第7章 气动行程程序控制回路设计(课堂PPT)
第7章 气动行程程序控制回路设计
3
x1
x0
5
3
1
A1
1
2
1
3
2 1
2 B0
1
y1 y0
5
3
1
B1 3
2
1
1
2
1
3
A1B1B0A0A1A0
a0b1
A0
A1
B0
B1
4
2
4
2
5
3
1
1
2 1
2
5
3
1
1
1
1
2
1
3
2
1
3
b1a0
1
1
2
1
1
2
1
1
1 2
2 1
1
3
b1a1
1
1
2 1
2
1
Hale Waihona Puke 12A01
3
2
A1
1
3
2
B0
B1
1
3
2
1
3
A0
A1
B0
B1
4
2
4
2
2
1
1
5
3
1
1
2 1
2
5
3
1
1
1
2 2
1
1
2
2
1
1
1
1
1 1
3 2
1
2
1
1
2
1
1
1
2 1
2
A0
1
Ⅰ Ⅱ
Ⅰ→Ⅱ
Ⅱ→Ⅰ
二级转换气路
三级转换气路
气动程序控制回路设计方法 课题设计
课题六气动程序控制回路设计方法一、概述生产实践中,各种自动生产线,大多是按程序工作的。
所谓程序控制,就是根据生产过程中的位移、压力、时间、温度、液位等物理量的变化,使被控制的执行元件,按预先规定的顺序协调动作的一种自动控制方式。
这种控制方式,能在一定范围内满足各种不同程序的需要,实现一机多用。
根据控制方式的不同,程序控制可分为时间程序控制、行程程序控制和混合程序控制三种。
各执行元件的动作顺序按时间顺序进行的控制方式称为时间程序控制。
时间程序控制系统中,各时间信号通过控制线路,按一定的时间间隔分配给相应的执行元件,令其产生有序的动作。
显然,这是一种开环控制系统。
执行元件完成某一动作后,由行程发信器发出相应信号,此信号输入逻辑控制回路中,经放大、转换回路处理后成为主控阀可以接受的信号,控制主控阀换向,再驱动执行元件,实现对被控对象的控制。
执行元件的运动状态经行程发信器检测后,再发出开始下一个动作的控制信号。
如此循环往复,直至完成全部预定动作为止。
显然,这样的回路属于闭环控制系统,它可以在给定的位置准确实现动作的转换,故称为行程程序控制,图1所示为行程程序控制框图。
从框图可看出,行程程序控制主要包括行程发信装置、执行元件、逻辑控制回路、放大转换回路、主控阀和动力源等部分。
行程发信装置是一种位置传感器,其作用是把由执行机构接收来的信号转发给逻辑控制回路,常用的有行程阀、行程开关、逻辑“非门”等,此外,液位、压力、流量、温度等传感器也可看作行程发信装置;常用的执行元件有气缸、气液缸、气动马达等;主控阀为气动换向阀;逻辑控制回路、放大转换回路一般由各种气动控制元件组成,也可以由各种气动逻辑元件等组成;动力源主要包括气压发生装置和气源处理设备两部分。
行程程序控制的优点是结构简单、维修方便、动作稳定,特别是当程序中某节拍出现故障时,通过运行停止程序可以实现自动保护。
为此,行程程序控制方式在气压传动系统中得到广泛应用。
气动回路PPT课件
简单压力控制回路
第1页/共28页
▪ 高低压控制回路
由多个减压阀控制, 实行多个压力同时输 出。
▪高低压切换回路
利用换向阀和减压阀 实现高低压切换输出。
第2页/共28页
1.1.2 力控制回路
气动系统一般压力较低,所以往往是通过改变执 行元件的受力面积来增加输出力。
▪串联气缸回路
通过控制电磁阀 的通电个数,实 现对分段式活塞 缸的活塞杆输出 推力的控制。
第23页/共28页
11.2.3 往复动作回路
▪单往复动作回路
▪ 连续往复动作回路
第24页/共28页
11.3 程序动作回路
• 气缸代号A B C D
• A1—气缸前行 A0—气缸后退 • 行程阀代号 a b c d
• a1— 表示A1动作结束后触发
• a动0作—顺序表示A0动作结束后S触发 a1 A1
▪单作用气缸快速返回回路
活塞返回时,气缸下腔通过 快速排气阀排气。
第9页/共28页
▪ 排气节流阀调速回路
通过两个排气节流阀控制气缸伸缩的速度。
第10页/共28页
11.1.4.2 气液联动速度控制回路
▪作用
由于气体的可压缩性,运动速度不稳定,定位精 度不高。在气动调速、定位不能满足要求的场合,
▪ 可气采液用缸气串液联联调动速。回路
第6页/共28页
11.1.4 速度控制回路
11.1.4.1节流调速回路 气动系统功率不大,主要用节流调速的调速方法。
A进1 气节流调速A2
R
U
排气节流调速
A1
A2
R
U
k1
k2
k1
k2
第7页/共28页
双向调速回路
气动基本回路(课堂PPT)
主讲 陈本德
谢谢你的配合,同学! 希望学习过程能给你带来快乐
1
F 1YA 2YA A
B
C
150 - - 3
1
0
150 +
-
1.5
1.5
0
150 - + 3
1
3
150 +
+ 1.5
1.5
0
300 + + 3
2
3
2
八轴仿形铣加工机床
3
气动控制回路的工作原理
图11.40
4
第一节 方向控制回路
图14-2双作用气缸换向回路
10
(三)往复动作回路
1.单往复动作回路
双气控阀的双稳态记忆功能
11
2.连续往复动作回路
12
(四)多工位控制回路
工位一:阀1控制, 右气缸杆缩回,左气缸杆缩回
工位二:阀2控制, 右气缸杆伸出,左气缸杆缩回
工位三:阀3控制, 右气缸杆伸出,左气缸杆伸出
13
三位控制回路
进气节流
16
❖ 节流供气的不足之处主要表现为:
❖ 1)当负载方向与活塞运动方向相反时,活塞运动 易出现不平稳现象,即“爬行”现象。
2)当负载方向与活塞运动方向一 致时,由于排气经换向阀快排, 几乎没有阻尼,负载易产生“跑 空”现象,使气缸失去控制。
所以进气节流,多用于垂直安装的气缸的供气回路中
17
五、缓冲回路
❖ 要获得气缸行程末端的缓冲,除采用带缓冲的气缸外,特 别在行程长、速度快、惯性大的情况下,往往需要采用缓冲 回路来满足气缸运动速度的要求。
b)所示回路的特点是, 当活塞返回到行程末端时, 其左腔压力已降至打不开 顺序阀2的程度,余气只 能经节流阀1排出,因此 活塞得到缓冲。
气动控制基本回路
方向控制阀
单向型控制阀 换向型控制阀:通过改变气体通路使气流方向发生改
变 换向型控制阀按驱动方式可分为气压控制阀、电磁控制 阀、机械控制阀、手动控制阀和时间控制阀
方向控制回路
单作用气缸换向回路 双作用气缸换向回路
单向型控制阀
单向阀:气流只能向一个方向流动而不能反向流动通 过的阀
AB
1
2
1
2
AB
O1 P O2 a)
O1 P O2 b)
P c)
双电磁铁直动式换向阀工作原理图 图17-10
换向型控制阀
时间控制换向阀:使气流通过气阻(如小孔、缝隙等)
节流后到气容(储气空间)中,经过一定时间气容内建立起一定 的压力后,再使阀芯动作的换向阀
K
A
a
POK
延时换向阀 图17-11 延时换向阀 图17-11
“是门”(S=A) “或门”(S=A+B ) “与门”(S=A·B) “非门”(S= Ã)元件 双稳元件
按结构形式分:
截止式 膜片式 滑阀式
或门:S=A+B
或门元件 图17-33 或门元件 图17-33
是门:S=A 与门:S=A·B
A
P(B)
图17-34是门和与门元件 是门和与门元件 图17-34
YT4543动力滑台液压系统:电磁铁动作表、基本回路、 工作原理、特点
气液速度控制回路 图17-32
气动逻辑元件(又称逻辑阀)
工作原理:
均是用压缩空气为工作介质,通过元件内部可动部 件的动作,改变气流方向,从而实现逻辑控制功能
气动逻辑元件的分类
按工作压力分:
高压元件(0.2~0.8MPa ) 低压元件(0.02~0.2MPa ) 微压元件(〈0.02MPa)
SMC气动基础基本回路课件
P≤Ps
允许的额定压力以下
Ps
溢流阀控制气罐
的最大允许压力
SMC气动基础基本回路
16
压力控制回路 ——工作压力控制回路
为保持稳定的性能,应提 供给系统一种稳定的工作压 力,该压力设定是通过三联 件(F.R.L)来实现的
SMC气动基础基本回路
17
压力控制回路——双压驱动回路
在气动系统中,有时需要 提供两种不同的压力,来驱 动双作用气缸在不同方向上 的运动
得电
SMC气动基础基本回路
7
换向控制回路——双作用气缸换向回路
电磁阀仍然 保持在失电前
的位置, 因此气缸始终 处于伸出状态
采用二位五通阀的换向控制 回路
使用双电控阀具有记忆功能, 电磁阀失电时,气缸仍能保持在 原有的工作状态
失电
SMC气动基础基本回路
8
换向控制回路——双作用气缸换向回路
采用三位五通阀的换向控制 回路
电磁铁失电,由减压阀控制气 缸以较低压力返回
SMC气动基础基本回路
20
压力控制回路——多级压力控制回路
P1
在一些场合,需要根据工
件重量的不同,设定低、中、
高三种平衡压力
P2
P3
先导式减压阀
SMC气动基础基本回路
21
压力控制回路——多级压力控制回路
利用电气比例阀进行压力 无级控制,电气比例阀的入 口应该安装微雾分离器
SMC气动基础基本回路
5
换向控制回路——双作用气缸换向回路
采用二位五通阀的换向控制 回路
使用双电控阀具有记忆功能, 电磁阀失电时,气缸仍能保持在 原有的工作状态
初始状态
SMC气动基础基本回路
气动行程程序控制系统图
§7-5
障碍信号的判别及消除
一、X—D线图判别障碍 线图判别障碍
1、控制信号线比它所控制的动作状态线短 、 →无障碍; 无障碍; 无障碍 2、控制信号线比它所控制的动作状态线 、 有障碍; 长→有障碍; 有障碍 3、控制信号线与它所控制的动作状态线基 、 本等长,仅多出一出头部分→滞消障碍 滞消障碍(自 本等长,仅多出一出头部分 滞消障碍 自 行消失,无需消除) 行消失,无需消除
二、串联回路——逻辑与 串联回路 逻辑与
LX1 1 LX2 2 J2 J1
LX3 3 J1 4 J4 5 图7-3 串联电路图 DFQ J2 J3
J3
J4
三、并联回路——逻辑或 并联回路 逻辑或
LX 1 1 LX 2 2 J2 5 J1 4
LX 3 3
J3 6
J1 4 J2 5
J4 7
J3 6
J4 7
LX2 J2 4,6 后退
DFQ1
J2 6
DFQ2
(a) 图7-9 气动缸往复运动回路及其操作电路
(b)
AN1 1 J1 2 AN2 3 J2 4 J1 5
LX1
J2
J1 2,5,3 前进
LX2
J1
J2 4,6,1 后退
DFQ1
J2 6
DFQ2
图7-10 先入优先电路
§7-3 障 碍 信 号
一、障碍信号的定义
m n
n
A
n是m的障碍信号
A1 A0 m
m n
A m是n的障碍信号 A1 A0 I型障碍 II型障碍
1、滞消障碍:障碍信号比控制信号出现时多存在一瞬间便 、滞消障碍:
自行消失(不需要排除,靠其自行消失 。 自行消失 不需要排除,靠其自行消失)。 不需要排除
《气动控制原理教程》课件
集成化
气动控制技术将与其他技术进行 集成,形成更完整的控制系统, 提高系统的整体性能和稳定性。
02
CATALOGUE
气动控制系统的基本组成
气源装置
气源装置是气动系统的能源供给装置,主要功能是为系统提供稳定、洁净的工作气 体。
气源装置通常包括空气压缩机、储气罐、干燥机等设备,用于产生压缩空气、储存 压缩空气以及除去压缩空气中的水分和杂质。
辅助元件是气动系统中除气源装置、执行元件和控制元件以外的其他元件,用于实现气动系 统的辅助功能。
辅助元件包括消声器、过滤器、油雾器等,其中消声器用于降低气动系统运行时的噪音,过 滤器用于除去压缩空气中的杂质和水分,油雾器用于将润滑油均匀地混入压缩空气中,实现 对气缸等执行元件的润滑。
辅助元件虽然不是气动系统的核心部分,但对整个系统的性能和稳定性也有重要影响。
日常维护与保养
01
02
03
每日检查
检查气动系统的所有部件 ,包括气源、气动执行器 、控制阀等,确保没有泄 漏或异常噪音。
清洁与润滑
定期清洁气动系统的相关 部件,并使用专用的润滑 剂对运动部件进行润滑。
紧固与调整
确保所有连接部件紧固, 没有松动,同时对需要调 整的部件进行调整,保持 最佳性能。
常见故障的诊断与排除
智能化
智能化技术如人工智能、机器学习等在气动控制领域的应用,使得气 动设备能够自适应地调整参数,提高控制精度和稳定性。
模块化与集成化
模块化和集成化设计能够减小气动设备的体积和重量,便于维护和升 级,同时提高系统的可靠性。
环保与节能
随着环保意识的增强,气动控制技术正朝着低能耗、低排放、低噪声 的方向发展,以减小对环境的影响。
气动控制回路
气动控制回路气动系统由气源、气路、控制元件、执行元件和辅助元件等组成,并完成规定的动作。
任何复杂的气路系统,都是由一些具有特定功能的气动基本回路、功能回路和应用回路组成。
本章将介绍这些回路。
6.1 基本回路基本回路是指对压缩空气的压力、流量、方向等进行控制的回路。
基本回路包括供给回路、排出回路、单作用气缸回路、双作用气缸回路等。
一、供给回路压缩空气中含有的水分、灰尘、油污等杂质及输出压力的波动,对气动系统的正常工作都将造成不良影响,因而必须对其进行净化及稳压处理。
气动供给回路即气源处理回路,它要保证气动系统具有高质量的压缩空气和稳定的工作压力。
图6-1所示为一次气源处理回路。
由空气压缩机1产生的压缩空气经冷却器2冷却后,进入气罐3。
压缩空气由于冷却而分离出冷凝水,冷凝水存积于气罐底部,由自动排水器9排出。
由气罐出来的压缩空气经主路过滤器5再进入空气干燥器6进行除水,然后再通过主路油雾分离器7将油雾分离,即可供一般用气设备使用,供给回路的压力控制,可采用压力继电器8来控制空气压缩机的启动和停止,使储气罐内压力保持在规定的范围内。
该回路一般由过滤器、减压阀和油雾器组成。
过滤器除去压缩空气中的灰尘、水分等杂质;减压阀可使二次工作压力稳定;油雾器使润滑油雾化后注入空气流中,对需要润滑的部件进行润滑。
这三个元件组合在一起通常称为气动调节装置(气动三联件),其简化图形符号如图6-2b 所示。
近年来,不供油气动执行元件和控制元件构成的气动系统不断增多,这类系统的气动供给回路不需油雾器来进行润滑。
因此,在不同的情况下,过滤精度、润滑或免润滑应该分别进行考虑,以保证供给用气设备符合要求的压缩空气。
实践证明,提供高质量的压缩空气对提高气动元件的使用寿命及可靠性是至关重要的。
图6-2为二次气源处理回路。
图6-3所示为稳压回路,用于供气压力变化大或气动系统瞬时耗气量很大的场合。
在过滤器和减压阀的前面或后面设置气罐,以稳定工作压力。
电气动程序控制系统课件
对于一些高精度和高可靠性的应用场景,如航空航天、核工业等,电 气动程序控制系统的性能将需要进一步提高。
更广泛的应用领域
随着技术的进步和应用需求的增长,电气动程序控制系统的应用领域 将进一步拓展。
更好的人机交互
未来电气动程序控制系统将更加注重人机交互设计,提高操作便捷性 和用户体验。
THANKS
传感器的种类繁多,常见的有温度传感器、压力传感器、位移传感器等。
选择传感器时需要考虑测量范围、精度、稳定性等参数,以及与控制器的接口类型 。
电源
电源是电气动程序控 制系统的能源供给部 分,负责提供系统所 需的电能。
电源的稳定性、可靠 性以及效率等因素都 应考虑在内。
根据系统的需求,可 以选择交流电源、直 流电源或开关电源等 。
式。
软件设计
编写控制程序,实现电动和气 动的逻辑控制。
人机交互设计
设计简洁明了的操作界面,方 便用户进行控制和监控。
安全防护设计
在关键部位设置安全保护装置 ,防止意外事故发生。
系统实现
硬件组装与调试
按照设计好的电路和气路连接方式组装硬件,并进行调试。
软件编程与测试
编写控制程序,并进行测试,确保程序运行稳定。
03
CATALOGUE
电气动程序控制系统的控制策 略
开环控制
总结词
开环控制是一种简单的控制方式,通过将控制系统的输出与输入直接关联,实现 对系统的控制。
详细描述
开环控制系统的结构简单,控制精度高,但抗干扰能力较弱。它通常用于对控制 精度要求较高的场合,如数控机床、机器人等。
闭环控制
总结词
闭环控制是一种反馈控制方式,通过 将系统的输出信号反馈回输入端,实 现对系统的精确控制。
气动工作原理及回路设计
压力控制回路的设计需考虑气源的稳 定性和可靠性,以确保执行机构的正 常工作。
回路中通常包含压力调节阀和安全阀, 通过调节阀的开度来设定所需压力, 安全阀则用于在压力过高时自动释放 多余压力。
速度控制回路
速度控制回路主要用于调节执行机构的工作速度,通常通过改变气流量来实现。
回路中包含流量控制阀和执行机构,通过调节阀的开度来控制流量,进而改变执行 机构的工作速度。
速度控制回路的设计需根据实际需求选择合适的流量控制阀和执行机构,以确保工 作速度的准确性和稳定性。
方向控制回路
方向控制回路主要用于控制执行 机构的运动方向,通常通过换向
阀来实现。
回路中包含换向阀和执行机构, 通过改变换向阀的阀位来改变执
行机构的运动方向。
方向控制回路的设计需考虑换向 阀的可靠性和稳定性,以确保执 行机构能够准确、快速地完成运
流量不足问题
总结词
流量不足会导致气动元件动作缓慢或不动作,影响生产效率 和产品质量。
详细描述
流量不足问题可能是由于气源流量不足、管道阻力过大或气 动元件堵塞等原因引起的。为了解决这个问题,可以更换大 流量的气源、清理或更换堵塞的气动元件、减小管道阻力等 措施,以提高气动回路的流量。
元件故障问题
总结词
方向控制回路通过控制气流来自通断和改变气流的方 向,实现执行元件的启动、停止和换 向。
压力控制回路
通过调节气体的压力,控制执行元件 的运动速度和力矩。
速度控制回路
通过调节气体的流量,控制执行元件 的运动速度。
顺序控制回路
按照一定的顺序和时间间隔控制执行 元件的启动和停止,实现多个执行元 件的协同工作。
05
回路设计实例
自动化生产线气动系统回路设计
气动系统设计
即:
方格数N=2n
其中:n—变量数(行程阀数)
(二)I型障碍信号的排除 I型障碍信号的产生:是因为控制信号线比其所控制的动作线长。 排除I型障碍的基本思想: 就是缩短控制信号存在的时间(即缩短信号线的长度)。 其实质:就是要使障碍段消失或失效。 排除I型障碍的方法:脉冲信号法、逻辑回路法、顺序“与”元件法 等。 1.脉冲信号法排障: 思想:将有障碍的原始信号变成脉冲信号,使其在命令主控阀完成换 向后立即消失。用这种方法可排除所有I型障碍。 方法1:机械法排障 采用机械活络挡块或通过式行程阀。见图7-8。 特点:简单易行,可节省气动元件及管路。但安装行程阀时必须注意: 不可把行程阀装在行程的末端,而应留一段距离,以便挡块或凸 轮能通过。 显然:此法不能用行程阀限制气缸的行程,必须用死挡铁机械限位。 因此,此法仅适用于定位精度要求不高,活塞运动速度不太大的 场合。
3.执行信号:设计时 必须把有障碍信号 的障碍段去掉,使 其变为无障碍信号 再去控制主换向阀, 这种信号叫做执行 信号。 用“*”号表示,见 图。 4.信号状态线构成: 信号线的执行段: “O”,必要部分。 信号线的自由段: “——”,可有可无。 信号线的障碍段: “锯齿线”,必须消 除。 5.I型障碍:这种一个 信号妨碍另一个信 号输入,使程序不 能正常进行的控制 信号,称为I型障碍 信号。
当t有气时K阀有输出,而当d有气时K阀无输出,很明显t与d不能同时 存在,只能一先一后存在。反映在X—D线图上,则二者不能重合, 满足制约关系:t.d=0
气动系统行程程序控制设计ppt课件
10
3.画主令信号线(X线) 用细实线画出主令信号线
起点与所控制的动作线起点相同,用符号“○”表示 信号线的终点和上一组中产生该信号的动作线终点相 同,用符号“╳”表示。
若终点和起点重合,用符号“ ”表示。
符号“ ”表示该信号的起点与终点重合, 称该信号 为脉冲信号,脉冲信号的宽度相当于行程阀发出信号、 气控阀换向、气缸启动和信号传递时间的总和。
完整版PPT课件
12
(四) 、气动回路原理图 自动程序需用一个启动阀、四个行程阀和两个双
输出记忆元件(两位四通阀)。一个与门可由元件串 联来实现,由此可绘出的气动回路图。
在具体画气动回路原理图时,特别要注意的是: 哪个行程阀为有源元件(即直接与气源相接),哪个 行程阀为无源元件(即不能与气源相接)。(其一般规 律是:无障碍的原始信号为有源元件)。
用粗实线画出各个气缸的动作区间,它以行列中大 写字母相同、下标也相同的列行交叉方格左端的格线 为起点,直画到字母但下标相反的方格。 3.画主令信号线(X线)
用细实线画出主令信号线,起点与所控制的动作线 起点相同,用符号“○”表示,终点在该信号同名动 作线的终点,用符号“╳”表示。若终点和起点重合, 用符号“ ”表示。
完整版PPT课件
17
X-D线完整图版PPT课件
18
(三)、分析并消除障碍信号 1.判别障碍信号 2.消除障碍信号
完整版PPT课件
19
1.判别障碍信号
所谓障碍信号是指在同一时刻,阀的两个控制侧同时存在控制信号, 妨碍阀按预定行程换向
用X—D图确定障碍信号的方法是:检查每组中是否存在有信号线比 其所控制的动作线长的情况,如存在这种情况,说明动作状态要 改变,而其控制信号不允许其改变(障碍动作状态的改变),这 种障碍其动作状态改变的信号就称之为障碍信号。信号线比其所 控制的动作线长的那部分线段叫障碍段,即图中用“﹏﹏﹏”表示 的线段。
气动行程程序控制系统图课件
听诊器法
通过听气动行程程序控制系统运行时的声音 ,判断是否存在异常。
触摸法
通过触摸气动行程程序控制系统的表面,判 断温度、振动等是否存在异常。
故障码法
通过读取气动行程程序控制系统的故障码, 快速定位除措施
气动执行器不动作
检查供气是否正常,气路是否畅通,气源压力是否达到要求。
03
气动行程程序控制系统的设计
气动行程程序控制系统的设计流程
确定控制方案
根据设计要求,确定控制系统 的整体架构和关键技术方案。
设计控制系统回路
根据控制方案,设计气动控制 回路,包括输入、输出和反馈 回路。
明确设计要求
明确控制系统的功能和性能要 求,了解控制系统的各种约束 条件。
选择合适的元件
选择合适的电磁阀、气缸、传 感器等气动元件,确保其性能 和质量满足控制系统要求。
气动执行器动作缓慢
检查气路是否被堵塞,气源压力是否正常,气缸是否有漏气现象。
气动执行器精度不高
检查气缸是否磨损严重,气缸内是否存在异物,位置传感器是否安装正确。
气动执行器运行不稳定
检查气源质量是否稳定,空气过滤器是否堵塞,管道是否存在振动现象。
气动行程程序控制系统故障预防措施
01
定期检查供气系统
定期检查供气系统是否正常,包括 供气管道、阀门、压力表等部件。
计数回路
对气动执行元件的动作次数进 行计数,实现特定的逻辑功能
。
气动行程程序控制系统的基本功能
位置控制
通过控制阀和气动执行元件实现机械机构的 位置精确控制。
速度控制
通过控制阀和气动执行元件实现机械机构的 速度平稳控制。
力控制
通过控制阀和气动执行元件实现机械机构的 力度稳定控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
A0
A1
B
B0
B1
v =0
v =0
A0
B0
A月25日
气动程序控制回路中障碍信号有三种类型:I型障碍信号, II型障碍信号和滞消障碍信号。
A
A0
A1
v =0
B
B0
B1
v =0
A0
B0
A1
B1
q
2020年4月25日
四、串级转换气动行程控制回路设计
1.气缸程序动作的分级
气缸作为执行元件,其伸出和缩回由换向阀控制,为避
A2 X3
A3 H3 R3
3.步进控制法气动回路设计方法
1.0
1.1
4
2
5
3
1
A1
A2
2.0
4
2
5
3
1
2.1
A1B1B0A0动作回路图
A3
A4
Y1
H4
P
Z1
R4
L
X1 2
1.1
1
3
X2 2
2.1
1
3
X3 2
2.0
1
3
X4 2
1.0
1
3
2020年4月25日
3
2
1
【习题】自动化磨床 问题描述:通过气缸将工件放入磨床夹具上,加工完毕后由 第二个气缸将工件推出。 按下开始按钮后,无杆缸(A)慢慢伸出并前进到末端位置, 时间t=2秒。当它缩回到末端位置后,第二个气缸(B)被激励 并伸出。单作用气缸(B)通过弹簧复位的换向阀控制。
A
A0
A1
B
B0
B1
A1
q
B0
1 2
B1
A0
2020年4月25日
练习3:A1A0B1B0
A
A0
A1
B
B0
B1
B0
q
A0
1 2
A1
B1
2020年4月25日
五、步进控制回路设计
步进控制是工业控制中一种经常使用的程序控制方式。目 前,应用最为广泛的步进控制有气控、电控、电-气控、PLC 编程控制等。德国Festo公司的气动步进模块是一种新型的 气动元件,它简化了传统的气动步进控制模式,为气动步进 控制的推广提供了可能。
2020年4月25日
1.步进控制原理
切换元件
当前状态 启动口
Yn
气源入口 P Zn L 排气口 Xn 信号输入口 2020年4月25日
An
当前状态输出口
1
2
指示元件
Hn
3
4
下一状态启动口
Rn
复位口
记忆元件
或门元件(梭阀)
2.步进块的组合使用
1
Y1
2
1 P
Z1
L 2
X1
1
3
2020年4月25日
A1 X2
2. 串级转换控制原理
各种级数转换气路如图所示,主要特征是利用二位五通(或 四通)换向阀以阶梯方式顺序连接,而保证在任一时间,只有 一级管路有气源输出,其他级管路都处于排气状态。
Ⅰ Ⅱ
Ⅰ→Ⅱ
Ⅱ→Ⅰ
2020年4月25日
二级转换气路
三级转换气路
Ⅰ Ⅱ Ⅲ Ⅰ→Ⅱ
Ⅱ→Ⅲ
Ⅲ→Ⅰ
2020年4月25日
3. 气动夹紧装置回路设计(练习2)
液压与气动技术
第7章 行程程序控制回路设计
2020年4月25日
机械工程系
第7章 气动行程程序控制回路设计
A0
A1
执行元件在完成某一动作 由行程发信器发出相应信号
A0 A1
输入逻辑控制回路中作出 判断后再发出有关执行信号
2020年4月25日
指令执行元件执行下一步动作
一、气动行程程序控制回路的组成与表示
例如有两个气缸A、B,要求其动作顺序为:A缸 进B缸进A缸退B缸退,工作程序图见图示。图
中q为启动信号。
图示的动作信号程序框图可进一步省略成:A1B1A0B0。
2020年4月25日
二、气动行程控制回路设计的一般思路
1. 明确动作信号程序
2. 绘制气动回路原理图(练习1)
A
A0
A1
B
B0
B1
B0
B1
2. 明确动作信号程序
q
qa0 A1 a1
B1 b1
B0 b0
A0 a0
3. 绘制气动回路原理图
A
A0
A1
v =0
B
B0
B1
v =0
A0
B0
A1
B1
q
2020年4月25日
三、障碍信号
在大多数具有多个执行元件的气动程序控制回路中,各个
控制信号间都存在一定形式的互相干扰。这些造成干扰的信号
统称为障碍信号,它们会使执行元件动作无法正常完成。
免换向阀的两端控制信号同时有压缩空气,分级时必须将其
避开,保证每一气缸只在同一级中出现一次动作。
例如A1B1B0A0,可有如下四种分级:
(1)A1/B1/B0/A0,分为四级
(2)A1B1/B0/A0,分为三级 (3)A1/B1/B0A0,分为三级
满足级数最少原则
(4)A1B1/B0A0,分为二级
2020年4月25日
A1
A0
2020年4月25日
气动夹紧工作装置
1. 工况分析
图示为某夹紧工作装置,初始状 态两个气缸都缩回,其工作过程如下:
1)按下启动按钮,气缸A伸出将物料从料仓推送到加工站。 2)气缸A到位后,另一个气缸B伸出将工件夹紧。 3)对零件进行加工后,气缸B缩回,气缸A缩回,完成一个 工作循环。
2020年4月25日
6.00
0 Z5
0.00
1 V2
A
a0
a1
v =0
1 V3
60% 55%
1 V1
a0
B
b1
v =0
2V
0 V3 0 V2
P1 P2 P3
0 Z3
1 S1
a1
37%
b1
2020年4月25日
0 Z4
0.00
0 Z5
0.00
1 V2
A
a0
a1
v =0
1 V3
60% 55%
1 V1
a0
B
b1
v =0
2V
0 V3
B
b1
v =0
2V
0 V3
0 V2
1 S1
2020年4月25日
a1 b1
P1 P2 P3
0 Z3
37%
0 Z4
6.00
0 Z5
0.00
1 V2
A
a0
a1
v =0
1 V3
60% 55%
1 V1
a0
B
b1
v =0
2V
0 V3
0 V2
1 S1
2020年4月25日
a1 b1
P1 P2 P3
0 Z3
37%
0 Z4
B
A
2020年4月25日
(1)串级转换
A
a0
a1
B
b1
60% 55%
0 Z4 0 Z5
1 V2 1 V1
1 V3
2V
a0
0 V3
0 V2
1 S1
2020年4月25日
a1 b1
P1 P2 P3
0 Z3
37%
0 Z4
0.00
0 Z5
6.00
1 V2
A
a0
a1
v =0
1 V3
60% 55%
1 V1
a0
1. 行程程序控制回路的基本组成
A a0
a1
B
b0
b1
A1
A0
B1
B0
(1)用A、B、C等表示气缸,下标“ 1”与“ 0”表示气缸状态。
(2)用带下标1、0的小写字母a、b、c等分别表示行程阀。
2020年4月25日
2.行程程序表示方法 行程程序可用工作程序图来表示气缸按对象的操
作要求所完成的动作顺序。
0 V2
1 S1
2020年4月25日
a1 b1
P1 P2 P3
0 Z3
37%
0 Z4
0.00
0 Z5
0.00
1 V2
A
a0
a1
v =0
1 V3
60% 55%
1 V1
a0
B
b1
v =0
2V
0 V3
0 V2
1 S1
2020年4月25日
a1 b1
P1 P2 P3
0 Z3
37%
0 Z4
0.00