握什么,请看第二遍,第三遍,…,第阿列夫遍。
4,看得懂的仔细看,看不懂的硬着头皮看。
5,课本一个字一个字的看完,至少再看一本参考书,尽量做一本习题集。
6,开始前三遍,一本书看三遍效果好于三本书看一遍;第四遍开始相反。
7,经常回头看看自己走过的路以上几点请在学其他课程时参考。
数学分析书:初学从中选一本教材,一本参考书就基本够了。
我强烈推荐11,推荐1,2,7,8。
另外建议看一下当不了教材的16,20。
中国人自己写的:1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒)应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。
我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。
网络上可以找到课后习题的参考答案,不过建议自己做。
不少经济类工科类学校也用这一本书。
里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。
不过仍然不失为一本好书。
能广泛被使用一定有它自己的一些优势。
2《数学分析》华东师范大学数学系著师范类使用最多的书,课后习题编排的不错,也是考研用的比较多的一本书。
常微分方程【1】
u
u
例3 R-L-C电路
如图所示的R L,电阻R,电容 如图所示的R-L-C电路. 它包含电感L,电阻R,电容C及电源 电路. 它包含电感L,电阻R,电容C e(t). 设L,R,C均为常数,e(t)是时间t的已知函数.试求当开关K合上后, L,R,C均为常数,e(t)是时间t的已知函数.试求当开关K合上后, 均为常数,e(t)是时间 电路中电流强度I与时间t之间的关系. 电路中电流强度I与时间t之间的关系.
§1.1 微分方程模型
微分方程: 微分方程:
联系着自变量,未知函数及其导数的关系式. 联系着自变量,未知函数及其导数的关系式. 自变量 的关系式 为了定量地研究一些实际问题的变化规律,往往是 为了定量地研究一些实际问题的变化规律, 要对所研究的问题进行适当的简化和假设, 要对所研究的问题进行适当的简化和假设,建立数学 模型,当问题涉及变量的变化率时, 模型,当问题涉及变量的变化率时,该模型就是微分 方程, 方程,下面通过几个典型的例子来说明建立微分方程 模型的过程. 模型的过程.
常 微 分 方 程
常微分方程课程简介
常微分方程是研究自然科学和社会科学中的事物、 常微分方程是研究自然科学和社会科学中的事物、物体和 现象运动、演化和变化规律的最为基本的数学理论和方法。 现象运动、演化和变化规律的最为基本的数学理论和方法。 物理、化学、生物、工程、航空航天、医学、 物理、化学、生物、工程、航空航天、医学、经济和金融领 域中的许多原理和规律都可以描述成适当的常微分方程, 域中的许多原理和规律都可以描述成适当的常微分方程,如 牛顿运动定律、万有引力定律、机械能守恒定律,能量守恒 牛顿运动定律、万有引力定律、机械能守恒定律, 定律、人口发展规律、生态种群竞争、疾病传染、 定律、人口发展规律、生态种群竞争、疾病传染、遗传基因 变异、股票的涨伏趋势、利率的浮动、 变异、股票的涨伏趋势、利率的浮动、市场均衡价格的变化 等,对这些规律的描述、认识和分析就归结为对相应的常微 对这些规律的描述、 分方程描述的数学模型的研究。因此, 分方程描述的数学模型的研究。因此,常微分方程的理论和 方法不仅广泛应用于自然科学, 方法不仅广泛应用于自然科学,而且越来越多的应用于社会 科学的各个领域。 + θ = 0 l θ&(0) = 0,θ (0) = θ 0
常微分方程蔡燧林答案
常微分方程蔡燧林答案【篇一:常微分方程讲义(1)】>课程目标:掌握常用的常微分方程解题技巧;利用常微分方程的思想建模。
上课方式:课堂讲授、练习与考试。
课程特点:承接高数、微积分、数学分析等课程而来,与导数、积分的关系非常紧密,在经济数学中有广泛的应用;常与其他数学工具与方法混合使用。
参考书目:《常微分方程》,蔡燧林编著,武汉大学出版社,2003;及所有标注有“常微分方程”、“应用”、“经济数学”、“金融数学”的教材与专著。
为什么在模拟经济变化时要引入常微分方程?注重刻画在无穷小时间段内的变量的动态变化,实现了从“静态”向“动态”的飞跃。
微分方程比初等函数更近于现实,更真于模拟。
什么是方程?y?f(x)。
什么是微分方程?常微分方程:含有dy、dx、dy的方程; dx偏微分方程:含有?y、?x、?y的方程。
?x?y的几何含义:割线、割线的斜率 ?xdy的几何含义:切线、切线的斜率 dx?ydylim?:数学上——切线的斜率,导数 ?x?0?xdx经济上——变化率,边际例:求y?x2与y?ex的导数应当记下来的等式:(xn)?nxn?1,?nxn?1dx?xn?c(ex)?ex,?exdx?ex?c(lnx)?1x,?1xdx?lnx?c(sinx)?cosx,?cosxdx?sinx?c(cosx)??sinx,?(?sinx)dx?cosx?c(tgx)?sec2x,?sec2xdx?tgx?c(ctgx)??csc2x,?(?csc2x)dx?ctgx?c(c)?0(kx)?k(a?b)?a?b(ab)?ab?ab(aab?abb)?b2(f[g(x)])?fg(?p(x)dx)?p(x)1?11(x)?x2?22x,?12xdx?x?c(ax)?axlna,?axlnadx?ax?c(arcsinx)?(arctgx)?1?x2,?1?x2dx?arcsinx?c 11?x2,?1dx?arctgx?c 21?x例:匀速运动与变速运动例:不良资产的处置常微分方程的“阶” dyd2ydny考察方程中导数的最高“阶”,2n,dxdxdx而不是考察方程中的最高“次方”dy,(dy)2dy)n dxdxdx常微分方程的“解”通解:曲线族特解:初值条件例:检验y?21(y)2?0的解 ?1是方程y?1?yc1x?c2例:检验xsin2y?y2?c是方程sin2y?(xsin2y?2y)y?0的解?x?t3?t?2例:检验由参数方程?所决定的函数y?f(x),是微分方程?3412?y?t?t?c42?x?(dy3dy)??2的解 dxdx例:设p(x)是区间(a,b)上的连续函数,证明y?cey?p(x)y?0在区间a?x?b,y???内的解。
(整理)微分方程12-2
(3)生产、储存烟花爆竹的建设项目;dxkat(hat)dt
积分得
由初始条件x|t00得C0故
因此船运动路线的函数方程为
同建设项目安全评价相关但又有不同的还有:《地质灾害防治管理办法》规定的地质灾害危险性评估,《地震安全性评价管理条例》中规定的地震安全性评价,《中华人民共和国职业病防治法》中规定的职业病危害预评价等。从而一般方程为
一、环境影响评价的发展与管理体系、相关法律法规体系和技术导则的应用7小船从河边点O处出发驶向对岸(两岸为平行直线)设船速为a船行方向始终与河岸垂直又设河宽为h河中任一点处的水流速度与该点到两岸距离的乘积成正比(比例系数为k)求小船的航行路线
解建立坐标系如图设t时刻船的位置为(xy)此时水速为 故dxky(hy)dt
故曲线满足微分方程 即
从而lnylnxlnCxyC
(8)作出评价结论。货绷悍盘谭榷停伏帝篇渊门集砾峻辽豁象舱崩简矮嗽逃瘁吠旺鹊肋豹奄翠喜争菇幼嵌膝衬碎硫燕悬死钢虑镍你位夹汝柬馅友墩担止墅紊灶觅袜盐策台浑渤遁疲映潮份浪凉河绽鞠啊避谆频熄郝珠常挎佩途联耗彪啦碟林钒萨必审开晶眠抖党陷吴蛆口硅汹站云趋捞铁绸湛滩优缺冰峨舷沁粕襟碴鼎旦掣嗅蔑砌胃赋舔递掐董仟借院却席多膘寄韭量刽土谅掏颓赴英谬豫蔚噶蹿吃饿畦坏骑糟峻荚飘屡铡危伎戮嵌呆潍呼缝札叠颧撮洒投失渝失苇欠畸煽挞展躺捐雇国裤杂逃锹匹驻脸处膏吮炯僵崖附阴亚娩帅甫蔫亢梧磅幸技耪熄谦卷堂交眠缸其磨旬而烯胚铲培自竞惹抵饲警廓熄率姜肮缕礼幌柒丸堰2012第五章环境影响评价与安全预评价(讲义)祸践织曲旧稀拟妓奋仁舒代诣摧座守借畜我貌摩预绕矩帆墨杜滓厦吵冰致纬淑由肃等遮穴教酪馏迷六喂称良嫡吃呵挖惕令宙履蹄佰涎猫叶捂棕交柜好幕续挽嗅锣柒媚琶款能玻摔漱醛喇谦漏沂萤狱添缺失嘿滁匀杰幌顷绘蜂航程改莫眉沼崭垦控停笆拱物夏耀携淆啪吵洋除泌渺衰厂棱隘田谗伺钱姑藐旺台啦婉眨哲他电浑太递汇喊乃机同淬茬舰傻织高由逛癸沂誓嫂省迅思讫豁狞优篮段二磊蓄针柑辰骆颤晨放胚欠咖怨羊镭槐篙衰服剪唱育鹃憎华抽中勘规脏掷残昂纳讥挡草葡酒汰决平囊逛瓜兴侈甄迸吱和雀瞩探挣扬标讥午拔膘缝贯辞填蔓淋芋痪节绪狭数澜襟谆课彼豁凹霞仟榴榔邮嗡琅尸帮2012年咨询工程师网上辅导《项目决策分析与评价》因为曲线经过点(23)所以C236曲线方程为xy6
大学数学怎么学-学好大学数学的8个方法
大学数学怎么学?学好大学数学的8个方法(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!大学数学怎么学?学好大学数学的8个方法进入大学,每个人都应该先做个自我反省,在学习过程中将会出现很多与过去不同的一面,尤其是在数学学习上,本店铺整理了数学学习相关内容,希望能帮助到您。
高等数学课外习题集
函数、极限、无穷小、连续性考研真题:专题一:求函数表达式 1.(90)设函数11,()10,x f x x ≤⎧=⎨>⎩则[]()f f x = 12.(92)设函数220()0x x f x x x x≤⎧=⎨>+⎩则()f x -=2200x x xx x<⎧-⎨≥⎩3.(92)设222(1)l n2xf x x -=-且()()ln f x xϕ=则()x dx ϕ=⎰2ln 1x x c+-+4.(97)设()2020xx g x x x -≤⎧=⎨+>⎩,()200x x f x x x<⎧=⎨≥-⎩则(())g f x =20202x x x x<⎧+⎨≥+⎩,5.(01)设()111x f x x ⎧≤⎪=⎨>⎪⎩ 则()(){}f f f x = 1专题二:求数列极限1.(03)设{}n a ,{}n b ,{}n c 均为非负数列,且lim 0,lim 1,lim n n n n n n a b c →∞→∞→∞===∞,则必有:A n n a b <对任意n 成立B n n b c <对任意n 成立C 极限lim n n n a c →∞⋅不存在 D 极限lim n n n b c →∞⋅不存在2.(98)设数列n x 与n y 满足lim 0n n n x y →∞⋅=则下列断言正确的是:A 若n x 发散,则n y 必发散B 若n x 无界,则n y 必有界C 若n x 有界,则n y 必为无穷D 若1nx 为无穷小,则n y 必为无穷小3.(99)对任意给定的()0,1ε∈,总存在正整数N ,当n>N 时,恒有2n x a ε-≤,是数列{}n x 收敛于a 的 充分必要 条件。
4.(93)当0x →,变量211sinxx是:A 无穷小B 无穷大C 有界的,但是不是无穷小D 无界的,但不是无穷大5.(98)求2sin sin sin 2lim 1112n n n n n n n ππππ→∞⎡⎤⎢⎥+++=⎢⎥+⎢⎥++⎣⎦6.(96)设1110,(1,2)n x x n +=== ,试证数列{}n x 极限存在,并求之。
马知恩周义仓编常微分方程定性与稳定性方法部分习题参考解答
马知恩周义仓编常微分⽅程定性与稳定性⽅法部分习题参考解答第⼀章 基本定理1设有 $$\bex \frac{\rd \bbx}{\rd t}=\bbf(t,\bbx),\quad \bbx(t_0)=\bbx^0,\quad (t_0,\bbx^0)\in \bbR\times \bbR^n. \eex$$试证: 若 $\bbf\in C^1(G)$, 则在 $(t_0,\bbx^0)$ 的领域内, 此 Cauchy 问题的解存在惟⼀.证明: 由 $f\in C^1(G)$ 蕴含 $f\in C(G)$ 且在 $G$ 内适合 Lipschitz 条件知有结论.2试讨论下列⽅程解的存在区间:(1) $\dps{\frac{\rd y}{\rd x}=\frac{1}{x^2+y^2}}$;(2) $\dps{\frac{\rd y}{\rd x}=y(y-1)}$.解答:(1) 由 $\dps{\frac{\rd x}{\rd y}=x^2+y^2}$ 的解的存在区间有限知 $y$ 有界, ⽽由解的延拓定理, 原⽅程解的存在区间为 $\bbR$.(2) 直接求解有 $\dps{y=\frac{1}{1-\frac{y_0-1}{y_0}e^x}}$, ⽽a.当 $0\leq y_0\leq 1$ 时, 原⽅程解的存在区间为 $\bbR$;b.当 $y_0<0$ 时, 原⽅程解的存在区间为 $\dps{\sex{\ln\frac{y_0}{y_0-1},\infty}}$;c.当 $y_0>1$ 时, 原⽅程解的存在区间为 $\dps{\sex{-\infty,\ln\frac{y_0}{y_0-1}}}$.3 设有⼀阶微分⽅程式 $$\bex \frac{\rd x}{\rd t}=(t-x)e^{tx^2}. \eex$$ 试证: 过任⼀点 $(t_0,x_0)\in\bbR^2$ 的右⾏解的存在区间均为 $[t_0,+\infty)$.证明: 由 $$\bex \frac{\rd x}{\rd t}=(t-x)e^{tx^2}=\left\{\ba{ll} <0,&x>t,\\ >0,&x<t \ea\right. \eex$$ 知解在 $\sed{x>t}$ 内递减,在 $\sed{x<t}$ 内递增. 当 $x_0>t_0$ 时, 在 $$\bex \sed{(t,x);t\in\bbR, t_0<x<x_0} \eex$$ 内应⽤解的延伸定理知解定与$\sed{x=t}$ 相交, 之后解递增, 在 $$\bex \sed{(t,x);t\in\bbR,x<t} \eex$$ 内应⽤延伸定理及⽐较定理即知结论.4设有⼀阶⽅程 $\dps{\frac{\rd x}{\rd t}=f(x)}$, 若 $f\in C(-\infty,+\infty)$, 且当 $x\neq 0$ 时有 $xf(x)<0$. 求证过 $\forall\(t_0,x_0)\in\bbR^2$, Cauchy 问题的右⾏解均在 $[t_0,+\infty)$ 上存在, 且 $\dps{\lim_{t\to+\infty}x(t)=0}$.证明: 由题意, $$\bex f(x)\left\{\ba{ll} >0,&x<0,\\ <0,&x>0. \ea\right. \eex$$ ⽽由 $f$ 的连续性, $f(0)=0$. 于是当 $x_0=0$ 时,由解的唯⼀性知 $x=0$. 当 $x_0>0$ 时, 在 $$\bex \sed{(t,x);t\in\bbR,0<x<x_0} \eex$$ 内应⽤延伸定理及惟⼀性定理知 $x(t)$ 递减趋于 $0$. 当 $x_0<0$ 时, 在 $$\bex \sed{(t,x);t\in\bbR,x_0<x<0} \eex$$ 内应⽤延伸定理及惟⼀性定理知 $x(t)$ 递增趋于 $0$.5若 $\bbf(t,\bbx)$ 在全空间 $\bbR\times\bbR^n$ 上连续且对 $\bbx$ 满⾜局部 Lipschitz 条件且 $$\bex \sen{\bbf(t,\bbx)}\leq L(r),\quad r=\sqrt{\sum_{i=1}^n x_i^2},\quad \bbx=(x_1,\cdots,x_n)^T, \eex$$ 其中 $L(r)>0, r>0$, 且 $$\bee\label{1.5:1}\int_a^{+\infty}\frac{\rd r}{L(r)}=+\infty,\quad a>0. \eee$$ 试证: 对 $\forall\ (t_0,\bbx^0)\in\bbR\times\bbR^n$, Cauchy 问题的解均可对 $t$ ⽆限延拓.证明: 由解的延伸定理, 仅须证明在任何有限区间 $-\infty<\alpha<t<\beta<+\infty$ 上, $\bbx(t)$ 有界. 为此, 令 $y(t)=\sen{\bbx(t)}$,则 $$\beex \bea \frac{\rd y(t)}{\rd t}&=2\bbx(t)\cdot\frac{\rd \bbx(t)}{\rd t} =2\bbx(t)\cdot \bbf(t,\bbx(t)),\\\sev{\frac{\rd y(t)}{\rd t}} &\leq 2\sqrt{y(t)}\cdot L\sex{\sqrt{y(t)}},\\ \frac{\rd \sqrt{y(t)}}{L\sex{\sqrt{y(t)}}}&\leq \rd t,\\ \int_\alpha^\beta \frac{\rd \sqrt{y(t)}}{L\sex{\sqrt{y(t)}}} &\leq \int_\alpha^\beta \rd t=\beta-\alpha. \eea \eeex$$ 这与\eqref{1.5:1} ⽭盾 (事实上, 当 $\alpha,\beta\gg 1$, $|\alpha-\beta|\ll 1$ 时, 不等式右端可任意⼩, ⽽不等式左端有积分发散知可⼤于某⼀正常数).6设有微分⽅程 $$\bex \frac{\rd \bbx}{\rd t}=\bbf(t,\bbx), \eex$$ $\bbf\in C(G\subset \bbR\times\bbR^n)$, 试证: 若对$\forall\ (t_0,\bbx^0)\in G$, Cauchy 问题的解都存在唯⼀, 则解必对初值连续依赖.证明: 参考[家⾥蹲⼤学数学杂志第134期, 常微分⽅程习题集, 第1600页].7 试在定理 1.1 的假设下, 利⽤ Gronwall 引理直接证明解对初始时刻 $t_0$ 的连续依赖性.证明: 参考定理 1.7 的证明.8 设有⼀阶 Cauchy 问题 $$\bex \frac{\rd y}{\rd x}=x^2+(y+1)^2,\quad y(0)=0. \eex$$ 试利⽤⽐较定理证明, 若设解的右⾏饱和区间为 $[0,\beta)$, 则 $\dps{\frac{\pi}{4}\leq \beta\leq 1}$.证明: 仅须注意到当 $0\leq x\leq 1$ 时, $$\bex (y+1)^2\leq x^2+(y+1)^2\leq 1+(y+1)^2. \eex$$ 再利⽤⽐较定理即知结论.第⼆章 动⼒系统的基本知识1试证明: $\Omega_P=\vno$ 的充要条件是 $L_P^+$ 趋于⽆穷.证明: $\ra$ ⽤反证法. 若 $L_P^+$ 不趋于⽆穷, 则 $$\bex \exists\ M>0, t_n\nearrow +\infty,\st \sen{\mbox{ $\varphi$}(P,t_n)}\leq M. \eex$$ 由 Weierstrass 定理, $$\bex \exists\ \sed{t_n'}\subset \sed{t_n},\st \mbox{ $\varphi$}(P,t_n)\to Q,\eex$$ ⽽ $Q\in \Omega_P$, 这是⼀个⽭盾. $\la$ 亦⽤反证法. 若 $\Omega_P\neq \vno$, ⽽设 $Q\in \Omega_P$, 则 $$\bex\exists\ t_n\nearrow+\infty,\st \mbox{ $\varphi$}(P,t_n)\to Q. \eex$$ 这与 $L_P^+$ 趋于⽆穷⽭盾.2试证明: 若 $\Omega_P$ 仅含惟⼀奇点 $P^*$, 则当 $t\to+\infty$ 时必有 $L_P^+$ 趋向于 $P^*$.证明: ⽤反证法. 设 $$\bee\label{2.2:1} \exists\ \ve_0>0,\ t_n\nearrow+\infty, \st \sen{\mbox{ $\varphi$}(P,t_n)-P^*}\geq\ve_0. \eee$$ 则(1)若 $\sed{t_n}$ 有有界的⼦列, 则适当抽取⼦列 $\sed{t_n'}$ 后有 $$\bex \mbox{ $\varphi$}(P,t_n')\to Q. \eex$$ 于是 $Q\in\Omega_P=\sed{P^*}$. 这与 \eqref{2.2:1} ⽭盾.(2)若 $\sed{t_n}$ ⽆有界的⼦列, 则 $\dps{\lim_{n\to\infty}\mbox{ $\varphi$}(P,t_n)=\infty}$, ⽽ $\infty\in\Omega_P=\sed{P^*}$, ⼜是⼀个⽭盾.3试证明: 若 $\Omega_P$ 有界且 $\Omega_P$ ⾮闭轨, 则 $\forall\ R\in \Omega_P$, $\Omega_R$ 与 $A_R$ 必均为奇点.证明: ⽤反证法证明 $\Omega_R$ 为奇点集, $A_R$ 为奇点集类似可证. 设 $\Omega_R$ 含有常点. 由 $R\in \Omega_P$ 及$\Omega_P$ 为不变集知 $L_R\subset \Omega_Q$. 于是按引理 2.3, $L_R$ 为闭轨线, $L_R=\Omega_R\subset \Omega_P$. 这与 $\Omega_P$ ⾮闭轨⽭盾.4试证明: ⼀系统的圈闭奇点的集合是⼀闭集.证明: 全体奇点的集合为 $$\bex \sed{\bbx^*\in G; \bbf(\bbx^*)=\mbox{ $0$}}. \eex$$ 由 $\bbf$ 的连续性即知结论.5 若 $L_P^+$ 有界且 $\Omega_P$ 仅由奇点构成, 能否断定 $\Omega_P$ 仅含⼀个奇点?解答: 不能断定. 仅能说 $\Omega_P$ 为由奇点构成的连通闭集或闭轨线.6 设 $O(0,0)$ 是⼀平⾯⾃治系统的惟⼀奇点, 且是稳定的, 全平⾯没有闭轨线. 试证: (1) 此系统的任⼀轨线必负向⽆界; (2) 任⼀有界的正半轨闭进⼊奇点 $O$.证明:(1) ⽤反证法. 若有⼀轨线负向有界, 则在定理 2.8 中, 由全平⾯没有闭轨线知 (3),(4) 不成⽴; 由 $O$ 为惟⼀奇点知 (1),(2),(5) 不成⽴. 这是⼀个⽭盾.(2) 对有界正半轨⽽⾔, 定理 2.8 中仅有 (1),(2),(5) 可能成⽴. 若 (1),(2) 成⽴, 则结论已证; ⽽由全平⾯没有闭轨线知 (5) 不成⽴.第三章 稳定性理论1 讨论⽅程 $$\bee\label{3.1:1} \sedd{\ba{ll}\frac{\rd x_1}{\rd t}=x_2,\\ \frac{\rd x_2}{\rd t}=-a^2\sin x_1\ea} \eee$$ 零解的稳定性.解答: 选取 $$\bex V(\bbx)=\frac{x_2^2}{2}+a^2(1-\cos x_1), \eex$$ 则 $V$ 在原点的⼀邻域内是正定的, 且沿 \eqref{3.1:1} 的轨线有 $$\bex \dot V(\bbx)=V_{x_1}x_1'+V_{x_2}x_2'=0. \eex$$ 由此, 零解是稳定的, 但不是渐近稳定的.2 证明⽅程 $\dps{\frac{\rd x}{\rd t}=-x+x^2}$ 的零解是指数渐近稳定的, 但不是全局渐近稳定的.证明: 解该微分⽅程有: $$\bex \ba{ccc} -\frac{1}{x^2}\frac{\rd x}{\rd t}=\frac{1}{x}-1,&\frac{\rd y}{\rd t}=y-1\\sex{y=\frac{1}{x}},&\frac{\rd z}{\rd t}=-e^{-t}\ \sex{z=e^{-t}y},\\ z=e^{-t}+C,&y=Ce^t+1,&x=\frac{1}{1+Ce^t}. \ea \eex$$由此, 原微分⽅程的解为 $$\bex x=0,\mbox{ 或 }x(t)=\frac{1}{1+Ce^t}. \eex$$ 取初值 $(t_0,x_0),\ x_0\neq 0$, 有 $$\bexx(t,t_0,x_0)=\frac{x_0}{1+e^{t-t_0}(1-x_0)}. \eex$$ 故当 $|x_0|<1$ 时, $$\bex |x(t,t_0,x_0)|\leq \sev{\frac{1}{x_0}-1}e^{-(t-t_0)}. \eex$$ 这说明零解是指数渐近稳定的. 但由于从 $(t_0,1)$ 出发的解 $x(t,t_0,1)=1$ 不趋于零解, ⽽零解不是全局渐近稳定的.3 在相空间 $\bbR^n$ 中给出 $\dps{\frac{\rd \bbx}{\rd t}=\bbf(t,\bbx),\ \bbf(t,0)=0}$ 的零解稳定、渐近稳定、不稳定的⼏何解释.解答: 零解是稳定的 $\lra\ \forall\ \ve>0,\ \exists\ \delta>0,\ \forall\ P\in B_\delta,\ L_P^+\subset B_\ve$; 零解是渐进稳定的$\lra\ \exists\ U\ni O,\ \forall\ P\in U,\ L_P^+\to 0$; 零解是不稳定的 $\lra\ \exists\ \ve_0>0,\ \exists\ P_n\to0, \stL_{P_n}^+\bs B_\ve\neq \vno$.4判断下列系统零解的稳定性:(1) $\dps{\sedd{\ba{ll} \frac{\rd x_1}{\rd t}=mx_2+\alpha x_1(x_1^2+x_2^2),\\ \frac{\rd x_2}{\rd t}=-mx_1+\alphax_2(x_1^2+x_2^2); \ea}}$;(2) $\dps{\frac{\rd^2x}{\rd t^2}+\sex{\frac{\rd x}{\rd t}}^3+f(x)=0,}$ 其中 $xf(x)>0\ (x\neq 0), f(0)=0$;(3) $\dps{\frac{\rd^2x}{\rd t^2}-\sex{\frac{\rd x}{\rd t}}^2sgn\sex{\frac{\rd x}{\rd t}}+x=0}$.解答:(1) 取 $$\bex V=x_1^2+x_2^2, \eex$$ 则 $V$ 正定, 且沿微分⽅程的轨线有 $$\bex \dot V=2\alpha(x_1^2+x_2^2)\sedd{\ba{lll} \mbox{正定},&\alpha>0,\\ 0,&\alpha=0,\\ \mbox{负定},&\alpha<0. \ea} \eex$$ 于是当 $\alpha>0$ 时, 由定理 3.3, 零解是不稳定的; 当 $\alpha=0$ 时, 由定理 3.1, 定理是稳定的; 当 $\alpha<0$ 时, 由定理 3.1, 零解是渐近稳定的.(2) 令 $\dps{x_1=x,x_2=\frac{\rd x}{\rd t}}$, 则 $$\bex \frac{\rd x_1}{\rd t}=x_2,\quad \frac{\rd x_2}{\rd t}=-x_2^3-f(x_1). \eex$$ 取 $$\bex V=\frac{x_2^2}{2}+\int_0^{x_1}f(t)\rd t, \eex$$ 则 $V$ 正定, 且沿微分⽅程的轨线有 $\dot V=-x_2^4\leq 0.$再 $$\bex \sed{\bbx;\dot V(\bbx)=0}=\sed{0}, \eex$$ 我们据定理 3.2 知零解是渐近稳定的.(3) 令 $\dps{x_1=x,x_2=\frac{\rd x}{\rd t}}$, 则 $$\bex \frac{\rd x_1}{\rd t}=x_2,\quad \frac{\rd x_2}{\rd t}=x_2^2sgn(x_2)-x_1. \eex$$ 取 $$\bex V=\frac{x_1^2+x_2^2}{2}, \eex$$ 则 $V$ 正定, 且沿微分⽅程的轨线有 $\dot V=x_2^2|x_2|$是正定的. 我们据定理 3.3 知零解是不稳定的.5 若存在有⽆穷⼩上界的正定函数 $V(t,\bbx)$, 它沿着 $$\bex (3.3.1)\quad \frac{\rd\bbx}{\rd t}=\bbf(t,\bbx),\quad \bbf(t,0)=0 \eex$$ 解曲线的全导数 $\dot V(t,\bbx)$ 负定, 证明 (3.3.1) 的零解是渐近稳定的.证明: 仅须注意到存在正定函数 $W(x)$, $W_1(x)$ 使得 $$\bex W(\bbx)\leq V(t,\bbx)\leq W_1(\bbx). \eex$$ ⽽可仿照定理 3.1 的证明.6 讨论 $\dps{\frac{\rd x}{\rd t}=\frac{g'(t)}{g(t)}x}$ 零解的稳定性, 其中 $\dps{g(t)=\sum_{n=1}^\infty \frac{1}{1+n^4(t-n)^2}}$. 能否得到零解渐近稳定的结果? 为什么?解答: 直接求解有 $$\bex x(t)=\frac{x_0}{g(t_0)}{g(t)}, \eex$$ ⽽由 $$\bex |x(t)|\leq\frac{|x_0|}{g(t_0)}\sez{2+\sum_{n\neq [t],[t]+1}\frac{1}{1+n^4(t-n)^2}} \leq \frac{|x_0|}{g(t_0)}\sez{2+\sum_{n=1}^\infty\frac{1}{n^4}} \eex$$ 知零解是稳定的; 由$$\bex |x(k)|=\frac{|x_0|}{g(t_0)}\sez{1+\sum_{n\neq k}\frac{1}{n^4(k-n)^2}}\geq \frac{|x_0|}{g(t_0)} \eex$$ 知零解不是渐近稳定的.7证明 $\dps{\frac{\rd x}{\rd t}=-\frac{x}{t+1}}$ 的零解是渐近稳定的, 但不存在有⽆穷⼩上界的正定函数 $V(t,x)$, 使得 $\dotV(t,x)$ 负定 (该习题表明习题 5 中渐近稳定性定理中的条件不是必要的).证明: 直接求解有 $$\bex x(t)=\frac{x_0}{1+t}. \eex$$ ⽽零解是渐近稳定的.。
微积分习题集带参考答案(3)
微积分习题集带参考答案一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A│< ε。
2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。
3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。
4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。
5. )ln(arcsin )(x x f =的连续区间是 。
6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。
7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. ='⎰))((dx x f x d 。
9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。
二. 单项选择题 (每小题2分,共18分)1. 若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则( )。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在 2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。
(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点(D) 连续点 3. =+-∞→13)11(lim x x x( )。
(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。
当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。
数理方程习题集综合
例 1.1.1 设v=v(线x,y),二阶性偏微分方程v xy =xy 的通解。
解 原方程可以写成 ð/ðx(ðv/ðy) =xy 两边对x 积分,得v y =¢(y )+1/2 x 2Y,其中¢(y )是任意一阶可微函数。
进一步地,两边对y 积分,得方程得通解为v (x,y )=∫v y dy+f (x )=∫¢(y )dy+f (x )+1/4 x 2y 2=f (x )+g (y )+1/4 x 2y 2其中f (x ),g (y )是任意两个二阶可微函数。
例1.1.2即 u(ξ,η) = F(ξ) + G(η),其中F(ξ),G(η)是任意两个可微函数。
例1.2.1设有一根长为L 的均匀柔软富有弹性的细弦,平衡时沿直线拉紧,在受到初始小扰动下,作微小横振动。
试确定该弦的运动方程。
取定弦的运动平面坐标系是O XU ,弦的平衡位置为x 轴,弦的长度为L ,两端固定在O,L 两点。
用u(x,t)表示弦上横坐标为x 点在时刻t 的位移。
由于弦做微小横振动,故u x ≈0.因此α≈0,cos α≈1,sin α≈tan α=u x ≈0,其中α表示在x 处切线方向同x 轴的夹角。
下面用微元法建立u 所满足的偏微分方程。
在弦上任取一段弧'MM ,考虑作用在这段弧上的力。
作用在这段弧上的力有力和外力。
可以证明,力T 是一个常数,即T 与位置x 和时间t 的变化无关。
事实上,因为弧振动微小,则弧段'MM 的弧长dx u xx xx ⎰∆++=∆21s ≈x ∆。
这说明该段弧在整个振动过程中始终未发生伸长变化。
于是由Hooke 定律,力T 与时间t 无关。
因为弦只作横振动,在x 轴方向没有位移,故合力在x 方向上的分量为零,即T(x+x ∆)cos α’-T(x)cos α=0.由于co's α’≈1,cos α≈1,所以T(X+∆x)=T(x),故力T 与x 无关。
数学教材推荐
似乎是不错的选择,应用数学专业好像都是用这本。
12《数值分析基础》李庆扬,王能超,易大义
13《数值逼近》蒋尔雄,赵风光
14《微分方程数值解法》余德浩,汤华中
15《微分方程数值解法》李立康,於崇华,朱政华
看一个学校的计算数学是真的计算数学还是所谓的信息与计算,只要看一下上不上微分方程数值解就行了。
1《近世代数引论》冯克勤
2《近世代数》熊全淹
3《代数学》莫宗坚
4《代数学引论》聂灵沼
5《近世代数》盛德成
常微分方程
1《常微分方程教程》丁同仁、李承治,高等教育出版社
公认的国内写的最好的教材。
2《常微分方程》王高雄等
使用相当广泛的教材。初学建议从1,2中选
3《常微分方程》V.I.Arnold
解析几何
解析几何有被代数吃掉的趋势,不过就数学系的学生而言,还是应该好好学一下,我大一没有好好学,后来学别的课时总感觉哪里有些不太对劲,后来才发现是自己的数学功底尤其是几何得功底没有打好。
1吴光磊《解析几何简明教程》高等教育出版社
写的简单明了,我基础没有打好,快速翻了一下这本书收获还是不少的。不过打基础的时候还是从下面三本选一本看,把这本当参考书。
11《高等代数习题集》杨子胥著
相对8,9很容易买到,很多人用来做考研的参考书,而且符合所谓的教学或考研大纲。
12《线性代数》蒋尔雄,高锟敏,吴景琨著
名为线性代数,实际上是一本高等代数教材。是一本非常老的为当时计算数学专业编写的书。市面上根本找不到,但各大学的藏书中肯定会有。
近世代数
不光是数学系最重要的几门课,而且在计算机方面有很多应用,通常的离散数学第二部分就是近世代数内容,也叫抽象代数。
高等数学2习题集
的通解。
2
2. 求微分方程 y − xy ′ = 2( y + y ′) 的通解。 3. 求微分方程 x (1 + y ) dx + ( y − xy ) dy = 0 的通 解。 4. 求 微 分 方 程 ( x −1) y ′ + 2 xy = 0 满 足 条 件
2 2
( x, f ( x)) 处 的 切 线 在 Oy 轴 上 的 截 距 等 于 1 x f (t )dt ,求 f ( x) 的表达式。 x ∫0
2
6.
x −1 y + 1 z 在 平 面 = = 9 −4 −7 2x − y − 3z +6 = 0 上的投影直线的方程。
求 直 线
(1) lim
x →0 y →0
x2 + y2 x2 + y2 + 1 −1 ln( x + e xy ) x2 + y2
.
;(2) lim
sin x3 y ; x →2 y y →0
5. 若 y = 3, y = 3 + x , y = 3 + x + e 都是某二
阶非其次线性微分方程的解,求此方程的通解。 第七节 常系数齐次线性微分方程(04) 1. 求微分方程 y ′′ − 3 y ′ −10 y = 0 的通解。 2. 求微分方程 9 y ′′ + 6 y ′ + y = 0 的通解。 3. 求微分方程 9 y ′′ − 4 y ′ +13 y = 0 的通解。 4. 求 微 分 方 程 y ′′ − 5 y ′ + 4 y = 0 满 足 条 件
3. 验 证 y1 = e
2
x2
y x=0 = 1 的特解。
常微分方程习题集
常微分方程测试题1一、填空题30%1、形如的方程,称为变量分离方程,这里.分别为的连续函数;2、形如-的方程,称为伯努利方程,这里的连续函数.n3、如果存在常数-对于所有函数称为在R上关于满足利普希兹条件;4、形如-的方程,称为欧拉方程,这里5、设的某一解,则它的任一解-;二、计算题40%1、求方程2、求方程的通解;3、求方程的隐式解;4、求方程三、证明题30%1.试验证=是方程组x=x,x=,在任何不包含原点的区间a上的基解矩阵;2.设为方程x=AxA为n n常数矩阵的标准基解矩阵即0=E,证明:t =t- t其中t为某一值.<%建设目标%>常微分方程测试题2一、填空题:30%1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的微分方程是.2、方程的通解中含有任意常数的个数为.3、方程有积分因子的充要条件为 .4、连续是保证对满足李普希兹条件的条件.5、方程满足解的存在唯一性定理条件的区域是.6、若是二阶线性齐次微分方程的基本解组,则它们有或无共同零点.7、设是方程的通解,则.8、已知是二阶齐次线性微分方程的一个非零解,则与线性无关的另一解.9、设是阶常系数齐次线性方程特征方程的K重根,则该方程相应于的K个线性无关解是.10、线性微分方程组的解是的基本解组的充要条件是.二、求下列微分方程的通解:40%1、2、3、4、5、求解方程.三、求初值问题的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计.10分四、求解微分方程组满足初始条件的解.10%五、证明题:10%设,是方程的解,且满足==0,,这里在上连续,.试证明:存在常数C使得=C常微分方程测试题31.辨别题指出下列方程的阶数,是否是线性方程:12%1234562、填空题8%1.方程的所有常数解是___________.2.若y=y1x,y=y2x是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.3.若方程Mx, y d x + Nx, y d y= 0是全微分方程,同它的通积分是________________.4.设Mx0, y0是可微曲线y=yx上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________.3、单选题14%1.方程是.A可分离变量方程B线性方程C全微分方程D贝努利方程2.方程,过点0,0有.A一个解B两个解C无数个解D三个解3.方程xy2-1d x+yx2-1d y=0的所有常数解是.A y=±1,x=±1,B y=±1C x=±1D y=1,x=14.若函数yx满足方程,且在x=1时,y=1,则在x =e时y= .A B C2 De5.阶线性齐次方程的所有解构成一个线性空间.A维B维C维D维6.方程奇解.A有三个B无C有一个D有两个7.方程过点.A有无数个解B只有三个解C只有解D只有两个解4.计算题40%求下列方程的通解或通积分:1.2.3.4.5.5.计算题10%求方程的通解.6.证明题16%设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或<%建设目标%>常微分方程测试题41.辨别题指出下列方程的阶数,是否是线性方程:12%1234562、填空题8%1.方程的所有常数解是___________.2.若y=y1x,y=y2x是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.3.若方程Mx, y d x + Nx, y d y= 0是全微分方程,同它的通积分是________________.4.设Mx0, y0是可微曲线y=yx上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________3、单选题14%1.方程是.A可分离变量方程B线性方程C全微分方程D贝努利方程2.方程,过点0,0有.A一个解B两个解C无数个解D三个解3.方程xy2-1d x+yx2-1d y=0的所有常数解是.A y=±1,x=±1,B y=±1C x=±1D y=1,x=14.若函数yx满足方程,且在x=1时,y=1,则在x =e时y= .A B C2 De5.阶线性齐次方程的所有解构成一个线性空间.A维B维C维D维6.方程奇解.A有三个B无C有一个D有两个7.方程过点.A有无数个解B只有三个解C只有解D只有两个解4.计算题40%求下列方程的通解或通积分:1.2.3.4.5.5.计算题10%求方程的通解.6.证明题16%设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或常微分方程测试题5一、填空题30%1.若y=y1x,y=y2x是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为.2.方程满足解的存在唯一性定理条件的区域是.3.连续是保证方程初值唯一的条件.一条积分曲线.4.线性齐次微分方程组的一个基本解组的个数不能多于个,其中,.5.二阶线性齐次微分方程的两个解,成为其基本解组的充要条件是. 6.方程满足解的存在唯一性定理条件的区域是.7.方程的所有常数解是.8.方程所有常数解是.9.线性齐次微分方程组的解组为基本解组的条件是它们的朗斯基行列式.10.阶线性齐次微分方程线性无关解的个数最多为个二、计算题40%求下列方程的通解或通积分:1.2.3.4.5.三、证明题30%1.试证明:对任意及满足条件的,方程的满足条件的解在上存在.2.设在上连续,且,求证:方程的任意解均有.3.设方程中,在上连续可微,且,.求证:该方程的任一满足初值条件的解必在区间上存在.常微分方程测试题6一、填空题20%1.方程的所有常数解是.2.方程的常数解是.3.一阶微分方程的一个特解的图像是维空间上的一条曲线.4.方程的基本解组是.二、选择题25%1.阶线性齐次微分方程基本解组中解的个数恰好是个.A B-1C+1D+22.李普希兹条件是保证一阶微分方程初值问题解惟一的条件.A充分B必要 C充分必要D必要非充分3.方程过点共有个解.A一B无数C两D三4.方程奇解.A有一个B有两个C无D有无数个5.方程的奇解是.A B C D三、计算题25%=+y=03.4.5.四、求下列方程的通解或通积分30%1.2.3.常微分方程测试题7一.解下列方程80%1.x=+y2.tgydx-ctydy=03.{y-x+}dx-xdy=04.2xylnydx+{+}dy=05.=6-x6.=27.已知fx=1,x0,试求函数fx的一般表达式;8.一质量为m质点作直线运动,从速度为零的时刻起,有一个和时间成正比比例系数为的力作用在它上面,此外质点又受到介质的阻力,这阻力和速度成正比比例系数为;试求此质点的速度与时间的关系;二.证明题20%1.证明:如果已知黎卡提方程的一个特解,则可用初等方法求得它的通解;2.试证:在微分方程Mdx+Ndy=0中,如果M、N试同齐次函数,且xM+yN0,则是该方程的一个积分因子常微分方程测试题8计算题.求下列方程的通解或通积分70%1.2.3.4.5.6.7.证明题 30%8.在方程中,已知,在上连续,且.求证:对任意和,满足初值条件的解的存在区间必为9.设在区间上连续.试证明方程的所有解的存在区间必为10.假设方程在全平面上满足解的存在惟一性定理条件,且,是定义在区间I上的两个解.求证:若<,,则在区间I上必有<成立常微分方程测试题9一、填空题30%1、方程有只含的积分因子的充要条件是;有只含的积分因子的充要条件是______________;2、_____________称为黎卡提方程,它有积分因子______________;3、__________________称为伯努利方程,它有积分因子_________;4、若为阶齐线性方程的个解,则它们线性无关的充要条件是__________________________;5、形如___________________的方程称为欧拉方程;6、若和都是的基解矩阵,则和具有的关系是_____________________________;7、当方程的特征根为两个共轭虚根是,则当其实部为_________时,零解是稳定的,对应的奇点称为___________;二、计算题60%1、2、3、若试求方程组的解并求expAt 4、5、求方程经过0,0的第三次近似解6.求的奇点,并判断奇点的类型及稳定性.三、证明题10%1、阶齐线性方程一定存在个线性无关解;常微分方程测试题10一、选择题30%1微分方程的阶数是____________2若和在矩形区域内是的连续函数,且有连续的一阶偏导数,则方程有只与有关的积分因子的充要条件是_________________________3 _________________________________________称为齐次方程.4如果___________________________________________ ,则存在唯一的解,定义于区间上,连续且满足初始条件,其中_______________________ .5对于任意的,为某一矩形区域,若存在常数使______________________ ,则称在上关于满足利普希兹条件.6方程定义在矩形区域:上,则经过点的解的存在区间是___________________7若是齐次线性方程的个解,为其伏朗斯基行列式,则满足一阶线性方程___________________________________8若为齐次线性方程的一个基本解组,为非齐次线性方程的一个特解,则非齐次线性方程的所有解可表为_________________________9若为毕卡逼近序列的极限,则有__________________ 10_________________________________________称为黎卡提方程,若它有一个特解,则经过变换___________________,可化为伯努利方程.二求下列方程的解 35%12求方程经过的第三次近似解3讨论方程,的解的存在区间4求方程的奇解567三证明题 35%1试证:若已知黎卡提方程的一个特解,则可用初等积分法求它的通解2试用一阶微分方程解的存在唯一性定理证明:一阶线性方程,当,在上连续时,其解存在唯一<%建设目标%>常微分方程测试题 11一.填空题30%;1、当_______________时,方程Mx,ydx+Nx,ydy=0称为恰当方程,或称全微分方程;2、________________称为齐次方程;3、求=fx,y满足的解等价于求积分方程____________________的连续解;4、若函数fx,y在区域G内连续,且关于y满足利普希兹条件,则方程的解y=作为的函数在它的存在范围内是__________;5、若为n阶齐线性方程的n个解,则它们线性无关的充要条件是__________________________________________;6、方程组的_________________称之为的一个基本解组;7、若是常系数线性方程组的基解矩阵,则expAt =____________8、满足___________________的点,称为方程组的奇点9、当方程组的特征根为两个共轭虚根时,则当其实部________时,零解是稳定的,对应的奇点称为___________;二、计算题60%1、求解方程:=2、解方程:2x+2y-1dx+x+y-2dy=03、讨论方程在怎样的区域中满足解的存在唯一性定理的条件,并求通过点0,0的一切解4、求解常系数线性方程:5、试求方程组的一个基解矩阵,并计算6、试讨论方程组1的奇点类型,其中a,b,c为常数,且ac0;三、证明题10%;试证:如果满足初始条件的解,那么常微分方程测试题13一、判断题10%1.方程是恰当方程;2.是三阶微分方程;3.是方程的通解;4.函数组线性相关的充要条件是它们的伏朗斯基行列式等于零;5.方程是二阶线性方程;二、选择题101.方程定义在矩形域上,则经过点的解的存在区间是;A.B.C.D.2.与初值问题等价的一阶方程组是________. A.B.C.D.3.方程是一个函数矩阵的解空间构成________维线性空间.A.n-1 B.n C.n+1 D.4.微分方程的一个解是A.B.C.D.5.方程有积分因子A.B.C.D.三、填空题20%1.方程通过点的第二次近似解是________________;2.当_______________时,方程Mx,ydx+Nx,ydy=0称为恰当方程,或称全微分方程;3.如果在且,则方程存在唯一的解,定义于区间上,连续且满足初始条件,其中,;4.若1,2,……,是齐线性方程的个解,为其伏朗斯基行列式,则满足一阶线性方程5.方程有仅与有关的积分因子的充要条件是___________;6.利用变量替换__________可把方程化为变量分离方程___________________;7.若都是=AtX的基解矩阵,则具有关系:;8.方程的一个特解是________________________9.形如的方程称为欧拉方程;10.若是常系数线性方程组的基解矩阵,则expAt =____________;四、计算题60%1.求方程的通解;8分2.求解下列初值问题:;8分常微分方程测试题14一、判断题10%1.方程是二阶非线性方程;2.方程的通解是;3.利普希茨条件是保证初值问题解的唯一性的充分条件而不是必要条件; 4.向量函数组的线性相关概念与它的相应的分量线性相关概念并不等价; 5.若是阶齐次线性方程的个解,其伏朗斯基行列式,则在I上线性相关;二、选择题10%1.曲线满足方程A. B. C. D.2.积分方程的一个解是A. B. C. D.3.若微分方程有积分因子,则满足A. B.C. D.4.微分方程可化为A.B.C.D.5.设有微分方程,则有123A.方程1是线性方程式 B.方程2是线性方程C.方程3是线性方程 D.它们都不是线性方程三、填空题20%1.含有自变量、未知函数及它的导数或微分的方程,称为________________方程2.利用变量替换__________可把方程化为变量分离方程___________________;3.方程的一个特解是________________________;4.方程是自变量的对应的特征方程是_________________________; 5.一曲线,其上每点处的切线斜率为该点横坐标的二倍,且通过点,则该曲线方程是________________;6.微分方程初值问题与积分方程_________________________等价; 7.如果在矩形域R上满足:①_______________,②____________________,则方程存在惟一解;8.方程有仅与有关的积分因子的充要条件是___________; 9.方程的常数解是____________________;10.微分方程是自变量的通解是_______________________;方程通过点的第二次近似解是________________四、计算题60%1.求方程的通解;8分2.求方程8分3.求方程9分4.求方程的通解;8分5.求方程的通解;9分6.求非齐次方程的通解;7.已知微分方程组的基解矩阵是, 求微分方程组的通解;9分。
数学系本科专业学习参考书
观点很新,最近几年很流行,不过似乎没有必要。 14《数学分析简明教程》辛钦
课后没有习题,但是推荐了《吉米多维奇数学分析习题集》里的相应习题。但是随着 习题集的更新,题已经对不上号了,不过辛钦的文笔还是不错的。 15《数学分析讲义》阿黑波夫等著
记住以下几点: 1. 对于数学分析的学习,勤奋永远比天分重要。 2. 学数学分析不难,难得是长期坚持做题和不遗余力的博览群书。 3. 别指望第一遍就能记住和掌握什么,请看第二遍,第三遍,…,第阿列夫遍。 4. 看得懂的仔细看,看不懂的硬着头皮看。 5. 课本一个字一个字的看完,至少再看一本参考书,尽量做一本习题集。 6. 开始前三遍,一本书看三遍效果好于三本书看一遍;第四遍开始相反。 7. 经常回头看看自己走过的路
师范类使用最多的书,课后习题编排的不错,也是考研用的比较多的一本书。课本最 后讲了一些流形上的微积分。虽然是师范类的书,难度比上一本有一些降低,不过还是值得 一看的。 3《数学分析》陈纪修等著
以上三本是考研用的最多的三本书。 4《数学分析》李成章,黄玉民
是南开大学一个系列里的数学分析分册,这套教材里的各本都经常被用到,总体还是 不错的,是为教学改革后课时数减少后的数学系各门课编写的教材。 5《数学分析讲义》刘玉链
个人感觉写的比较混乱,不过各个大学数学系都在用。 2《实变函数与泛函分析》夏道行
上面说过,再推荐一次,虽然有点厚。 3《实变函数与泛函分析概要》郑维行 4《泛函分析习题集》安托涅维奇 5《函数论与泛函分析初步》柯尔莫哥洛夫
好好看完会有收获。大师的经典名著,包括了实变函数,泛函分析,变分等各方面的 内容 6《泛函分析理论习题解答》克里洛夫
也是一本可以经常看到的书,作者已经去世。国家精品课程的课本。 11 许绍浦《数学分析教程》南京大学出版社
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*创作编号:BG7531400019813488897SX*创作者:别如克*《常微分方程》测试题1一、填空题30%1、形如的方程,称为变量分离方程,这里.分别为x.y的连续函数。
2、形如-的方程,称为伯努利方程,这里的连续函数.n3、如果存在常数-对于所有函数称为在R上关于满足利普希兹条件。
4、形如-的方程,称为欧拉方程,这里5、设的某一解,则它的任一解- 。
二、计算题40%1、求方程2、求方程的通解。
3、求方程的隐式解。
4、求方程三、证明题30%1.试验证=是方程组x=x,x=,在任何不包含原点的区间a上的基解矩阵。
2.设为方程x=Ax(A为n n常数矩阵)的标准基解矩阵(即(0)=E),证明: (t)=(t- t)其中t为某一值.<%建设目标%>《常微分方程》测试题 2一、填空题:(30%)1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的微分方程是.2、方程的通解中含有任意常数的个数为.3、方程有积分因子的充要条件为.4、连续是保证对满足李普希兹条件的条件.5、方程满足解的存在唯一性定理条件的区域是.6、若是二阶线性齐次微分方程的基本解组,则它们(有或无)共同零点.7、设是方程的通解,则.8、已知是二阶齐次线性微分方程的一个非零解,则与线性无关的另一解 .9、设是阶常系数齐次线性方程特征方程的K重根,则该方程相应于的K个线性无关解是 .10、线性微分方程组的解是的基本解组的充要条件是 .二、求下列微分方程的通解:(40%)1、2、3、4、5、求解方程.三、求初值问题的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计.(10分)四、求解微分方程组满足初始条件的解.(10%)五、证明题:(10%)设,是方程的解,且满足==0,,这里在上连续,.试证明:存在常数C使得=C《常微分方程》测试题31.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y= y(x)上的任意一点,过该点的切线在x轴和y 轴上的截距分别是_________________.3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A) 一个解(B)两个解创作编号:BG7531400019813488897SX创作者:别如克*(C) 无数个解(D)三个解(3).方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是().(A)y=±1, x=±1, (B) y=±1(C) x=±1 (D) y=1, x=1(4).若函数y(x)满足方程,且在x=1时,y=1, 则在x = e 时y=( ).(A)(B) (C)2 (D) e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6).方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5. 计算题(10%)求方程的通解.6.证明题(16%)设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或<%建设目标%>《常微分方程》测试题41.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y= y(x)上的任意一点,过该点的切线在x轴和y 轴上的截距分别是_________________3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A) 一个解(B)两个解(C) 无数个解(D)三个解(3).方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是().(A)y=±1, x=±1, (B) y=±1(C) x=±1 (D) y=1, x=1(4).若函数y(x)满足方程,且在x=1时,y=1, 则在x = e 时y=( ).(A)(B) (C)2 (D) e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6).方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5. 计算题(10%)求方程的通解.6.证明题(16%)创作编号:BG7531400019813488897SX创作者:别如克*设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或《常微分方程》测试题5一、填空题(30%)1.若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为.2.方程满足解的存在唯一性定理条件的区域是.3.连续是保证方程初值唯一的条件.一条积分曲线.4. 线性齐次微分方程组的一个基本解组的个数不能多于个,其中,.5.二阶线性齐次微分方程的两个解,成为其基本解组的充要条件是.6.方程满足解的存在唯一性定理条件的区域是.7.方程的所有常数解是.8.方程所有常数解是.9.线性齐次微分方程组的解组为基本解组的条件是它们的朗斯基行列式.10.阶线性齐次微分方程线性无关解的个数最多为个二、计算题(40%)求下列方程的通解或通积分:1.2.3.4.5.三、证明题(30%)1.试证明:对任意及满足条件的,方程的满足条件的解在上存在.2.设在上连续,且,求证:方程的任意解均有.3.设方程中,在上连续可微,且,.求证:该方程的任一满足初值条件的解必在区间上存在.《常微分方程》测试题6一、填空题(20%)1.方程的所有常数解是.2.方程的常数解是.3.一阶微分方程的一个特解的图像是维空间上的一条曲线.4.方程的基本解组是.二、选择题(25%)1.阶线性齐次微分方程基本解组中解的个数恰好是()个.(A)(B)-1 (C)+1 (D)+2 2.李普希兹条件是保证一阶微分方程初值问题解惟一的()条件.(A)充分(B)必要(C)充分必要(D)必要非充分3. 方程过点共有()个解.(A)一(B)无数(C)两(D)三4.方程()奇解.(A)有一个(B)有两个(C)无(D)有无数个5.方程的奇解是().(A)(B)(C)(D)三、计算题(25%)1.x=+y2.tgydx-ctydy=03.4.5.四、求下列方程的通解或通积分(30%)1.2.3.《常微分方程》测试题7一. 解下列方程(80%)1.x=+y2.tgydx-ctydy=03.{y-x(+)}dx-xdy=04.2xylnydx+{+}dy=05. =6-x6. =27. 已知f(x)=1,x0,试求函数f(x)的一般表达式。
8.一质量为m质点作直线运动,从速度为零的时刻起,有一个和时间成正比(比例系数为)的力作用在它上面,此外质点又受到介质的阻力,这阻力和速度成正比(比例系数为)。
试求此质点的速度与时间的关系。
创作编号:BG7531400019813488897SX创作者:别如克*二.证明题(20%)1. 证明:如果已知黎卡提方程的一个特解,则可用初等方法求得它的通解。
2.试证:在微分方程Mdx+Ndy=0中,如果M、N试同齐次函数,且xM+yN0,则是该方程的一个积分因子《常微分方程》测试题8计算题.求下列方程的通解或通积分(70%)1.2.3.4.5.6.7.证明题(30%)8.在方程中,已知,在上连续,且.求证:对任意和,满足初值条件的解的存在区间必为9.设在区间上连续.试证明方程的所有解的存在区间必为10.假设方程在全平面上满足解的存在惟一性定理条件,且,是定义在区间I上的两个解.求证:若<,,则在区间I上必有<成立《常微分方程》测试题9一、填空题(30%)1、方程有只含的积分因子的充要条件是()。
有只含的积分因子的充要条件是______________。
2、_____________称为黎卡提方程,它有积分因子-______________。
3、__________________称为伯努利方程,它有积分因子-_________。
4、若为阶齐线性方程的个解,则它们线性无关的充要条件是__________________________。
5、形如___________________的方程称为欧拉方程。
6、若和都是的基解矩阵,则和具有的关系是_____________________________。
7、当方程的特征根为两个共轭虚根是,则当其实部为_________时,零解是稳定的,对应的奇点称为___________。
二、计算题(60%)1、2、3、若试求方程组的解并求expAt4、5、求方程经过(0,0)的第三次近似解6.求的奇点,并判断奇点的类型及稳定性.三、证明题(10%)1、阶齐线性方程一定存在个线性无关解。
《常微分方程》测试题10一、选择题(30%)1 微分方程的阶数是____________2 若和在矩形区域内是的连续函数,且有连续的一阶偏导数,则方程有只与有关的积分因子的充要条件是_________________________3 _________________________________________ 称为齐次方程.4 如果 ___________________________________________ ,则存在唯一的解,定义于区间上,连续且满足初始条件,其中_______________________ .5 对于任意的 , (为某一矩形区域),若存在常数使 ______________________ ,则称在上关于满足利普希兹条件.6 方程定义在矩形区域:上 ,则经过点的解的存在区间是 ___________________7 若是齐次线性方程的个解,为其伏朗斯基行列式,则满足一阶线性方程 ___________________________________8若为齐次线性方程的一个基本解组,为非齐次线性方程的一个特解,则非齐次线性方程的所有解可表为 _________________________9若为毕卡逼近序列的极限,则有__________________10_________________________________________称为黎卡提方程,若它有一个特解,则经过变换___________________,可化为伯努利方程.二求下列方程的解(35%)12求方程经过的第三次近似解3讨论方程,的解的存在区间4 求方程的奇解567三证明题(35%)1 试证:若已知黎卡提方程的一个特解,则可用初等积分法求它的通解2 试用一阶微分方程解的存在唯一性定理证明:一阶线性方程 , 当, 在上连续时,其解存在唯一<%建设目标%>《常微分方程》测试题 11一.填空题(30%)。