2二极管和三极管
常用二三极管品牌
常用二三极管品牌一、引言二三极管(二极管和三极管)是电子元器件中常用的一种电子器件。
它们广泛应用于电路中的开关、放大、整流等功能。
在市场上,有许多不同品牌的二三极管可供选择。
本文将介绍几个常用的二三极管品牌及其特点。
二、常用二三极管品牌及特点1. 三极管品牌A品牌A是市场上知名的二三极管供应商之一,其产品质量可靠,性能稳定。
该品牌的二三极管具有以下特点:- 高可靠性:品牌A的二三极管采用优质材料创造,经过严格的质量控制,具有较低的故障率和长寿命。
- 低功耗:品牌A的二三极管具有低功耗特性,能够在电路中提供高效的性能。
- 大电流承受能力:品牌A的二三极管能够承受较大的电流,适合于需要高电流驱动的应用。
2. 二极管品牌B品牌B是二极管领域的知名品牌,其产品广泛应用于各种电子设备中。
该品牌的二极管具有以下特点:- 快速开关速度:品牌B的二极管具有快速的开关速度,能够在电路中实现高频率的开关操作。
- 低反向漏电流:品牌B的二极管具有较低的反向漏电流特性,可以有效减少功耗和能量损失。
- 小尺寸:品牌B的二极管体积小巧,适合在空间有限的电路中使用。
3. 三极管品牌C品牌C是一家专注于高性能三极管的创造商。
其产品在市场上享有很高的声誉,具有以下特点:- 高频特性:品牌C的三极管能够在高频率下工作,适合于需要高频放大的应用。
- 低噪声:品牌C的三极管具有低噪声特性,能够提供清晰的信号放大效果。
- 温度稳定性:品牌C的三极管在不同温度下的性能变化较小,适合于各种工作环境。
4. 二三极管品牌D品牌D是一家国际知名的电子元器件供应商,其二三极管产品具有以下特点:- 多样化选择:品牌D提供多种不同类型、封装和规格的二三极管,能够满足不同应用的需求。
- 高性价比:品牌D的二三极管性价比较高,价格相对较为合理,适合大规模生产和应用。
- 全球服务网络:品牌D在全球范围内建立了完善的销售和技术支持网络,能够及时响应客户需求。
三、结论以上介绍了几个常用的二三极管品牌及其特点。
二极管与三极管
二极管三极管区别
二极管三极管区别一、根本区别二极管与三极管的根本区别在于:二极管有两个脚,三极管三个脚,三极管有电流放大作用(即,基极电流对集电极电流的控制作用。
)二极管没有放大作用,它具有单向导电的特性。
放大:是基极电流对集电极电流的控制作用,表现为:基极的电流变化,反映在集电极就是一个成比例(集电极电流=基极电流乘以三极管的放大倍数)的电流变化。
放大的实质是通过三极管的电流控制功能,从电源获取能量,将基极输入的模拟量放大输出在集电极负载上(电流的变化,在负载上又表现为电压的变化)。
所以,实际放大的是基极输入的模拟量。
二、工作原理的区别二极管是一种具有单向导电的二端器件,有电子二极管和晶体二极管之分,电子二极管现以很少见到,比较常见和常用的多是晶体二极管。
二极管的单向导电特性,几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常[1]广泛。
三极管的工作原理三极管是一种控制元件,主要用来控制电流的大小,以共发射极接法为例(信号从基极输入,从集电极输出,发射极接地),当基极电压UB有一个微小的变化时,基极电流IB也会随之有一小的变化,受基极电流IB的控制,集电极电流IC会有一个很大的变化,基极电流IB越大,集电极电流IC也越大,反之,基极电流越小,集电极电流也越小,即基极电流控制集电极电流的变化。
但是集电极电流的变化比基极电流的变化大得多,这就是三极管的放大作用。
IC 的变化量与IB变化量之比叫做三极管的放大倍数β(β=ΔIC/ΔIB, Δ表示变化量。
),三极管的放大倍数β一般在几十到几百倍。
三极管在放大信号时,首先要进入导通状态,即要先建立合适的静态工作点,也叫建立偏置 ,否则会放大失真。
二级管主要就是单向导电性,三极管主要是电压,电流的放大。
三、种类区别晶体管:最常用的有三极管和二极管两种。
三极管以符号BG(旧)或(T)表示,二极管以D表示。
二极管和三极管原理ppt课件
37
① N沟道结型场效应管
基底:N型半导体
D(drain)
两边是P区
G(grid)
N PP
D G
D G
S
S
S(source)
精导品pp电t 沟道
38
② P沟道结型场效应管
D(drain)
G(grid)
P NN
S(source)
精品ppt
D G
D G
S
S
39
工作原理(以P沟道为例)
① 栅源电压UGS对导电沟道的影响
14
+
Si
Si
B
BSi
Si
Si
Si
空穴
掺硼的半导体中,空穴的数目远大于自由电子的数目。空
穴为多数载流子,自由电子是少数载流子,这种半导体称为空 穴型半导体或P型半导体
一般情况下,掺杂半导体中多数载流子的数量可达到少数
载流子的1010倍或更多精。品ppt
15
二、半导体二极管
精品ppt
16
PN 结的形成
精品ppt
26
由于少数载流子数量很少,因此反向电流不大,即 PN结呈现的反向电阻很高。 (换句话说,在P型半导 体中基本上没有可以自由运动的电子,而在N型半导体 中基本上没有可供电子复合的空穴,因此,产生的反向 电流就非常小。)
值得注意的是:因为少数载流子是由于价电子获 得热能(热激发)挣脱共价键的束缚而产生的,环境温度 愈高,少数载流子的数目愈多。所以温度对反向电流的 影响很大。
在金属导体中只有电子这种载流子,而半导体中存在空
穴和电子两种载流子,在外界电场的作用下能产生空穴流和
电子流,它们的极性相反且运动方向相反,所以,产生的电
二极管和三极管常识介绍
晶体二极管在电路中常用“D”加数字表示,如:D5表示编号为5的二极管。
1、作用:二极管的主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大。
正因为二极管具有上述特性,无绳电话机中常把它用在整流、隔离、稳压、极性保护、编码控制、调频调制和静噪等电路中。
电话机里使用的晶体二极管按作用可分为:整流二极管(如1N4004)、隔离二极管(如1N4148)、肖特基二极管(如BAT85)、发光二极管、稳压二极管等。
2、识别方法:二极管的识别很简单,小功率二极管的N极(负极),在二极管外表大多采用一种色圈标出来,有些二极管也用二极管专用符号来表示P极(正极)或N极(负极),也有采用符号标志为“P”、“N”来确定二极管极性的。
发光二极管的正负极可从引脚长短来识别,长脚为正,短脚为负。
3、测试注意事项:用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好相反。
晶体三极管在电路中常用“Q”加数字表示,如:Q17表示编号为17的三极管。
1、特点:晶体三极管(简称三极管)是内部含有2个PN结,并且具有放大能力的特殊器件。
它分NPN型和PNP型两种类型,这两种类型的三极管从工作特性上可互相弥补,所谓OTL电路中的对管就是由PNP型和NPN型配对使用。
电话机中常用的PNP型三极管有:A92、9015等型号;NPN型三极管有:A42、9014、9018、9013、9012等型号。
2、晶体三极管主要用于放大电路中起放大作用,在常见电路中有三种接法。
为了便于比较,将晶体管三种接法电路所具有的特点列于下表,供大家参考。
名称共发射极电路共集电极电路(射极输出器)共基极电路输入阻抗中(几百欧~几千欧)大(几十千欧以上)小(几欧~几十欧)输出阻抗中(几千欧~几十千欧)小(几欧~几十欧)大(几十千欧~几百千欧)电压放大倍数大小(小于1并接近于1)大电流放大倍数大(几十)大(几十)小(小于1并接近于1)功率放大倍数大(约30~40分贝)小(约10分贝)中(约15~20分贝)三极管的导通条件:三极管的导通条件是:发射结加正向电压,集电结加反向电压。
三极管检波和二极管检波
三极管检波和二极管检波三极管检波和二极管检波都是无线电通信中用于检测调制在高频信号上的低频信号(即信息)的方法。
以下是这两种检波方式的区别:
1. 工作原理:三极管检波的工作原理是利用三极管的放大作用,将高频信号通过三极管放大后,再将其输出到负载上。
而二极管检波则是利用二极管的单向导电性,将高频信号通过二极管整流后,输出低频信号。
2. 输出信号:由于三极管具有放大作用,因此三极管检波的输出信号幅度较大,可以驱动较大的负载。
而二极管检波的输出信号幅度较小,通常需要经过放大器进行放大后才能驱动较大的负载。
3. 响应速度:由于三极管内部存在电荷移动,因此三极管检波的响应速度较慢,无法适应高速信号的检波。
而二极管检波的响应速度较快,可以适应高速信号的检波。
4. 适用场景:三极管检波适用于需要放大低频信号的场景,例如音频信号的放大。
而二极管检波适用于需要高速响应的场景,例如通信、雷达等。
综上所述,三极管检波和二极管检波各有其特点,具体选择哪种检波方式需要根据实际需求来决定。
二极管三极管测量方法
二极管三极管测量方法二极管是一种最基本的电子元件,通常用于整流、稳压和开关等电路中。
而三极管是一种更为复杂的电子元件,可以用作放大器、开关和振荡器等。
在实际测量中,我们可以使用以下方法来测量二极管和三极管的特性。
二极管的测量方法:1.直流正向电压测量:将电压表的正极接在二极管的正极上,负极接在二极管的负极上,此时电压表显示的电压即为二极管的正向电压。
2.直流反向电压测量:将电压表的正极接在二极管的负极上,负极接在二极管的正极上,此时电压表显示的电压即为二极管的反向电压。
3.正向电流测量:将电流表的正极接在二极管的正极上,负极接在二极管的负极上,此时电流表显示的电流即为二极管的正向电流。
4.反向电流测量:将电流表的正极接在二极管的负极上,负极接在二极管的正极上,此时电流表显示的电流即为二极管的反向电流。
5.正向电阻测量:使用万用表的正向电阻档测量二极管的电阻值,连接方法类似于正向电流测量。
6.反向电阻测量:使用万用表的反向电阻档测量二极管的电阻值,连接方法类似于反向电流测量。
三极管的测量方法:1.静态工作点测量:使用直流电压源和电压表、电流表对三极管进行静态工作点测量。
首先将直流电压源的正极接在三极管的第一极(发射极或基极)上,负极接在三极管的第三极(集电极或射极)上。
将电压表和电流表的正负极依次接在三极管的各极上,可以测量出各极的电压和电流值。
2.动态工作点测量:使用示波器和信号源对三极管进行动态工作点测量。
通过连接示波器的探头,可以测量出三极管不同极的输出信号波形。
同时,通过连接信号源的输入端,可以调整输入信号的频率和幅度,以观察三极管的放大效果和变化情况。
3.负载线测量:将三极管的输入端连接到信号源,输出端连接到负载电阻上。
通过改变输入信号的幅度和频率,可以测量出三极管的负载线,即输入信号和输出信号之间的关系曲线。
在测量二极管和三极管时,需要注意以下几点:1.测量前确认测量仪器的选择和连接方式是正确的,避免出现误差。
二、三极管命名法
半导体器件型号由五部分(场效应器件、半导体特殊器件、复合管、PIN型管、激光器件的型号命名只有第三、四、五部分)组成。五个部分意义如下:
第一部分:用数字表示半导体器件有效电极数目。2-二极管、3-三极管
第二部分:用汉语拼音字母表示半导体器件的材料和极性。表示二极管时:A-N型锗材料、B-P型锗材料、C-N型硅材料、D-P型硅材料。表示三极管时:A-PNP型锗材料、B-NPN型锗材料、C-PNP型硅材料、D-NPN型硅材料。
4、国际电子联合会半导体器件型号命名方法
德国、法国、意大利、荷兰、比利时等欧洲国家以及匈牙利、罗马尼亚、南斯拉夫、波兰等东欧国家,大都采用国际电子联合会半导体分立器件型号命名方法。这种命名方法由四个基本部分组成,各部分的符号及意义如下:
第一部分:用字母表示器件使用的材料。A-器件使用材料的禁带宽度Eg=0.6~1.0eV如锗、B-器件使用材料的Eg=1.0~1.3eV如硅、C -器件使用材料的Eg>1.3eV如砷化镓、D-器件使用材料的Eg<0.6eV如锑化铟、E-器件使用复合材料及光电池使用的材料
第四部分:用数字表示在日本电子工业协会JEIA登记的顺序号。两位以上的整数-从“11”开始,表示在日本电子工业协会JEIA登记的顺序号;不同公司的性能相同的器件可以使用同一顺序号;数字越大,越是近期产品。
第五部分:用字母表示同一型号的改进型产品标志。A、B、C、D、E、F表示这一器件是原型号产品的改进产品。
2、整流二极管后缀是数字,表示器件的最大反向峰值耐压值,单位是伏特。
3、晶闸管型号的后缀也是数字,通常标出最大反向峰值耐压值和最大反向关断电压中数值较小的那个电压值。
如:BDX51-表示NPN硅低频大功率三极管,AF239S-表示PNP锗高频小功率名法
2个二极管和2个三极管正反接电路
2个二极管和2个三极管正反接电路
当涉及到电子元件的正反接电路时,我们通常指的是使用二极管和三极管构成的电路。
在这种情况下,我们可以讨论二极管和三极管的正反接电路的工作原理和应用。
首先,让我们来看看二极管的正反接电路。
正向接法是指二极管的阳极连接到正极,阴极连接到负极。
在这种情况下,二极管将允许电流通过,因为它处于导通状态。
反向接法是指二极管的阳极连接到负极,阴极连接到正极。
在这种情况下,二极管将处于截止状态,电流无法通过。
接下来,让我们来看看三极管的正反接电路。
对于NPN型三极管,正向接法是指基极连接到正极,发射极连接到负极,集电极连接到负极。
在这种情况下,三极管将允许电流通过,因为它处于导通状态。
反向接法是指基极连接到负极,发射极连接到正极,集电极连接到正极。
在这种情况下,三极管将处于截止状态,电流无法通过。
正反接电路在电子电路中有许多应用。
例如,正向接法的二极管可以用作整流器,将交流电转换为直流电;而反向接法的二极管
可以用作保护电路,防止电压超过一定范围。
三极管的正反接电路
则可以用于放大信号、开关控制等应用。
综上所述,正反接电路是电子电路中常见的组成部分,二极管
和三极管在正反接电路中有着不同的工作状态和应用。
深入理解这
些电路的工作原理对于电子工程师和电子爱好者来说是非常重要的。
希望这些信息能够帮助你更好地理解正反接电路的原理和应用。
大学课堂 二极管和三极管
出传输特性曲线uo=f(ui)和输出电压uo的波形
。
返回主目录
1.2 半导体二极管及其应用 电子技术课程多媒体课件 例2 电路如图所示,二极管VD1和VD2为理想二极管,当
输入端A、B的电位分别为+1V和+3V时,判断图中各 二极管是导通还是截止,并求输出端Y点的电位。 二极管导通或截止的判定方法是:先 将二极管断开,然后计算二极管两端 的电压,如果外加的是正向电压则二 极管导通,外加的是反向电压则二极 管截止。
硅和锗的 晶体结构:
返回主目录
1.1 半导体的基本知识 硅和锗的共价键结构
电子技术课程多媒体课件
+4表示 除去价电 子后的原
子
+4
+4
+4
+4
共价键共 用电子对
返回主目录
电子技术课程多媒体课件
形成共价键后,每个原子的最外层电子是八个, 构成稳定结构。
共价键有很强的结合力,使原子规 则排列,形成晶体。
电子技术课程多媒体课件
第七章 二极管和三极管
7.1 半导体的导电特性 电子技术课程多媒体课件
二、教学要求: 1. 了解半导体基础知识 ; 2. 理解二极管的单向导电性、伏安特性和主要参数
并掌握二极管的应用 ; 3. 了解几种特殊二极管; 4. 掌握晶体三极管的基本结构、工作原理、特性曲
线、主要参数;
P
-- --
- -
- -
N
-- - -
-- - -
内电场 外电场
外电场与内电场相同 耗尽层加厚 漂移>扩散 形成反向电流IR,很小。呈高阻态
PN结正偏,导通;PN结反偏,截止
7.3 二极管
电子技术课程多媒体课件
三极管二极管的工作原理
三极管二极管的工作原理
三极管和二极管都是半导体器件,其工作原理可简要描述如下:
二极管(Diode)工作原理:
二极管是由P型和N型半导体材料结合而成的,其结构仅有
两个电极:正向极(P型)和反向极(N型)。
当外加电压为
正向时,即正向偏置,使得正向极较高,反向极较低,会形成电场,导致电子从N区域向P区域流动。
这称为正向导通,
二极管呈低阻状态,电流能够通过。
当外加电压为反向时,即反向偏置,使得反向极较高,正向极较低,电场会阻止电子的流动。
这称为反向截止,二极管呈高阻状态,电流不能通过。
二极管的主要功能是将电流限制为单向流动。
三极管(Transistor)工作原理:
三极管由两个P型层夹着一个N型层或者两个N型层夹着一
个P型层构成。
其结构中分为三个区域:发射区(Emitter)、基区(Base)和集电区(Collector)。
发射和集电区域都是高
掺杂的,基区是轻掺杂的。
在正常工作时,基区是非常薄的,在发射极加正向电压,即正向偏置时,NPN三极管中的正向
电流流动进入基极,使得基极接收到较高的电流,这会导致内部电子向发射极流动。
此时,基极-发射极间出现少量的电子流,称为小电流放大作用,由于集电端的电压较高,使得收集到的电子在集电极产生高电流增益。
如果把基区与发射区之间的PN结反向偏置,NPN三极管就处于截止状态,不会有电流通过。
三极管的基区控制了发射区和集电区之间的电流,因此起到了放大信号的作用。
总的来说,二极管主要用于单向电流的导通和截止,而三极管则可以通过控制基极电流来实现电流放大的功能。
二极管和三极管
测试二极管的好坏
初学者在业余条件下可以使用万用表测试二极管性能的好坏。测试前先把万用表的转换开关拨到欧姆档的RX1K档位(注意不要使用RX1档,以免电流过大烧坏二极管),再将红、黑两根表笔短路,进行欧姆调零。
1、正向特性测试
把万用表的黑表笔(表内正极)搭触二极管的正极,,红表笔(表内负极)搭触二极管的负极。若表针不摆到0值而是停在标度盘的中间,这时的阻值就是二极管的正向电阻,一般正向电阻越小越好。若正向电阻为0值,说明管芯短路损坏,若正向电阻接近无穷大值,说明管芯断路。短路和断路的管子都不能使用。
面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。
平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。
二极管的导电特性
二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。
2、反向特性测试
把万且表的红表笔搭触二极管的正极,黑表笔搭触二极管的负极,若表针指在无穷大值或接近无穷大值,管子就是合格的。
二极管的应用
1、整流二极管
利用二极管单向导电性,可以把方向交替变化的交流电变换成单一方向的脉动直流电。
2、开关元件
二极管在正向电压作用下电阻很小,处于导通状态,相当于一只接通的开关;在反向电压作用下,电阻很大,处于截止状态,如同一只断开的开关。利用二极管的开关特性,可以组成各种逻辑电路。
2、反向特性
在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。当二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿。
二极管及三极管电路符号大全
二极管及三极管电路符号大全
① 二极管
1、普通二极管:二极管电路图符号的标准形式如图所示,象征着电路中一个管子,
而管子的一端通常被标注为“有源”极,另一端则被当作“无源”去。
2、双向导通二极管:双向导通二极管的电路符号表示如图所示,表示2个可以进入
电路的引脚,而电流可向无论两个引脚的任何一边进出。
② 三极管
1、普通三极管:一般来说,三极管就是电路中有3个极的半导体,它的电路图符号
可以如图所示,其中电极称为基极(Base)、收集极(Collector)和发射极(Emitter)。
2、双向三极管:双向三极管电路符号如图所示,它包含一个6脚栅格形及一个感叹
号“!”符号,用以区分电路可按双向流动的三极管。
三极管的命名规则
三极管的命名规则一、中国半导体器件型号命名方法半导体器件型号由五部分(场效应器件、半导体特殊器件、复合管、PIN型管、激光器件的型号命名只有第三、四、五部分)组成。
五个部分意义如下:第一部分:用数字表示半导体器件有效电极数目。
2-二极管、3-三极管第二部分:用汉语拼音字母表示半导体器件的材料和极性。
表示二极管时:A-N型锗材料、B-P型锗材料、C-N 型硅材料、D-P型硅材料。
表示三极管时:A-PNP型锗材料、B-NPN型锗材料、C-PNP型硅材料、D-NPN型硅材料。
第三部分:用汉语拼音字母表示半导体器件的内型。
P-普通管、V-微波管、W-稳压管、C-参量管、Z-整流管、L-整流堆、S-隧道管、N-阻尼管、U-光电器件、K-开关管、X-低频小功率管(F3MHz,Pc1W)、A-高频大功率管(f>3MHz,Pc>1W)、T-半导体晶闸管(可控整流器)、Y-体效应器件、B-雪崩管、J-阶跃恢复管、CS-场效应管、BT-半导体特殊器件、FH-复合管、PIN-PIN型管、JG-激光器件。
第四部分:用数字表示序号第五部分:用汉语拼音字母表示规格号例如:3DG18表示NPN型硅材料高频三极管二、日本半导体分立器件型号命名方法日本生产的半导体分立器件,由五至七部分组成。
通常只用到前五个部分,其各部分的符号意义如下:第一部分:用数字表示器件有效电极数目或类型。
0-光电(即光敏)二极管三极管及上述器件的组合管、1-二极管、2三极或具有两个pn结的其他器件、3-具有四个有效电极或具有三个pn结的其他器件、┄┄依此类推。
第二部分:日本电子工业协会JEIA注册标志。
S-表示已在日本电子工业协会JEIA注册登记的半导体分立器件。
第三部分:用字母表示器件使用材料极性和类型。
A-PNP型高频管、B-PNP型低频管、C-NPN型高频管、D-NPN 型低频管、F-P控制极可控硅、G-N控制极可控硅、H-N基极单结晶体管、J-P沟道场效应管、K-N 沟道场效应管、M-双向可控硅。
实验二 二极管和三极管的特性与识别
实验二二极管和三极管的特性与识别学号:012301224143 姓名:余忠卿实验目的1.熟悉二极管及三极管2.了解二极管及三极管的特性及作用3.学会判断二极管及三级管的极性一、实验内容1.认识二极管及三级管2.判断二极管的极性及三极管的EBC极3.掌握二极管及三级管的特性及作用二、实验报告1.二极管及三级管的极性判别晶体二极管的正、负极可按下列方法来判别:1.看外壳上的符号标记:通常在二极管的外壳上标有二极管的符号。
标有三角形箭头的一端为正极,另一端为负极。
2.看外壳上标记的色点:在点接触二极管的外壳上,通常标有色点(白色或红色)。
除少数二极管(如2AP9、2AP10等)外,一般标记色点的这端为正极。
3.透过玻璃看触针:对于点接触型玻璃外壳二极管,如果标记已磨掉,则可将外壳上的漆层(黑色或白色)轻轻刮掉一点,透过玻璃看那头是金属触针,那头是N型锗片。
有金属触针的那头就是正极。
4.用万用表R*100或R*1K档,任意测量二极管的两根引线,如果量出的电阻只有几百欧姆(正向电阻),则黑表笔(既万用表内电池正极)所接引线为正极,红表笔(既万用表内电源负极)所接引线为负极。
(见图5)(1)如果测得的二次结果,阻值均很小,接近零欧姆时,说明被出二极管内部PN 结击穿或已短路;反之如二次阻值均极大(接近),则说明该二极管内部已断路,这两种情况都属于二极管已损坏,不能使用。
(2)如果不知道该被测二极管是硅管还是锗管,这时再借助于一节干电地,就可以很快地加以判断。
方法是在干电池(1.5V )的一端串一个电阻(约lk ),同时按极性与二极管相接,使二极管正向导通,这时用万用表测量二极管两端的管压降,如为0.6~0.8 V 即为硅管,如为0.2~0.4 V 即为锗管。
具体方法如表3-2表3-2 二极管简易测试方法5. 用电池和喇叭来判别二极管的正、负极:如图6所示。
将一节电池和一个喇叭(或耳机)与被测二极管构成串联电路。
三极管检波和二极管检波
三极管检波和二极管检波
三极管检波和二极管检波都是无线电通信中的常见技术,用于将高频信号转换为低频信号,以便于后续的处理和传输。
1. 二极管检波:二极管检波是最早的检波方式,主要是利用二极管的单向导电性,将高频电压信号转换为低频电流信号。
具体做法是将高频电压信号加在二极管的正向,然后在二极管的反向端即可得到低频的电流信号。
二极管检波的优点是简单、成本低,但缺点是只能检测单个频点的信号,且不能进行频率的切换。
2. 三极管检波:三极管检波是二极管检波的改进型,它可以在多个频点上进行切换,避免了二极管检波的缺点。
具体做法是使用一个三极管和一个电容组成一个振荡电路,通过调整三极管的基极电流,使振荡电路在指定的频点上振荡,然后在振荡电路的输出端即可得到低频的电流信号。
三极管检波的优点是可以在多个频点上进行切换,且可以进行频率的切换,但缺点是比二极管检波复杂,成本也稍高。
总的来说,二极管检波和三极管检波各有优缺点,具体使用哪种检波方式,需要根据实际情况和需求来决定。
二极管和三极管
不论N型或P型半导体都是中性旳,对外不显电性。
1. 在杂质半导体中多子旳数量与 a (a. 掺杂浓度、b.温度)有关。
2. 在杂质半导体中少子旳数量与 b (a. 掺杂浓度、b.温度)有关。
3. 当温度升高时,少子旳数量 c (a. 降低、b. 不变、c. 增多)。
4. 在外加电压旳作用下,P 型半导体中旳电流 主要是 b ,N 型半导体中旳电流主要是 a 。
课后练习Hale Waihona Puke uo = 8V uo = ui
例3: D2
D1
3k 6V
12V
求:UAB 解:取 B 点作参照点
A + UAB –B
∵ UD2 >UD1 ∴ D2 优先导通, D1截止。 若忽视管压降,二极管可看作短路,UAB = 0 V
流过
D2
旳电流为
ID2
12 3
D1承受反向电压为-6 V
4mA
在这里, D2 起 钳位作用, D1起 隔离作用。
带着爱好学习:
1、说出你比较感爱好旳一种电子产品或电器
2、想象你生活当中旳一件事,做起来不是 很以便,能够经过电子产品或机械手旳手段 来处理它。并给这个产品命名
经过学习,能够搞清你所选电器旳原理,和元器 件所起旳作用;能够设计出你所想旳产品。
知识点
电子电路旳设计 分析
元器件内部原理、构成 经典电子电路旳计算、分析、
ICBO ICE
N
B
P
RB IBE N
电子技术
电路
电子 技术
基本概念基本定律 电路旳计算措施 暂态电路 交流电旳基本知识
模拟电子 特点 信号是连续旳 技术
数字电子 特点
技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.集-射极反向截止电流(穿透电流)ICEO
IB=0
– A + ICEO
ICEO受温度的影响大。 温度ICEO,所以IC 也相应增加。三极管的
温度特性较差。
4. 集电极最大允许电流 ICM
集电极电流 IC上升会导致三极管的值的下降, 当值下降到正常值的三分之二时的集电极电流即 为 ICM。
5. 集-射极反向击穿电压U(BR)CEO
(1) 稳定电压UZ 稳压管正常工作(反向击穿)时管子两端的电压。
(2) 电压温度系数u
环境温度每变化1C引起稳压值变化的百分数。
(3) 动态电阻 rZ
UZ IZ
rZ愈小,曲线愈陡,稳压性能愈好。
(4) 稳定电流 IZ 、最大稳定电流 IZM
(5) 最大允许耗散功率 PZM = UZ IZM
14.5 半导体三极管
1)直观地分析管子的工作状态 2)合理地选择偏置电路的参数,设计性能良好的 电路 重点讨论应用最广泛的共发射极接法的特性曲线
14.5.4 主要参数
表示晶体管特性的数据称为晶体管的参数,晶体
管的参数也是设计电路、选用晶体管的依据。
1. 电流放大系数
当晶体管接成发射极电路时,
直流电流放大系数
___
IC
14.3.2 伏安特性
特点:非线性
I
反向击穿 电压U(BR)
反向电流 在一定电压 范围内保持 常数。
P– + N 反向特性
外加电压大于反向击 穿电压二极管被击穿, 失去单向导电性。
正向特性
P+ – N
导通压降
硅0.6~0.8V 锗0.2~0.3V
U
死区电压
硅管0.5V, 锗管0.1V。
外加电压大于死区 电压二极管才能导通。
文件名
尽信书,则不如无书
自由电子 本征半导体的导电机理
价电子在获得一定能量
(温度升高或受光照)后,
Si
Si
即可挣脱原子核的束缚, 成为自由电子(带负电),
同时共价键中留下一个空
Si
空穴
Si
价电子
位,称为空穴(带正电)。 这一现象称为本征激发。
温度愈高,晶体中产 生的自由电子便愈多。
在外电场的作用下,空穴吸引相邻原子的价电子
少子的漂移运动
动越强,而漂移使空间 电荷区变薄。
P 型半导体
内电场 N 型半导体
------ + + + + + + ------ + + + + + + ------ + + + + + + 动画 - - - - - - + + + + + +
浓度差 多子的扩散运动
形成空间电荷区
扩散的结果使
空间电荷区变宽。
IC(mA) <0.001 0.70 1.50 2.30 3.10 3.95 IE(mA) <0.001 0.72 1.54 2.36 3.18 4.05
结论:
1)三电极电流关系 IE = IB + IC
2) IC IB , IC IE
3) IC IB
把基极电流的微小变化能够引起集电极电流较大变
发射极电流放大倍数
IB ICBO ICE
N
P EC
B
ICEICICBOIC
IBE IBICBOIB
RB IBE N
EB
E IE
I C I B ( 1)I CB O I B I CEO
若IB =0, 则 IC ICE0集-射极穿透电流, 温度ICEO
忽 IC略 E , O IC 有 IB(常用公式)
4. 二极管的反向电流受温度的影响,温度愈高反 向电流愈大。
14.4 稳压二极管
1. 符号
2. 伏安特性
I
_+
稳压管正常工作
时加反向电压
UZ
O
U
稳压管反向击穿
后,电流变化很大,
但其两端电压变化 很小,利用此特性,
UZ
IZ
IZ IZM
稳压管在电路中可 起稳压作用。
使用时要加限流电阻
3. 主要参数
化的特性称为晶体管的电流放大作用。
实质:用一个微小电流的变化去控制一个较大电流的
变化,是CCCS器件。
3.三极管内部载流子的运动规律
集电结反偏,
C
有少子形成的
反向电流ICBO。
ICBO ICE
N
基区空穴
B
向发射区的
P
扩散可忽略。
RB IBE
N
进入P 区的电 子少部分与基区
EB
E IE
的空穴复合,形
IC
mA
IB
+
A
RB
+
V UBE + 输– 入回–路
V UCE
+ EC
输出回路 –
–
EB 共发射极电路
发射极是输入回路、输出回路的公共端
1. 输入特性 IBf(UB)EUCE 常 数
特点:非线性
IB(A) 80 60 40
20 O 0.4
UCE1V
正常工作时发射结电压: NPN型硅管
UBE 0.6~0.7V PNP型锗管
动画 掺入三价元素 空穴 掺杂后空穴数目大量
增加,空穴导电成为这 种半导体的主要导电方 式,称为空穴半导体或 P型半导体。 在 P 型半导体中空穴是多 数载流子,自由电子是少数 载流子。
无论N型或P型半导体都是中性的,对外不显电性。
14.2 PN结
14.2.1 PN结的形成
内电场越强,漂移运
空间电荷区也称 PN 结
UBE 0.2 ~ 0.3V
0.8 UBE(V)
死区电压: 硅管0.5V, 锗管0.1V。
2. 输出特性 ICf(UCE )IB常 数
输出特性曲线通常分三个工作区:
IC(mA ) 4 3
2 放大区
1 O3 6 9
(1) 放大区
100A 80A
在放大区有 IC= IB , 也称为线性区,具有恒
60A 流特性。
(3)饱和区 当UCE UBE时,晶
体管工作于饱和状态。
在饱和区,IB IC, 发射结处于正向偏置,
集电结也处于正偏。
1 O3
20A IB=0
6 9 12 UCE(V)
截止区
深度饱和时,
硅管UCES 0.3V, 锗管UCES 0.1V。
1.5.3 特性曲线
即管子各电极电压与电流的关系曲线,是管子 内部载流子运动的外部表现,反映了晶体管的性能, 是分析放大电路的依据。 为什么要研究特性曲线:
40A
在放大区,发射结处
20A 于正向偏置、集电结处 IB=0 于反向偏置,晶体管工 12 UCE(V) 作于放大状态。
(2)截止区
IB < 0 以下区域为截止区,有 IC 0 。 在截止区发射结处于反向偏置,集电结处于反
向偏置,晶体管工作于截止状态。
IC(mA )
饱4 和 区3
2
100A
80A 60A 40A
当集—射极之间的电压UCE 超过一定的数值时, 三极管就会被击穿。手册上给出的数值是25C、 基极开路时的击穿电压U(BR) CEO。 6. 集电极最大允许耗散功耗PCM
14.5.1 基本结
构
NPN型
集电极
发射极
C NP N E
PNP型
集电极
发射极
PN P
C
E
基极
B
符号:
NPN型三极管
基极
B PNP型三极管
C IC B
C IC B
IB E
IE
IB E
IE
结构特点:
集电区: 面积最大
集电结 基极 B
集电极 C
N P N
基区:最薄, 掺杂浓度最低
发射结
E 发射极
发射区:掺 杂浓度最高
Si
Si
pS+i
Si
多
掺杂后自由电子数目
余 大量增加,自由电子导电
电 成为这种半导体的主要导
子 电方式,称为电子半导体
动画 或N型半导体。
失去一个 电子变为 正离子
磷原子
在N 型半导体中自由电子 是多数载流子,空穴是少数
载流子。
14.1.2 N型半导体和 P 型半导体
Si
Si
BS–i
Si
硼原子 接受一个 电子变为 负离子
P IF
内电场 N
外电场
+–
形成较大的 扩散电流。
PN 结加正向电压时,PN结变窄,正向电流较 大,正向电阻较小,PN结处于导通状态。
2. PN 结加反向电压(反向偏置)P接负、N接正
--- - -- + + + + + +
动画
--- - -- + + + + + +
--- - -- + + + + + +
14.5.3 特性曲线
即管子各电极电压与电流的关系曲线,是管子 内部载流子运动的外部表现,反映了晶体管的性能, 是分析放大电路的依据。 为什么要研究特性曲线:
1)直观地分析管子的工作状态 2)合理地选择偏置电路的参数,设计性能良好的 电路 重点讨论应用最广泛的共发射极接法的特性曲线
测量晶体管特性的实验线路
P
内电场 外电场
N
–+
2. PN 结加反向电压(反向偏置)P接负、N接正