答案08秋季集合论与图论试题A

合集下载

集合论与图论答案 第一章习题

集合论与图论答案 第一章习题

若存在 Gfi ,Gf j (i j) ,使得 Gfi Gf j 且 Gf j Gfi ,则结论成立。
反证法:假设不存在 G fi 和 G f j 满足 Gfi Gf j 且 Gf j Gfi 。于是
i, j(i j),Gfi与Gf j 应满足: Gfi Gf j 或 Gf j Gfi 必有一个成立。
设 A 1, B 2,则 2A ,1, 2B ,2 。 2A 2B ,1,2,而 A B 1, 2, 2A B ,1,2,1, 2,
所以 2A 2B 2A B 。 例 5 (多项选择)设集合 A 是以空集 为唯一元素的集合,集合 B 22A ,则下列 各式那个正确?
(1) B ;(2) B ;(3) B ;(4), B ;(5), B 。
i 1
n
x Mn \ Nn MnNn (NiMi ) 。
i 1
n
综上可得: NnQn (NiMi ) 。
i 1
例 4 (P225 ) 设 A, B 为集合,证明: A B B A 充要条件是下列三个条件至少一个 成立:(1) A ;(2) B ;(3) A B 。
1.若 A B B A ,则 A 或 B 。
即{x} B ,所以 x B ,即 A B 。
(2) P(A) P(B) (P(A) P(B)) (P(B) P(A)) ABB A AB。
例 4 设 A, B 是两个任意集合,证明: (1) 2A 2B 2A B ;(2) 2A 2B 2A B ;(3) 举例说明 2A 2B 2A B 。 其中 2A 表示集合 A 的幂集。 证:(1) 证 2A 2B 2A B 。 x 2A 2B ,有 x 2A 或 x 2B 。 若 x 2A ,则 x A ,而 A A B ,故 x A B ,因此 x 2A B 。 同理,若 x 2B ,也有 x 2A B 。 因此 2A 2B 2A B 。 (2) 证 2A 2B 2A B 。 证 x 2A 2B x 2A 且 x 2B x A且 x B x A B x2A B 。 所以 2A 2B 2A B 。 (3) 下面举例说明 2A 2B 2A B 。

图论期末考试试题和答案

图论期末考试试题和答案

图论期末考试试题和答案****一、单项选择题(每题2分,共20分)1. 图论中,图的基本元素不包括以下哪一项?A. 顶点B. 边C. 权重D. 节点答案:D2. 在图论中,一个图的路径是指什么?A. 一系列顶点B. 一系列边C. 一系列顶点和边的序列D. 一系列权重答案:C3. 有向图和无向图的主要区别是什么?A. 边的方向B. 顶点的数量C. 边的数量D. 图的颜色答案:A4. 在图论中,一个完全图是指什么?A. 所有顶点都相连的图B. 所有边都相连的图C. 所有顶点和边都相连的图D. 所有权重都相同的图答案:A5. 图论中的欧拉路径是指什么?A. 经过每条边恰好一次的路径B. 经过每个顶点恰好一次的路径C. 经过每条边恰好一次的回路D. 经过每个顶点恰好一次的回路答案:C6. 图论中的哈密顿路径是指什么?A. 经过每条边恰好一次的路径B. 经过每个顶点恰好一次的路径C. 经过每条边恰好一次的回路D. 经过每个顶点恰好一次的回路答案:B7. 在图论中,二分图是指什么?A. 图的顶点可以被分成两个不相交的集合B. 图的边可以被分成两个不相交的集合C. 图的顶点和边可以被分成两个不相交的集合D. 图的权重可以被分成两个不相交的集合答案:A8. 图论中的最短路径问题是指什么?A. 寻找从一个顶点到另一个顶点的最短路径B. 寻找从一个顶点到所有其他顶点的最短路径C. 寻找所有顶点之间的最短路径D. 寻找所有边之间的最短路径答案:A9. 图论中的最小生成树问题是指什么?A. 寻找一个图中所有顶点的最小生成树B. 寻找一个图中所有边的最小生成树C. 寻找一个连通图中所有顶点的最小生成树D. 寻找一个连通图中所有边的最小生成树答案:C10. 图论中的网络流问题是指什么?A. 在图中寻找最大流量B. 在图中寻找最小流量C. 在图中寻找最大流和最小割D. 在图中寻找最小流和最大割答案:C二、填空题(每题2分,共20分)1. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为______图。

大学集合论试题及答案

大学集合论试题及答案

大学集合论试题及答案一、选择题(每题3分,共30分)1. 集合论的创始人是()。

A. 康托尔B. 罗素C. 希尔伯特D. 哥德尔2. 集合A和集合B的并集表示为()。

A. A∩BB. A∪BC. A-BD. A∩B'3. 若集合A是集合B的子集,则表示为()。

A. A⊆BB. A⊇BC. A⊂BD. A⊃B4. 空集是所有集合的()。

A. 子集B. 真子集C. 并集D. 交集5. 集合A和集合B的交集表示为()。

A. A∩BB. A∪BC. A-BD. A∩B'6. 若集合A和集合B的交集为空集,则A和B是()。

A. 子集B. 真子集C. 互斥的D. 相等的7. 集合的幂集是指()。

A. 集合的所有子集的集合B. 集合的所有元素的集合C. 集合的所有真子集的集合D. 集合的所有非空子集的集合8. 集合A和集合B的差集表示为()。

A. A∩BB. A∪BC. A-BD. A∩B'9. 集合的元素个数称为集合的()。

A. 基数B. 序数C. 秩D. 维数10. 集合论中,无限集合的基数可以是()。

A. 有限的B. 可数的C. 不可数的D. 以上都是二、填空题(每题2分,共20分)1. 集合{1, 2, 3}的幂集有个元素。

2. 集合{a, b, c}和集合{a, b}的交集是。

3. 集合{1, 2, 3}和集合{2, 3, 4}的并集是。

4. 集合{1, 2, 3}和集合{2, 3, 4}的差集是。

5. 集合{1, 2, 3}的补集在全集U={1, 2, 3, 4, 5}中是。

6. 若集合A={1, 2, 3},集合B={2, 3, 4},则A∪B= 。

7. 集合{1, 2, 3}的子集个数是。

8. 集合{1, 2, 3}的真子集个数是。

9. 集合{1, 2, 3}的非空真子集个数是。

10. 若集合A={1, 2, 3},集合B={2, 3, 4},则A∩B= 。

三、解答题(每题10分,共50分)1. 证明:若集合A是集合B的子集,且集合B是集合C的子集,则集合A是集合C的子集。

集合论与图论习题册

集合论与图论习题册

集合论与图论习题册软件基础教研室刘峰2019.03第一章 集合及其运算8P 习题1. 写出方程2210x x ++=的根所构成的集合。

2.下列命题中哪些是真的,哪些为假a)对每个集A ,A φ∈; b)对每个集A ,A φ⊆; c)对每个集A ,{}A A ∈; d)对每个集A ,A A ∈; e)对每个集A ,A A ⊆; f)对每个集A ,{}A A ⊆; g)对每个集A ,2A A ∈;h)对每个集A ,2A A ⊆;i)对每个集A ,{}2A A ⊆; j)对每个集A ,{}2A A ∈; k)对每个集A ,2A φ∈;l)对每个集A ,2A φ⊆;m)对每个集A ,{}A A =; n) {}φφ=;o){}φ中没有任何元素;p)若A B ⊆,则22A B ⊆q)对任何集A ,{|}A x x A =∈; r)对任何集A ,{|}{|}x x A y y A ∈=∈; s)对任何集A ,{|}y A y x x A ∈⇔∈∈; t)对任何集A ,{|}{|}x x A A A A ∈≠∈。

答案:3.设有n 个集合12,,,n A A A 且121n A A A A ⊆⊆⊆⊆,试证:12n A A A ===。

4.设{,{}}S φφ=,试求2S ?5.设S 恰有n 个元素,证明2S 有2n 个元素。

16P 习题 6.设A 、B 是集合,证明:(\)()\A B B A B B B φ=⇔=。

7.设A 、B 是集合,试证A B A B φ=⇔=∆。

9.设A ,B ,C 为集合,证明:\()(\)\A B C A B C =。

10.设A ,B ,C 为集合,证明:()\(\)(\)A B C A C B C =。

11.设A ,B ,C 为集合,证明:()\(\)(\)A B C A C B C =。

12.设A ,B ,C 都是集合,若A B A C =且A B B C =,试证B=C 。

集合论图论 期中考试试题及答案

集合论图论 期中考试试题及答案

08信安专业离散数学期中考试试题1.设A, B, C, D为4个集合. 已知A⊆B且C⊆D.证明:A∪C⊆B∪D; A∩C⊆B∩D . (15分)2.化简以下公式: A∪((B―A)―B) (10分)3.设R是非空集合A上的二元关系.证明:R∪R-1是包含R的最小的对称的二元关系. (15分)4.设A={1,2,…,20},R={<x,y>|x,y∈A∧x≡y(mod 5)}.证明:R为A上的等价关系. 并求商集A/R. (15分)5.给出下列偏序集的哈斯图,并指出A的最大元,最小元,极大元和极小元. A={a,b,c,d,e},≢A= I A∪{<a,b>,<a,c>, <a,d>,<a,e>,<b,e>,<c,e>,<d,e>} (15分)6.设g:A→B, f:B→C.已知g f是单射且g是满射,证明:f是单射. (10分)7.设S={0,1}A, 其中A={a1,a2,…,a n}.证明:P(A)与S等势.(10分)8.证明:任何一组人中都存在两个人,他们在组内认识的人数恰好相等(假设,若a认识b,则a与b互相认识). (10分)期中考试试题解答1.证明: ∀x,x∈A∪C x∈A∩C⇔x∈A∨x∈C ⇔x∈A∧x∈C⇒x∈B∨x∈D (A⊆B,C⊆D) ⇒x∈B∧x∈D (A⊆B,C⊆D) ⇔x∈B∪D ⇔x∈B∩D∴A∪C⊆B∪D ∴A∩C⊆B∩D2.解:A∪((B―A)―B)=A∪((B∩∽A)∩∽B)=A∪(∽A∩(B∩∽B))=A∪(∽A∩φ)=A∪ф=A .3.证明:首先证R∪R-1是对称关系. ∀<x,y>,<x,y>∈R∪R-1⇔<x,y>∈R∨<x,y>∈R-1⇔<y,x>∈R-1∨<y,x>∈R⇔<y,x>∈R-1∪R⇔<y,x>∈R∪R-1∴ R∪R-1是对称关系.再证任何包含R的对称关系一定包含R∪R-1.设R⊆R’且R’是对称关系.∀<x,y>,<x,y>∈R∪R-1⇔<x,y>∈R∨<x,y>∈R-1⇔<x,y>∈R∨<y,x>∈R⇒<x,y>∈R’∨<y,x>∈R’⇒<x,y>∈R’∨<x,y>∈R’(因为R’是对称关系)⇒<x,y>∈R’.从而R∪R-1⊆R’.4.证明: 设A={1,2,…,20},R={<x,y>|x,y∈A∧x≡y (mod 5)}∀x∈A, x=5k+i,0≢i≢4, ∴x≡x (mod 5), 即xRx;∀x,y∈A,若xRy,即x≡y(mod 5),故有x=5k+i且y=5m+i, 所以有y≡x (mod 5),即有yRx.∀x,y,z∈A,若xRy且yRz,则有x≡y(mod 5)和y≡z(mod 5),即有x=5k+i,y=5m+i且z=5n+i(0≢i≢4),从而x≡z (mod 5) 故有xRz.因为我们证明了G有自反性,对称性和传递性,所以R是等价关系.A/R={{1,6,11,16},{2,7,12,17},{3,8,13,18},{4,9,14,19},{5,10,15,20}}5. 解:哈斯图见附图(第5题答案).A 的最大元和极大元是e, 最小元和极小元是a.6. 证明:已知g f 是单射且是g 满射.反证法.假设f 不是单射,故存在b 1,b 2∈B,b 1≠b 2,且 f(b 1)=f(b 2)=c.由g 是满射知,存在a 1,a 2∈A,使得g(a 1)=b 1, g(a 2)=b 2. 由于g 是函数且b 1≠b 2,故a 1≠a 2.但是现在有 g f(a 1)=f(g(a 1))=f(b 1)=c=f(b 2)=f(g(a 2))=g f(a 2), 这与g f 是单射函数矛盾.7. 证明:设S={0,1}A ,A={a 1,a 2,…,a n }.P(A)={B|B ⊆A }. 定义特征函数ϕB :A →{0,1},⎩⎨⎧∉∈=Bx B x x B ,0,1)(ϕ 则存在双射f:P(A)→{0,1}A ,使得f(B)=B ϕ.因为∀B ∈P(A),∃唯一的g=B ϕ∈{0,1}A ,使得f(B)=B ϕ.故 f 是P(A)到{0,1}A 的函数.∀B 1,B 2∈P(A),若B 1≠B 2,则f(B 1)=1B ϕ≠2B ϕ=f(B 2),故f 是单射.∀g ∈{0,1}A ,∃B={x|x ∈A ∧g(x)=1}∈P(A),使得f(B)=g= B ϕ,从而f 是满射.综上所述,f是P(A)到{0,1}A的双射. 故P(A)与{0,1}A等势.8.证明:设一组A中有n个人A={a1,a1,…,a n}(n≣2),我们用ϕ(a i)表示a i认识的人数.情形1:A中每个人至少认识同组中的一个人.这时,1≢ϕ(a i)≢n―1, i=1,2,…,n.即ϕ是A到{1,2,…, n―1}的函数.然而|A|=n,|{1,2,…,n―1}|=n―1,由鸽笼原理,存在1≢s<t≢n,使得ϕ(a s)=ϕ(a t).情形2:A中有一个人a i不认识A中其他任何人,即ϕ(a i)=0.这时,a i以外的每一个人至多认识A中n―2个人.所以0≢ϕ(a j)≢n―2,j=1,2,…,n. 即ϕ是A到{0,1,…,n―2}的函数.然而|A|=n,|{0,1,…,n―2}|=n―1,由鸽笼原理,存在1≢s<t≢n,使得ϕ(a s)=ϕ(a t).综上所述,在两种情况下,A中都有两个人,他们在组内认识的人数恰好相等.。

集合论与图论参考答案

集合论与图论参考答案

℘({∅, {∅}}) = {∅, {∅}, {∅, {∅}} }
这是错误的,记住对任意的集合A,℘(A)中的元素个数总是2的幂,所以不可能是3个元素。注意下面 几个集合的差别:

{∅}
{{∅}}
{{{∅}}}
对于(3),有些同学没有想到上面的说明方法,对于计算℘℘℘({∅})又没有耐心,所以要么计算错,要 么直接写上了答案(我怀疑是参考别人的答案)。对于(4),很多同学忘记了 ℘(A) = A这个等式, 而在计算时也有不少同学出错,最多错的答案是:
(1) A ∪ B ∪ C ∪ D = {−7, −6, −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 16, 18, 21, 24, 27, 30, 32, 64}
(2) A ∩ B ∩ C ∩ D = ∅ (3) B − (A ∪ C) = {−7, −6, −5, −4, −3, −2, −1, 0, 4, 5, }
若 且 ,则 。 (5) A∈B B∈C A∈C
解答:
(1) 该命题为真。因为B ⊆ C意味着对任意的x,若x∈B,则x∈C,因此若A∈B,则A∈C。
该命题为假。例如 ,则 及 ,但 。 的子 (2)
A = {1}, B = {{1}}, C = {{1}, 2} A∈B B ⊆ C A ⊆ C C
由 , 就得到 。 A∪ ∼ A = E B ∩ E = B, C ∩ E = C
B=C
点评:这一比较简单,类似课堂上举的例子:A ∩ B = A ∩ 且C A ∪ B = A ∪ C蕴含B = C,但有
些同学没有认真听课,而没有想到这一点。
作业1.8 化简下列各式

图论试题及答案解析图片

图论试题及答案解析图片

图论试题及答案解析图片一、选择题1. 图论中,图的基本元素是什么?A. 点和线B. 点和面C. 线和面D. 点和边答案:A2. 在无向图中,如果两个顶点之间存在一条边,则称这两个顶点是:A. 相邻的B. 相连的C. 相等的D. 相异的答案:A3. 在有向图中,如果从顶点A到顶点B有一条有向边,则称顶点A是顶点B的:A. 父顶点B. 子顶点C. 邻接顶点D. 非邻接顶点答案:B4. 一个图的度是指:A. 图中顶点的总数B. 图中边的总数C. 一个顶点的边数D. 图的连通性答案:C5. 一个图是连通的,当且仅当:A. 图中任意两个顶点都是相邻的B. 图中任意两个顶点都可以通过边相连C. 图中任意两个顶点都可以通过路径相连D. 图中任意两个顶点都可以通过子顶点相连答案:C二、填空题1. 在图论中,一个顶点的度数是该顶点的________。

答案:边数2. 如果一个图的任意两个顶点都可以通过边相连,则称该图为________。

答案:完全图3. 一个图中,如果存在一个顶点到其他所有顶点都有边相连,则称该顶点为________。

答案:中心顶点4. 图论中,最短路径问题是指在图中找到两个顶点之间的________。

答案:最短路径5. 如果一个图的任意两个顶点都可以通过有向路径相连,则称该图为________。

答案:强连通图三、简答题1. 请简述图论中的欧拉路径和哈密顿路径的定义。

答案:欧拉路径是指在图中经过每条边恰好一次的路径,而哈密顿路径是指在图中经过每个顶点恰好一次的路径。

2. 什么是图的着色问题?答案:图的着色问题是指将图中的顶点用不同的颜色进行标记,使得相邻的两个顶点颜色不同。

四、计算题1. 给定一个无向图G,顶点集为{A, B, C, D, E},边集为{AB, BC, CD, DE, EA},请画出该图,并计算其最小生成树的权重。

答案:首先画出图G的示意图,然后使用克鲁斯卡尔算法或普里姆算法计算最小生成树的权重。

集合论与图论答案 第四章习题

集合论与图论答案 第四章习题

第四章 无穷集合及其基数习题136P 1.设A 为由序列12,,,,n a a a的所有项组成的集合,则是否市可数的?为什么?解:因为序列是可以重复的,故若A 是由有限个数组成的集合,则A 是有限的集合;若A 是由无限个数组成的集合,则A 是可数的。

故本题A 是至多可数的。

2.证明:直线上互不相交的开区间的全体所构成的集合至多可数。

证:在每个开区间中取一个有理数,则这些有理数构成的集合是整个有理数集合Q 的子集,因此是至多可数的。

3.证明:单调函数的不连续点的集合至多可数。

证:设A 是所有不连续点的集合,f 是一个单调函数,则00,x A x ∀∈对应着一个区间0((0),(0))f x f x -+,于是由上题便得到证明。

4.任一可数集A 的所有有限子集构成的集族是可数集合。

证:设1212{,,,,},{,,,},n i i ik A a a a B a a a ==则B A ⊆且B k =<∞。

令{,}B B A B B =⊆<∞,设:{0,1}A ϕ→,则ϕ是A的子集的特征函数。

,()B B ϕ∀∈B ={0,1的有穷序列},即i a A ∀∈, 若i a B ∈,则对应1;若i a B ∉则对应0。

于是,()B B ϕ∀∈B 就对应着一个由0,1组成的有限序列0,1,1,0,…,0,1。

此序列对应着一个二进制小数,而此小数是有理数。

于是,可数集A 的所有有限子集B 对应着有理数的一个子集。

又121212,,,,B B B B B B ∀∈B ≠对应的小数也不同,故ϕ是单射。

而可数集A的所有有限子集B 是无穷的,故B 是可数的。

5.判断下列命题之真伪:(1)若:f X Y →且f 是满射,则只要X 是可数的,那么Y 是至多可数的;(2)若:f X Y →且f 是单射,那么只要Y 是可数的,则X 也是可数的;(3)可数集在任一映射下的像也是可数的; 答案:对,错,错。

7.设A是有限集,B是可数集,证明:{|:}A B f f A B =→是可数的。

集合论图论 期中考试试题 2008年11月

集合论图论 期中考试试题 2008年11月

关系的传递闭包仍是自反的,因此tr(R)是自反的,因此tr(R)是包含t(R)的自反关系,因此根据闭包
的定义, 。 rt(R) ⊆ tr(R)
反之,由R ⊆ t(R),自反闭包保持子集关系,因此r(R) ⊆ rt(R),又t(R)是传递的,而且传递关
系的自反闭包仍是传递的,因此rt(R)是传递的,从而rt(R)是包含r(R)的传递关系,因此根据闭包
六、给定 上的关系 且 是 的倍数 : 分 A = {1, 2, 3, 4, 8, 9, 36}
R = { x, y | x, y∈A y x
} (11 )
1. 划出偏序关系R的哈斯图(3分);
2. 求A的子集B = {3,4,9}的极大元、极小元、最大元、最小元、上界、下界、上确界和下确
界(8分)。
分 ; (2) rt(R) = tr(R)(5 )
分 ,并举例说明有 成立 分 ; (3) st(R) ⊆ ts(R)(5 )
st(R) ⊂ ts(R) (2 )
五、设R是非空集A上的等价关系,定义S = { a, b | ∃c∈A, a, c ∈R ∧ , c, b ∈R} 证明S也是等价关系。(12分)
// (A ∩ B) ∪ C = A ∩ (B ∪ C)
// 结合律 // 吸收律
而C = C ∩ A当且仅当C ⊆ A。
点评:有许多同学直接从 得到 ,这是 (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C) = A ∩ (B ∪ C) A ∪ C = A
错误的,将被扣4分。因为对任意集合X, Y, 能得到,因为很显然当X ⊆ Y ∩ Z时总有X
点评:这一题如果说从A = B显然得到P(A) = P(B)将被扣2分,因为出这个题目的本意就是

图论期末考试题库及答案

图论期末考试题库及答案

图论期末考试题库及答案一、单项选择题1. 图论的创始人是()。

A. 欧拉B. 莱布尼茨C. 牛顿D. 高斯答案:A2. 在图论中,一个图的顶点集合为空,但边集合不为空的图称为()。

A. 空图B. 完全图C. 树D. 多重图答案:A3. 如果一个图的任意两个顶点之间都存在一条路径,则称该图为()。

A. 连通图B. 强连通图C. 弱连通图D. 无环图答案:A4. 在图论中,一个图的边的集合可以划分为若干个不相交的路径,使得图中的每个顶点恰好属于其中一条路径,这样的图称为()。

A. 欧拉图B. 哈密顿图C. 树答案:C5. 图论中,一个图的边的集合可以划分为若干个不相交的回路,使得图中的每个顶点恰好属于其中一条回路,这样的图称为()。

A. 欧拉图B. 哈密顿图C. 树D. 环答案:A二、多项选择题1. 下列哪些是图论中的基本术语()。

A. 顶点B. 边D. 权重答案:ABCD2. 在图论中,以下哪些图是无向图()。

A. 完全图B. 树C. 多重图D. 有向图答案:ABC3. 图论中,以下哪些图是连通图()。

A. 完全图B. 树C. 多重图D. 空图答案:ABC三、填空题1. 图论中,一个图的顶点集合为V,边集合为E,那么图可以表示为G=()。

答案:(V, E)2. 如果一个图的任意两个顶点之间都存在一条路径,则称该图为()。

答案:连通图3. 在图论中,一个图的边的集合可以划分为若干个不相交的路径,使得图中的每个顶点恰好属于其中一条路径,这样的图称为()。

答案:树四、简答题1. 请解释什么是图论中的“完全图”?答案:完全图是指图中每一对不同的顶点之间都恰好有一条边相连的图。

在完全图Kn中,n个顶点两两相连,共有n(n-1)/2条边。

2. 请解释什么是图论中的“欧拉路径”和“欧拉回路”?答案:欧拉路径是指图中存在一条路径,该路径恰好经过每条边一次。

欧拉回路是指图中存在一条回路,该回路恰好经过每条边一次。

五、计算题1. 给定一个图G=(V, E),其中V={A, B, C, D, E},E={(A, B), (B, C), (C, D), (D, E), (E, A), (A, C)},请判断该图是否为连通图,并说明理由。

图论试题及答案解析图片

图论试题及答案解析图片

图论试题及答案解析图片一、选择题1. 在图论中,一个图的顶点数为n,那么这个图最多有多少条边?A. nB. n(n-1)/2C. n^2D. 2n答案:B解析:在一个无向图中,每个顶点最多与其他n-1个顶点相连,因此最多有n(n-1)/2条边。

2. 什么是连通图?A. 至少有一个环的图B. 任意两个顶点都可以通过路径相连的图C. 没有孤立顶点的图D. 所有顶点度数都大于0的图答案:B解析:连通图是指图中任意两个顶点都可以通过路径相连的图。

3. 在图论中,什么是哈密顿路径?A. 经过图中所有顶点的路径B. 经过图中所有边的路径C. 经过图中所有顶点的回路D. 经过图中所有边的回路答案:A解析:哈密顿路径是指经过图中所有顶点的路径。

4. 什么是二分图?A. 图的顶点可以被分成两个不相交的集合,使得同一集合内的顶点不相邻B. 图的顶点可以被分成两个不相交的集合,使得同一集合内的顶点相邻C. 图的边可以被分成两个不相交的集合,使得同一集合内的边不相邻D. 图的边可以被分成两个不相交的集合,使得同一集合内的边相邻答案:A解析:二分图是指图的顶点可以被分成两个不相交的集合,使得同一集合内的顶点不相邻。

5. 在图论中,什么是最小生成树?A. 包含图中所有顶点的最小边数的生成树B. 包含图中所有顶点的最小权重的生成树C. 包含图中所有边的最小权重的生成树D. 包含图中所有边的最小边数的生成树答案:B解析:最小生成树是指包含图中所有顶点的最小权重的生成树。

二、填空题1. 在无向图中,如果一个顶点的度数为n,则该顶点至少有______条边。

答案:n解析:一个顶点的度数是指与该顶点相连的边的数量。

2. 如果一个图是连通的,那么该图至少有______个连通分量。

答案:1解析:连通图的定义是图中任意两个顶点都可以通过路径相连,因此至少有一个连通分量。

3. 在图论中,一个图的色数是指给图的顶点着色,使得相邻顶点颜色不同,所需的最小颜色数。

集合论与图论答案 第三章习题

集合论与图论答案 第三章习题

证:因为 R 是传递的,故 (R ) R 。
(3) (R S) R S
证:因为 R S R 且 R S S ,故 (R S) R ,且 (R S) S ,从而
(R S) R S 例 3 如图 5 所示给出下图中每个关系的自反、对称和传递闭包。
3
·
·
(a)
(1)自反闭包
(b) 图5
(c)
R {(a,b) | a b } 等价于 aRb a b (a,b) R a b 。 解:(1)自反性。 因为 2A ,但 ,所以 (,) R ,故 R 不是自反的。
2
(2)反自反性。 因为{1} 2A ,{1} {1} {1} ,故 ({1},{1}) R ,故 R 不是反自反的。 (3)对称性。 x, y 2A ,若 (x, y) R ,则 x y ,所以 y x ,故 ( y, x) R ,从而 R 是对称的。 (4)反对称性。 令 x {1, 2} , y {1,3} ,则 x y y x {1} ,故 (x, y) R 且 ( y, x) R ,
解:设 N {1, 2,3, },在 N 上定义小于关系“ ”,则 s(t()) s() “不等关系≠”;
4
而 t(s()) t() “全关系”。
因此的确不相等。
例 7( P988 )是否存在 X ( X n )上的一个二元关系 R,使得 R, R2, , Rn 两两 不相等。
解:存在。令 X {1, 2,3, , n} , R {(1, 2),(2,3), ,(n 1, n)}即可。
但 x y ,所以 (x, y) ( y, x) ,从而 R 不是反对称的。 (5)传递性。 令 x {1} , y {1, 2} , z {2} , 则 有 x y {1} 且 y z {2} , 故

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案离散数学考试试题及答案离散数学是计算机科学和数学中的一门重要学科,它研究的是离散的结构和对象。

离散数学的理论和方法在计算机科学、信息科学、通信工程等领域具有广泛的应用。

下面将为大家提供一些离散数学考试试题及答案,希望对大家的学习和复习有所帮助。

1. 集合论题目(1) 设A={1,2,3,4,5},B={3,4,5,6,7},求A∪B的结果。

答案:A∪B={1,2,3,4,5,6,7}(2) 设A={1,2,3,4,5},B={3,4,5,6,7},求A∩B的结果。

答案:A∩B={3,4,5}(3) 设A={1,2,3,4,5},B={3,4,5,6,7},求A-B的结果。

答案:A-B={1,2}2. 图论题目(1) 给定一个无向图G,顶点集为V={A,B,C,D,E},边集为E={(A,B),(A,C),(B,D),(C,D),(D,E)},求该图的邻接矩阵。

答案:邻接矩阵为:A B C D EA 0 1 1 0 0B 1 0 0 1 0C 1 0 0 1 0D 0 1 1 0 1E 0 0 0 1 0(2) 给定一个有向图G,顶点集为V={A,B,C,D,E},边集为E={(A,B),(B,C),(C,D),(D,E),(E,A)},求该图的邻接表。

答案:邻接表为:A ->B ->C ->D ->E -> AB -> CC -> DD -> EE -> A3. 命题逻辑题目(1) 判断以下命题是否为永真式:(p∨q)∧(¬p∨r)∧(¬q∨¬r)。

答案:是永真式。

(2) 给定命题p:如果天晴,那么我去游泳;命题q:我没有去游泳。

请判断以下命题的真假:(¬p∨q)∧(p∨¬q)。

答案:是真命题。

4. 关系代数题目(1) 给定关系R(A,B,C)和S(B,C,D),求R⋈S的结果。

《集合与图论》习题

《集合与图论》习题

第一章习题1.画出具有4个顶点的所有无向图(同构的只算一个)。

2.画出具有3个顶点的所有有向图(同构的只算一个)。

3.画出具有4个、6个、8个顶点的三次图。

4.某次宴会上,许多人互相握手。

证明:握过奇数次手的人数为偶数(注意,0是偶数)。

5.证明:哥尼斯堡七桥问题无解。

6.设u与v是图G的两个不同顶点。

假设u与v间有两条不同的通道(迹),那么G中是否有回路?7.证明:一个连通的(p,q)图中q ≥p-1。

8.设G是一个(p,q)图,δ(G)≥[p/2],试证G是连通的。

9.证明:在一个连通图中,两条最长的路有一个公共的顶点。

10.在一个有n个人的宴会上,每个人至少有m个朋友(2≤m≤n)。

试证:有不少于m+1个人,使得他们按某种方法坐在一张圆桌旁,每人的左、右均是他的朋友。

11.一个图G是连通的,当且仅当将V划分成两个非空子集V1和V2时,G总有一条联结V1的一个顶点与V2的一个顶点的边。

12.设G是图。

证明:假设δ(G)≥ 2,那么G包含长至少是δ(G)+1的回路。

13.设G是一个(p,q)图,证明:(a)q≥p,那么G中有回路;(b)假设q≥p+4,那么G包含两个边不重的回路。

14.证明:假设图G不是连通图,那么G c 是连通图。

15.设G是个(p,q)图,试证:(a)δ(G)·δ(G C)≤[(p-1)/2]([(p+1)/2]+1),假设p≡0,1,2(mod 4)(b) δ(G)·δ(G C)≤[(p-3)/2]·[(p+1)/2],假设p≡3(mod 4)16.证明:每一个自补图有4n或4n+1个顶点。

17.构造一个有2n个顶点而没有三角形的三次图,其中n≥3。

18.给出一个10个顶点的非哈密顿图的例子,使得每一对不邻接的顶点u和v,均有degu+degv≥919.试求Kp中不同的哈密顿回路的个数。

20.试证:图四中的图不是哈密顿图。

21.完全偶图Km,n为哈密顿图的充分必要条件是什么?22.菱形12面体的外表上有无哈密顿回路?23.设G是一个p(p≥3)个顶点的图。

哈工大2004年秋季学期《集合论与图论》试题答案

哈工大2004年秋季学期《集合论与图论》试题答案

《集合论与图论》试题 哈工大2004/2005年秋季学期参考答案一、1.{2,5,6} 2. 3.24 4.24 5.6 6.5 7.216268. 9. 10.4122164二、1. 2. rq C 222n n+ 3.{( 4. P =2n -1 5.q -p +16.m =n 7.4 8.()9.不存在 10.没有零因子,若有零因子,),(,)}a c a b (1),, (2),,,a b N a b N r R n N rn N nr N ∀∈−∈∀∈∈∈∈0a ≠,则存在b ≠0,使得,0ab ob ==由消去律有矛盾 0a =三、(1) p =6,q =9(2)不一定是平面图。

如K 3,3就不是平面图.(3)G 一定是哈密顿图。

因为对任一对不相邻的顶点,u v V ∈,degu +degv ≥p =6 G 不是平面图。

因为G 的顶点度数不全是偶数。

四、1.解1:a 与a -1,b 与b -1同阶,故ab 与a -1 b -1=(ba )-1同阶。

而(ba )-1与ab 同阶,故ab与ba 同阶。

解2:设a 的阶为n ,则有111111()()()()nn bab bab bab bab ba bbeb e −−−−−−===L =−)nbab e −;反之,设bab 的阶为n ,即(11=,得1n ba b − e =,而1n a b eb −e ==,所以与bab a 1−同阶,而ab 与同阶。

1bab b ba −=2.设G e ,则由3个元素构成的群如表所示{,,}a b =x e a be e a ba ab e b be a3.因为R 为环,故乘法满足分配律左边=()()na b a a a b n =+++L 1442443)((ab ab ab a b b b a nb n n =++=+++=L L 14424431442443=右边 个 个 个 五、1.因为F 有四个元支,所以(F ,+)群的阶为4,由Lagrange 定理知,F 中每个元素对加法的阶只能为1,2,4,又因为元素的特征数只能是素数,所以特殊数只能为2。

图论考试题及答案

图论考试题及答案

图论考试题及答案一、单项选择题(每题2分,共10分)1. 在图论中,如果一个图的任意两个顶点之间都存在路径,则称该图为连通图。

以下哪个图不是连通图?A. 树B. 完全图C. 环图D. 一个孤立的顶点答案:D2. 无向图中,如果存在一条边连接顶点u和顶点v,则称u和v为相邻顶点。

以下哪个选项描述了两个相邻顶点?A. 顶点u和顶点v之间有一条边B. 顶点u和顶点v之间没有边C. 顶点u和顶点v之间有两条边D. 顶点u和顶点v之间有三条边答案:A3. 在图论中,图的遍历是指访问图中的每个顶点恰好一次。

以下哪种遍历算法不能保证访问每个顶点恰好一次?A. 深度优先搜索B. 广度优先搜索C. 欧拉路径D. 迪杰斯特拉算法答案:D4. 图的着色问题是指将图中的顶点着色,使得相邻的两个顶点颜色不同。

以下哪个图的顶点着色数最少?A. 完全图K3B. 环图C4C. 完全二分图K2,2D. 树答案:D5. 图论中的哈密顿路径是一条经过图中每个顶点恰好一次的路径。

以下哪个图一定存在哈密顿路径?A. 完全图K5B. 环图C5C. 完全二分图K3,3D. 树答案:A二、填空题(每题2分,共10分)1. 在无向图中,如果存在一条边连接顶点u和顶点v,则称u和v为________顶点。

答案:相邻2. 图的遍历算法中,________算法使用栈来存储待访问的顶点。

答案:深度优先搜索3. 图的顶点着色数是指给图的顶点着色时,使得相邻顶点颜色不同所需的最少颜色数。

在图论中,一个图的顶点着色数不会超过其________数。

答案:最大度数4. 图论中的欧拉路径是指一条经过图中每条边恰好一次的路径,而________路径是指一条经过图中每个顶点恰好一次的路径。

答案:哈密顿5. 在图论中,如果一个图的任意两个顶点之间都存在路径,则称该图为________图。

答案:连通三、简答题(每题10分,共20分)1. 描述图论中的最短路径问题,并给出解决该问题的算法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

哈工大 2008 年 秋季学期 题号一 二 三 四 五 六 总分 分数班号 姓名本试卷满分90分(计算机科学与技术学院07级)一、填空(本题满分10分,每小题各1分)1.设B A ,是集合,若B B A =∆,则A 等于什么?( Φ=A )2.设X 为集合,R 为X 上的偏序关系,计算1i i R ∞=U 等于什么?( R )3.把置换⎪⎪⎭⎫ ⎝⎛436987251123456789分解成循环置换的乘积。

((149)(2367)(58))4.什么是无穷集合?(凡能与自身的一个真子集对等的集称为无穷集合)5.设T 是一棵树,2p ≥,则p 个顶点的树T 至多有多少个割点? (p -2 )6.设D 是一个有p 个顶点q 条弧的有向图,若D 是连通的,则q 至少是多大?( p -1 )7.设},,2,1{n V Λ=,则以V 为顶点集的无向图共有多少个?(2/)1(2-p p )8.设},,2,1{n V Λ=,则以V 为顶点集的有向图共有多少个?)1(2-p p )9.每个有3个支的不连通图,若每个顶点的度均大于或等于2,则该图至少有多少个圈? ( 3 )10.设T 是一个正则二元树,它有0n 个叶子,则T 有多少条弧?(2(0n -1))二、判断对错(本题满分10分,每小题各1分)1.设B A ,是两个集合,则A B ⊆且A B ∈不可能同时成立。

( 错 )2.在集合}10,,2,1{Λ上可以定义102个二元运算。

( 错 ) 3.设:f X Y →,若是可逆的。

( 错 )4.设是一个集合,则上的自反和反自反的二元关系个数相同。

(对)5.设∑为一个有限字母表,∑上所有字(包括空字)之集记为*∑。

则*∑不是可数集。

(错)6.设G是一个(,)≥,则G中必有圈。

(对)p q图,若q p7.若G 是一个),(p p 连通图,则G 至多有p 个生成树。

( 对 )8.设2≥r ,G 是-r 正则图且顶点连通度为1,则≤)(G λr 。

( 对 ) 9.把平面分成p 个区域,每两个区域都相邻,则p 最大为5。

( 错 )10.有向图的每一条弧必在某个强支中。

( 错 )三、证明下列各题(本题满分18分,每小题各6分)1.设,,A B C 是三个任意的集合,则(1)证明:()()\\\\A B C A B C ⊆;(2) 举例说明)\(\\)\(C B A C B A ≠。

证:(1) 证明:∀()\\x A B C ∈,有()\,x A B x C ∈∉,即x A ∈但,x B x C ∉∉, 从而\x B C ∉,于是()\\x A B C ∈,即()()\\\\A B C A B C ⊆。

(2) 若{}{}1,2,3,2A B C ===,则()()\\\\A B C A B C ⊆。

2.设C B A ,,是三个任意的集合,证明:(\)()\()A B C A B A C ⨯=⨯⨯。

证明:设 (,)(\)x y A B C ∈⨯,则x A ∈,\y B C ∈,从而x A ∈,y B ∈,y C ∉。

于是(,)x y A B ∈⨯,(,)x y A C ∉⨯,因此(,)()\()x y A B A C ∈⨯⨯,即(\)()\()A B C A B A C ⨯⊆⨯⨯。

反之,设(,)()\()x y A B A C ∈⨯⨯,有(,)()x y A B ∈⨯,(,)()x y A C ∉⨯,从而x A ∈,y B ∈,y C ∉,故x A ∈且\y B C ∈。

于是(,)(\)x y A B C ∈⨯,即()\()(\)A B A C A B C ⨯⨯⊆⨯。

因此,(\)()\()A B C A B A C ⨯=⨯⨯。

3.设T S ,是两个任意的集合,证明:()()S T S T S T ∆=∆U I。

证:x S T ∀∈∆,则若x S ∈,则x T ∉。

因而()x S T ∈U 且()x S T ∉I,故()\()x S T S T ∈U I ()()S T S T =∆U I ; 若x S ∉,则x T ∈,同理可得()()x S T S T ∈∆U I。

因此 S T ∆⊆()()S T S T ∆U I。

反之,因为()()S T S T ⊆IU ,故()()S T S T ∆U I =()\()S T S T U I 。

于是 ()()x S T S T ∀∈∆U I ()\()S T S T =U I ,有(),()x S T x S T ∈∉U I 。

若x S ∈,则x T ∉,故x ∈S T ∆;若x S ∉,则x T ∈,故x ∈S T ∆。

因此()()S T S T ∆U I ⊆S T ∆。

从而S T ∆=()()S T S T ∆U I。

四、回答下列各题(本题满分14分)1.如图1所示是彼德森图G ,回答下列问题:(6分)(1)G 是否是偶图? (不是 )(2)G 是否是欧拉图? (不是 )(3)G 是否是平面图? (不是 )(4)G 是否是哈密顿图? (不是 )(5)G 的色数为多少? ( 3 )图12.设G 是如图2所示的有向图,则(8分)(1)写出G 的邻接矩阵。

(2)求顶点1v 到4v 间长为10的有向通道的条数的方法是什么?(不必算出具体的数)(3)写出G 的可达矩阵。

(4)画出对应于表达式(A +B*C )/(A-C )的二元树表示。

解:(1)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0110010000110101B ;(2)1410)(B 元素的值;(3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0111011101111111 (4)五、证明下列各题(本题满分18分, 每小题各6分)1.设f Y g →→:X ,:Y Z 。

若g f o 是单射,则f 与g 哪个是单射?请证明之。

解:f 是单射。

因为g f o 是单射,所以12,x x X ∀∈,若12x x ≠,则12(())(())g f x g f x ≠。

因此,12()()f x f x ≠,故f 是单射。

2.设X X S n X ⨯==},,,2,1{Λ。

“≅”是S 上如下的二元关系:(,),(,)i j k l S ∀∈,(,)(,)i j k l ≅当且仅当i j k l +=+。

则(1) 证明:≅是等价关系;(2)求等价类数。

证:(1)等价关系显然;(2)等价类数为:21n -。

3.令{1,2,3,}N =L ,{:{0,1}},S f f N =→利用康托对角线法证明S 是不可数集。

证:假设从N 到{0, 1}的所有映射之集可数,则可排成无重复项的无穷序列123,,,f f f L 。

每个函数i f 确定了一个0,1序列123,,,i i i a a a L 。

构造序列123,,,,1i b b b b =L ,若0ii a =;否则0i b =。

该序列对应的函数()i f i b =,i N ∈,不为12,,f f L 任一个,矛盾。

六、证明下列各题(本题满分20分,每小题各5分)1.设G 是一个恰有两个不邻接的奇度顶点u 和v 的无向图,证明:G 连通G uv ⇔+连通。

证:⇒ 显然成立。

⇐ 假设G 不连通,则G 恰有2个分支:21,G G 。

由题意u v 与不在一个分支上,于是含有()u v 或的顶点的分支只有一个奇度数顶点与握手定理的推论矛盾。

于是假设不成立,即G 是连通的。

2.证明:任意一棵非平凡树至少有两个树叶。

证明:设T 为一棵非平凡的无向树,T 中最长的路为12k L v v v =L 。

若端点1v 和k v 中至少有一个不是树叶,不妨设k v 不是树叶,即有deg()2k v ≥,则k v 除与L 上的顶点1k v -相邻外,必存在1k v +与k v 相邻,而1k v +不在L 上,否则将产生回路。

于是11k k v v v +L 仍为T 的一条比L 更长的路,这与L 为最长的路矛盾。

故k v 必为树叶。

同理,1v 也是树叶。

3.证明:若每个顶点的度数大于或等于3,则不存在有7条边的平面连通图。

证明:假设存在这样的平面图,则由2p q f -+=,有()291p f q +=+=L L L L而由214deg 2,32,33v V v q p q p q ∈∑=≤≤=;由2142,32,33nf q f q f q =≤≤=; ,p f 为整数,故,4p f ≤,于是8p f +≤与(1)矛盾。

4.证明每个比赛图中必有有向哈密顿路。

(用数学归纳法证明) 证:设D 是p 个顶点的比赛图。

施归纳于p :当p=1,2时,结论显然成立。

假设当≥p 2时结论成立,往证对p+1个顶点的比赛图D 也成立。

从D 中去掉一个顶点u ,则得到一个具有p 个顶点的比赛图D-u 。

由归纳假设D-u 有哈密顿路L 12p u ,u ,,u 。

在D 中,若1uu 或p u u 为D 的弧,则结论成立。

今设1u u 及p uu 为D 的弧,由于D 比赛图,所以u 与k u L (k=2,,p-1)之间有且仅有一条弧,于是必有一个最大i 使i u u 为弧,从而i+1uu 为D 的弧。

于是, L L 1i i+1p u u uu u 为D 的哈密顿路。

由归纳法原理知对任何p 本题结论成立。

相关文档
最新文档