最大气泡法测定溶液表面张力

合集下载

气泡最大压力法测定溶液的表面张力实验报告

气泡最大压力法测定溶液的表面张力实验报告

气泡最大压力法测定溶液的表面张力实验报告以气泡最大压力法测定溶液的表面张力实验报告摘要:本实验使用气泡最大压力法测定了不同浓度的溶液的表面张力,并通过实验结果分析了溶液浓度对表面张力的影响。

实验结果显示,溶液浓度增加会导致表面张力降低,这与理论预期相符。

通过本实验可以深入理解溶液表面张力的概念及其与溶液浓度的关系。

引言:表面张力是液体分子间相互作用力在液体表面上形成的一种现象,也是液体表面的一种性质。

溶液表面张力的测定对于研究溶液性质及其应用具有重要意义。

本实验采用气泡最大压力法测定溶液的表面张力,该方法简便易行且结果准确可靠。

实验原理:气泡最大压力法是一种测定液体表面张力的常用方法。

根据拉普拉斯方程,液体表面的压差与表面张力成反比。

在实验中,将一根细管浸入溶液中,通过控制管内气体的流速和压力,使气泡在液体表面形成并随后破裂。

通过测量破裂气泡的直径和压力,可以计算出液体的表面张力。

实验步骤:1. 准备工作:清洗实验仪器,准备好不同浓度的溶液。

2. 调整实验仪器:调整细管的位置和角度,使其与溶液表面平行,并确保气泡能够顺利形成和破裂。

3. 开始实验:通过控制气体流速和压力,使气泡在液体表面形成并破裂。

4. 测量数据:记录气泡破裂时的压力和直径,重复实验多次以提高数据的准确性。

5. 处理数据:根据实验数据计算出不同浓度溶液的表面张力,并绘制表面张力与浓度的关系曲线。

实验结果与分析:根据实验数据计算得到不同浓度溶液的表面张力,并绘制出表面张力与浓度的关系曲线。

实验结果显示,随着溶液浓度的增加,表面张力呈现下降的趋势。

这是因为溶质分子在液体表面上的存在会减弱液体分子间的相互作用力,从而导致表面张力降低。

这一结果与理论预期相符。

结论:本实验使用气泡最大压力法成功测定了不同浓度溶液的表面张力,并发现溶液浓度对表面张力有影响。

实验结果表明,溶液浓度增加会导致表面张力降低。

这一实验结果对于深入理解溶液表面张力的概念及其与溶液浓度的关系具有重要意义。

实验十六最大气泡法测定溶液的表面张力

实验十六最大气泡法测定溶液的表面张力

实验十六最大气泡法液体表面张力的测定Ⅰ、实验目的1.熟悉表面张力仪的构造和使用方法。

2.学会测定乙醇在室温时的表面张力。

Ⅱ、实验原理将一根毛细管插在待测液的表面,如图1,用抽气法逐渐减小毛细管外液面的压力,由于压力差的存在,在毛细管端会形成气泡。

此时附加压力(△P)与表面张力(σ)成正比,与气泡的曲率半径(R)成反比。

△P=2σ/R (1)当气泡开始形成时,曲率半径很大,随着气泡的形成R减少,当曲率半径R与毛细管半径r2相等时,曲率半径为最小值,△P为最大值。

随着R又不断变大,附加压力变小,直到气泡逸出。

测定时,△P可以从酒精压力计中两液面的高度差求得:△P=ρ〃g〃△h (2)式中ρ—酒精密度,g—重力加速度,△h—液面高度差。

由(1)(2)式得ρ〃g〃△h =2σ/R (3)(R调节等于r)当R= r时(r为毛细管半径)时,△P为最大值,即ρ〃g〃△h =2σ/r σ= r/2ρ〃g〃△hm将r/2ρ〃g合并为常数K,则上式变为:σ= K〃△hm (4)其中K(仪器常数为定值)可以用已知表面张力的标准物质水测得。

再用同一套仪器(K不变)测出待测液无水乙醇的σ乙醇。

Ⅲ、实验仪器与试剂液体表面张力测定仪一套(如图2装置),移液管,洗耳球,刻度尺,量筒,蒸馏水,无水乙醇(分析纯)。

Ⅳ、实验步骤一、仪器常数K的测定1.打开滴定液漏斗顶端的塞子,将水装到漏斗带支管处(不要堵住支管);2.在支管试管内加入蒸馏水,使毛细管端面正好与水面相切;3.慢慢打开滴液漏斗活塞抽气,使气泡从毛细管口逸出速度控制在每分钟20个左右,读出压力差计两液面的最大高度差。

重复两次,求K。

二、乙醇表面张力的测定1.用铬酸洗液洗净支管和毛细管,再用蒸馏水滴洗一次和待测液淌洗一次;2.按一中123同样步骤测定乙醇的。

Ⅳ、数据记录与处理室温T= ℃,σ水= N•m-1乙醇表面张力理论值为:计算相对误差:Ⅴ、思考题:1.在测量中,如果抽气速度过快,对测量结果有何影响?2.如果毛细管末端插入到溶液内部进行测量行吗?为什么?3.本实验中为什么要读取最大压力差?4.表面张力仪的清洁与否和温度的不恒定对测量数据有何影响?Ⅵ、参考资料1.《物理化学实验》第三版,复旦大学等编,P131—135。

最大气泡发测定溶液表面张力

最大气泡发测定溶液表面张力

最大气泡发测定溶液表面张力实验名称:最大气泡法测定溶液表面张力实验目的:1. 学习和掌握气泡法测定液面张力的实验原理和方法;2. 了解表面张力相关概念和公式;3. 掌握实验数据处理和分析方法。

实验原理:表面张力是液体表面所受到的分子间的一种力,它使液面趋于最小面积的状态。

根据杨氏定律,液体表面张力F的大小可表示为:F = γL其中γ为表面张力系数,L为液体表面的周长。

最大气泡法测定溶液表面张力,是将一根玻璃管塞在一溶液中,管口抬离液面后,通过吹气法在玻璃管内形成一个气泡,并逐渐加大压力,当气泡从玻璃管中抬出时,管口压力减小至最小值,并变为固定值。

此时气泡直径、管口边缘长度等数据均可用来计算出溶液的表面张力。

实验步骤:1.准备一根内径约为0.7~1mm的直玻璃管,两端均作过热处理并制成吸管型。

吸管要求口径尽量小,以便形成小的气泡。

2.用去离子水清洗玻璃管,再用酒精涂洗干净。

3.实验表面张力:(1)加入一定量的去离子水到三个试管中,分别加入0.1~0.3mL的酒精、苯、正丁醇。

(2)用吸球吸取被测溶液,直到牢固地充满了玻璃管,放在液面上,使液面把玻璃管口罩住,然后用手握住吸球以上提管子,使玻璃管口稍稍浮起,吸球松开,保证玻璃管内无气泡,玻璃管内液面刚好在液面之上。

(3)在玻璃管外侧,用一长管膜压力,直到液面在玻璃管上方,形成一气泡。

此时,按膜的位置调整气泡直径和液面周长的比值为0.9左右,再用一根呈45度角的玻璃管口吹气,增加气泡直径,同时测量管口长度、气泡直径和液面间的高度差,记录数据。

(4)重复2-3步骤不少于三次,取平均值,计算表面张力。

数据计算:1. 气泡直径d的平均值2. 玻璃管口边缘长度l的平均值3. 液面间高度差h的平均值4. 比值P = l/d5. 表面张力系数γ = πdP(ρgh+2ηv/d)/2实验结果:被测液体 | 气泡直径d/mm | 玻璃管口边长l/mm | 液面间高度差h/mm | P | γ/mN·m-1:---:|:---:|:---:|:---:|:---:|:---:去离子水 | 3.51 | 14.05 | 161.8 | 3.2 | 72.11酒精 | 2.12 | 8.73 | 116.5 | 4.11 | 21.44苯 | 2.40 | 9.57 | 197.6 | 4.0 | 34.74正丁醇 | 2.82 | 11.38 | 168.5 | 4.03 | 23.21结论:根据实验结果,不同液体的表面张力不同。

最大气泡压力法测定溶液表面张力

最大气泡压力法测定溶液表面张力

物理化学实验最大气泡压力法测定溶液表面张力C210 2010-04-12T=286.15K P=85.02kPa一、实验目的1.掌握最大气泡法测定溶液表面张力的原理和方法2.测水溶液的表面张力并计算定不同浓度正丁醇计算吸附量3.加深对表面张力、表面自由能、表面张力和吸附量关系的理解二、实验原理处于溶液表面的分子,受到不平衡的分子间力的作用而具有表面张力s.气泡最大压力法测定表面张力装置见实物;实验中通过滴水瓶滴水抽气使得体系压力下降,大气压与体系压力差△p逐渐把毛细管中的液面压至管口,形成气泡。

如果毛细管半径很小,则形成的气泡基本上是球形的;当气泡开始形成时,表面几乎是平的,这时曲率半径最大;随着气泡的形成,曲率半径逐渐变小,直到形成半球形,这时曲率半径R和毛细管半径r相等,曲率半径达最小值,根据拉普拉斯公式得:附加压力达最大值ΔP max =σ/r min。

气泡进一步长大,R变大,附加压力则变小,直到气泡逸出。

加入表面活性物质时溶液的表面张力会下降,溶质在表面的浓度大于其在本体的浓度,此现象称为表面吸附现象;单位溶液表面积上溶质的过剩量称为表面吸附量Γ, Γ=-(c/RT)*( dσ/dc).对可形成单分子层吸附的表面活性物质,溶液的表面吸附量Γ与溶液本体浓度c之间的关系符合朗格谬尔吸附等温式: Γ=Γ∞*kc/1+kc朗格谬尔吸附等温式的线性形式为: c/Γ=c/Γ∞+1/kΓ∞Γ∞为饱和吸附时,单位溶液表面积上吸附的溶质的物质的量,则每个溶质分子在溶液表面上的吸附截面积为:A m=1/(N A*Γ∞)三、仪器与试剂恒温槽装置;数字式微压差计;抽气瓶l个;表面张力测定仪烧杯(1000mL);T形管1个;电导水;正丁醇(A.R.)及其不同浓度的标准溶液;四、实验步骤1.仪器常数的测定将表面张力测定仪清洗干净;在干净的表面张力测定仪中装入电导水,使毛细管上端塞子塞紧时,毛细管刚好与液面垂直相切;抽气瓶装满水,连接好后旋开下端活塞使水缓慢滴出;控制流速使气泡从毛细管平稳脱出(每个气泡4-6秒),记录气泡脱出瞬间数字微压差计的最大数值,取三次并求平均值。

最大泡压法测定溶液的表面张力

最大泡压法测定溶液的表面张力

数据处理
根据溶液温度查表可知水的表面张力。
根据公式
,可得各溶液的
表面张力。
p 曲线上取两个点 (C=0.05和0.20处),分别作出切线并求 相应的斜率,求出这两个点的吸附量。
根据方程(14-2)求算各浓度的吸附量,并 作出(c/ Γ)-c图,由直线斜率求其Γ ∞,并 计算横面积S0值。
仪器与试剂
实验装置见图1。 毛细管要求出泡均匀,最好在纯水中测量
hmax达14cm左右,不可内径太粗, 否则误差大,毛细管头部必须平整光滑, 不沾油污,以免出泡不均匀。 正丁醇(分析纯)。
实验步骤
仪器常数的测定
洗净试管,用蒸馏水淌洗后,再加蒸馏水,调节毛细 管高度,使毛细管刚接触液面,如图14-3接好仪器(不 能漏气)。试管安装在恒温槽中。
吴肇亮,蔺五正,杨国华等.物理化学实验[M], 北京,石油大学出版社 ,1993.
Hugh W. Salzberg et. al., Physical Chemistry Laboratory: Principles and Macmillan Publishing Co.,INC.(New York).1978.
思考问题
最大泡压法测定表面张力时为什么要测定仪器常数? 用最大泡压法测定易发泡液体的表面张力时应注意
哪些问题? 有些物质(如十二烷基硫酸钠)用最大泡压法测定
其溶液的表面张力往往和用其它方法(如滴重法) 测量结果相差较大,试简单分析其原因。
参考文献
李江中,罗志刚,通用化学实验技术[M], 广州,: 华南理工大学出版社,1997.
在σ—c曲线上任意选一点i做切线,即可 得该点所对应浓度ci的斜率(d/dci)T代 入(14-2)式,可求出不同浓度时的吸附 量Γ。

溶液表面张力的测定——最大气泡压力法

溶液表面张力的测定——最大气泡压力法

实验七 溶液表面张力的测定——最大气泡压力法一. 实验目的1. 用最大气泡法测定不同浓度乙醇溶液的表面张力。

2. 了解表面张力的性质, 表面自由能的意义以及表面张力和吸附的关系。

3. 学会镜面法作切线的方法。

二. 实验原理用本法测定[乙醇, 水]溶液的数据对[σ, c], 作图将c-σ曲线在不同浓度的斜率 T 代入吉布斯等温吸附式:Γ=﹣c RT c σ∂⎛⎫ ⎪∂⎝⎭T 求出相应的吉布斯吸附量Γ;按朗格茂尔等温吸附变形公式:c 1c α∞∞=+ΓΓΓ C/Γc-C 直线斜率tg β求出饱和吸附量 , 进而得出乙醇分子横切面积S 和分子长度 , 结合直线截距得出吸附系数α:∞Γ=(tg β)-1以上个式中, c 为浓度;T 为绝对温度(K );σ为表面张力;Γ为吉布斯吸附量;M 为溶质摩尔质量;ρ为溶质密度;S 为分子截面积;δ为分子长;α为吸附系数;NA 为阿伏伽德罗数(6.02×1023/mol );R 为气体常数。

为了求以上参数, 关键是测σ。

表面张力及界面张力, 矢量。

源于凝聚相界面分子受力不平衡, 意为表面的单位长度收缩力。

σ也是在个条件下凝聚系表面相得热力学强度性质, 如果恒温、恒压下扩大单位表面积所需的可逆功, 故亦称为表面自由焓。

1. σ与凝聚相和表面共存接触相种类有关, 还与T,P 有关, 与凝聚相纯度和杂志种类有关。

浓度升高, 溶液的σ有增有减, 随溶质、溶剂而异, 表面活性剂是两亲分子, 他们的水溶液σ随浓度升高先剧降, 后微升, 在渐趋稳定。

σ随c 而变化的本质是溶液表面浓度对体相浓度的偏离, 此现象称为表面吸附。

表面吸附量Γ与浓度有关, 用吉布斯等温方程求出 为σ-c 曲线在指定浓度的斜率。

<0, Γ>0为正吸附, 表面浓度较体浓度高, 达饱和吸附时, Γ趋于饱和吸附量 , 此时两亲分子在溶液表面处于高度有序的竖立密集, 形成单分子膜。

,2. 若将兰格缪尔等温吸附式中的吸附量赋予吉布斯吸附量的特定意义, 则可从其变形式求出 设分子吸附层厚δ, δ即两亲分子长。

(情绪管理)最大气泡压力法测定溶液的表面张力最全版

(情绪管理)最大气泡压力法测定溶液的表面张力最全版

(情绪管理)最大气泡压力法测定溶液的表面张力最大气泡压力法测定溶液的表面张力壹、实验目的1.掌握最大气泡压力法测定表面张力的原理和技术。

2.通过对不同浓度乙醇溶液表面张力的测定,加深对表面张力、表面自由能、表面张力和吸附量关系的理解。

二、基本原理在壹个液体的内部,任何分子周围的吸引力是平衡的。

可是在液体表面表面层中,每个分子都受到垂直于且指向液体内部的不平衡力。

所以说分子在表面层比在液体内部有较大的位能,这位能就是表面自由能,通常把增大壹平方米表面所需的最大功A或增大壹平方米所引起的表面自由能的变化△G,称为单位表面的表面能,其单位为J·m-1;而把液体限制其表面及力图使它收缩的单位直线长度上所作用的力,称为表面张力,其单位是N·m-1。

如欲使液体表面面积增加ΔS时,所消耗的可逆功A应该是:壹A=ΔG=σΔS(1)液体的表面张力和温度有关,温度愈高,表面张力愈小。

根据能量最低原则,若溶质能降低溶剂的表面张力,则表面层中溶质的浓度应比溶液内部的浓度大,如果所加溶质能使溶剂的表面张力升高,那么溶质在表面层中的浓度应比溶液内部的浓度低。

这种表面浓度和溶液内部浓度不同的现象叫做溶液的表面吸附。

在壹定的温度和压力下,溶液表面吸附溶质的量和溶液的表面张力和加入的溶质量(即溶液的浓度)有关,它们之间的关系可用吉布斯(Gibbs)公式表示:Γ=-()T(2)式中:Γ为吸附量(mol·m-1);σ为表面张力(J·m-1);T为绝对温度(K);c为溶液浓度(mol.L -1);R为气体常数(8.314J.K—I·mol-1)。

()T表示在壹定温度下表面张力随溶液浓度而改变的变化率。

如果σ随浓度的增加而减小,也即()T<0,则Γ>0,此时溶液表面层的浓度大于溶液内部的浓度,称为正吸附作用。

如果σ随浓度的增加而增加即()T>0,则Γ<0,此时溶液表面层的浓度小于溶液本身的浓度,称为负吸附作用。

最大气泡法测表面张力实验报告

最大气泡法测表面张力实验报告

最大气泡法测表面张力实验报告一、实验目的1、掌握最大气泡法测定表面张力的原理和方法。

2、学会使用数字微压差测量仪测量微小压力差。

3、测定不同浓度正丁醇水溶液的表面张力,计算表面吸附量和表面活性剂分子的横截面积。

二、实验原理1、表面张力在液体的内部,任何分子周围的吸引力是平衡的。

然而,在液体表面,分子受到指向液体内部的合力,导致液体表面有自动收缩的趋势。

要使液体表面增大就必须要克服这种向内的合力而做功,所做的功转化为表面能储存在液体表面。

在温度、压力和组成恒定时,表面张力与表面积的增量成正比,比例系数即为表面张力。

2、最大气泡法将毛细管垂直插入液体中,液体表面张力会对毛细管中的气泡产生附加压力。

当气泡从毛细管下端缓慢逸出时,所受到的压力差最大。

根据拉普拉斯方程,附加压力与表面张力及气泡曲率半径之间的关系为:\(\Delta p =\frac{2\gamma}{r}\)其中,\(\Delta p\)为附加压力,\(\gamma\)为表面张力,\(r\)为气泡的曲率半径。

当气泡为半球形时,曲率半径\(r\)等于毛细管半径\(r_{毛}\),此时附加压力最大。

通过数字微压差测量仪测量出最大附加压力\(\Delta p_{max}\),即可求得表面张力\(\gamma\)。

3、表面吸附量和横截面积根据吉布斯吸附等温式:\(\Gamma =\frac{c}{RT}\frac{d\gamma}{dc}\)其中,\(\Gamma\)为表面吸附量,\(c\)为溶液浓度,\(R\)为气体常数,\(T\)为热力学温度。

通过测定不同浓度溶液的表面张力,以\(\gamma\)对\(c\)作图,求得曲线某一点的斜率\(\frac{d\gamma}{dc}\),即可计算出表面吸附量\(\Gamma\)。

假设表面活性剂在溶液表面是紧密排列的单分子层,每个分子的横截面积为\(A\),则:\(A =\frac{1}{L\Gamma}\)其中,\(L\)为阿伏伽德罗常数。

物理化学实验- 最大气泡法测定溶液的表面张力

物理化学实验- 最大气泡法测定溶液的表面张力

g
表面分子:受到向内拉力,液体有自
动收缩表面而呈球形的趋势.
l
如果把一个分子由内部迁移到表面,就需要对抗拉力 而做功。在温度、压力和组成都恒定时,可逆地使表 面增加ΔS所需对体系做的功,叫表面功,可表示为:
-A=ΔG=σΔS
σ称为表面自由能,单位为J/m2。若把σ看作为作用在界 面上每单位长度边缘上的力,通常称为表面张力。
思考题
1.用最大气泡法测定表面张力时为什么要读最大压力差? •2.如果毛细管末端插入溶液中进行测量行吗?为什么? •3.本实验中为什么要读取最大压力差?

3. 调节恒温为25oC。
▪ 4.仪器常数测定
先以蒸馏水作为待测液测定其仪器常数。方法是将干燥的毛 细管垂直地插到使毛细管的端点刚好与水面相切,打开滴液 漏斗,控制滴液速度,使毛细管逸出的气泡,速度约为5s~ 10s1个。从精密数字压差计读取最大读数。可读三次,取其 平均值。通过手册 查出实验温度时水的表面张力,利用公
仪器与试剂
表面张力测定仪 一套 阿贝折射仪 一台 精密数字压差计 一台 烧杯 滴管 乙醇 去离子水
毛细管 支管试管
滴液漏斗
低真空测压 仪
实验步骤
1.安装仪器:洗净仪器并按图装置。对需干燥的仪器作 干燥处理。
2.配置乙醇溶液: 分别配制0%,20%, 40%, 60%, 80%,乙醇溶液各 50mL。
式K= / p1 求出仪器常数K。
▪ 5.待测样品表面张力的测定:用待测溶液洗净试管和毛 细管,加入适量样品于试管中,按照仪器常数测定的方法,
测定不同待测样品的p计算其表面张力。
▪ 6.乙醇溶液的折光率测定:用每个样品测出p后,随即
用滴管吸取该溶液滴置于棱镜上,用阿贝折光仪测其折光 率nD查工作曲线得各样品的准确浓度。

最大气泡法测定液体表面张力

最大气泡法测定液体表面张力

最大气泡法测定液体表面张力目的要求了解表面张力的性质,表面自由能的意义以及表面张力和吸附的关系掌握用最大泡压法测定表面张力的原理和技术测定不同浓度乙醇水溶液的表面张力,计算表面吸附量和乙醇分子的横截面积实验原理1.在指定的温度下,纯液体的表面张力是一定的,一旦在液体中加入溶质成溶液时情况就不同了,溶液的表面张力不仅与温度有关,而且也与溶质的种类,溶液浓度有关。

这是由于溶液中部分溶质分子进入到溶液表面,是表面层分子组成发生了改变,分子间引力起了变化,因此表面张力也随着改变,根据实验结果,加入溶质以后在表面张力发生改变的同时还发生溶液表面层的浓度与内部浓度有所差别,有些溶液表面层浓度大于溶液内部浓度,有些恰恰相反,这种现象称为溶液的表面吸附作用。

实验原理按吉布斯吸附等温式:c d 1 d 1 RT dc RT d ln c式中:Г-代表溶质在单位面积表面层中的吸附量molm-2C-代表平衡时溶液浓度molL-1R1-气体常数8.314Jmol-1K-1T-吸附时的温度K。

从1式可看出,在一定温度时,溶液表面吸附,与平衡时溶液浓度C和表面张力随浓度变化率成正比关系。

实验原理当c T <0时,Г>0表示溶液表面张力随浓度增加而降低,则溶液表面发生正吸附,此时溶液表面层浓度大于溶液内部浓度。

当c >0时,Г<0表示溶液表面张力随浓度增加而增T 加,则溶液表面发生负吸附,此时溶液表面层浓度小于溶液内部浓度。

我们把能产生显著正吸附的物质即能显著降级溶液表面张力的物质,称为表面活性物质。

本实验用表面活性物质乙醇配制成一系列不同浓度的水溶液,分别测定这些溶液的表面张力σ,然后以σ对lnC作图得一曲线,求曲线上某一点的斜率可计算相当于该点浓度时溶液的表面吸附量。

实验原理2.本实验测定各溶液的表面张力采用气泡最大压力法,此法原理是当毛细管与液面接触时,往毛细管内加压或在溶液体系减压则可以在液面的毛细管出口处形成气泡。

最大气泡压力法测定溶液表面张力

最大气泡压力法测定溶液表面张力

最大气泡压力法测定溶液表面张力一、前言表面张力是指液体表面处的分子间相互作用力,是液体表面能量和单位面积的量度。

在实际应用中,表面张力常常被用来描述液体与固体或气体之间的相互作用,如液滴形态、液滴与固体表面接触角等。

因此,测定溶液表面张力具有重要的理论和实际意义。

最大气泡压力法是一种常用的测定溶液表面张力的方法。

该方法基于气泡在液体中升降时所受到的阻力与气泡直径之间的关系,通过测量最大气泡升降速度和直径来计算溶液的表面张力。

二、实验步骤1. 实验仪器和试剂准备(1)实验仪器:最大气泡压力法测定仪、电子天平、恒温水槽。

(2)试剂:去离子水、丙酮、十二烷基硫酸钠(SDS)、甘油。

2. 样品制备将待测样品加入到清洁干燥的容器中,并在恒温水槽中调节至所需温度。

3. 测定最大气泡压力(1)在样品表面加入一定量的SDS和甘油,使得液面平整且不出现颗粒状物质。

(2)将测定仪的玻璃管插入到样品中,并通过注射器向玻璃管中注入空气,形成一个气泡。

(3)调节测定仪的升降速度,当气泡升至一定高度时停止升降,记录此时的气泡直径和压力。

(4)逐步增加气泡压力并记录相应的气泡直径和压力值,直至气泡破裂或者脱离液面为止。

4. 计算表面张力根据测得的最大气泡直径和压力值,可以通过下列公式计算溶液表面张力:γ = (4σ/3r) (ΔP/P0)其中,γ为溶液表面张力;σ为水-空气界面张力常数;r为最大气泡半径;ΔP为最大气泡压差;P0为大气压强。

5. 数据处理对于同一样品,在不同温度下进行多次测量,并取平均值计算出表面张力。

三、实验注意事项1. 实验前要仔细清洗测定仪和玻璃管,避免杂质对实验结果的影响。

2. 在加入SDS和甘油时要注意控制添加量,避免过量引起液面不平整。

3. 测定时要保持恒温,避免温度变化对实验结果的影响。

4. 测定时要保持气泡升降速度稳定,并逐步增加气泡压力,避免气泡破裂或脱离液面。

5. 测定同一样品时要进行多次测量,并取平均值计算表面张力,提高实验结果的准确性。

溶液表面张力的测定-最大气泡法

溶液表面张力的测定-最大气泡法
溶液表面张力的测定
-最大气泡法
化学实验教学中心
一、实验目的
1、用最大气泡法测定不同浓度正丁醇溶 液的表面张力 2、了解溶液表面吸附规律,利用吉布斯 公式计算不同浓度下正丁醇溶液的吸附量
3、掌握最大气泡压力法测定表面张力的 原理和技术
二、实验原理
(1)溶液的界面吸附 纯液体和其蒸气组成的体系
体相分子:自由移动不消耗功 g
3、测定毛细管常数k
首先要选定气压计的零点
kPa
开关键 以大气压为零点 打开活塞2
四、实验步骤
3、测定毛细管常数k
将蒸馏水装于毛细管中,使毛细管的端面与液 面相切,打开活塞1,使水缓慢滴下而降低系统 的压力,气泡均匀逸出(每分钟4-6个气泡), 读取气压计的指数(记录三个数据)
4、测定不同浓度的正丁醇的表面张力
G

G

Kc 1 Kc
即: c c 1 Γ Γ kΓ
饱和吸附量
k为常数,c为吸附平衡时溶液本体的浓度
以 Gc对c作图,由斜率求 Γ 从而,可求正丁醇分子截面积
q 1 NAΓ
三、仪器装置
毛 细 管
导管
通大气 活塞2 气压计
活塞3
恒温 水
怎么调节呢?
恒温 水
待 测 液
液面与毛细管的端面相切
表面分子:
液体有自动收缩表面
l
而呈球形的趋势
G
A T , p,nB
(J m2 )
比表面自由能 即:表面张力
二、实验原理
溶液: 体系可调节溶质在表面相的浓度来 降低表面自由能
表面吸附:表面层与体相浓度不相同的现象
恒温下的Gibbs吸附方程:
Γ a d

溶液表面张力的测定——最大气泡法

溶液表面张力的测定——最大气泡法

溶液表面张力的测定——最大气泡法
仪器与药品
计算机及接口;LZ-P2微压(压差)计;表面张力仪(自制)一套;900ml、500 ml烧杯各一个;100 ml容量瓶5个;50 ml、25 ml移液管各一支;滴管一支;吸耳球;洗瓶;
0.4 mol·dm-3正丁醇水溶液
实验操作步骤
1、配制溶液
用实验室已准备好的0.4mol·dm-3正丁醇水溶液分别稀释配制0.3、0.2、0.1、
0.05、0.025 mol·dm-3的正丁醇水溶液。

2、打开电源,检查仪器装置与药品。

读取水浴温度计的读数。

3
4、测定仪器常数。

用去离子水充分洗净大试管和毛细管,并往大试管中注入适
量去离子水,使毛细管端口与水面刚好垂直相切。

将大试管安装在水浴中,
给抽气瓶注满水,检查活塞,打开三通管与大气相连,稳定10~20
秒后,关闭与大气相连的三通管,打开抽气瓶的活塞,使瓶内的水漫漫滴出,观察微压压差计的读数和计算机数据采集界面采集数据的变化。

稳定后,记
录100
5、测定正丁醇水溶液的表面张力。

方法同4,分别测定0.4、0.3、0.2、0.1、
0.05、0.025mol·dm-3的正丁醇水溶液。

注意每次测量前应用待测溶液清洗
大试管和毛细管。

测定完毕后退出。

观察并读取水浴温度计的读数。

数据处理
度、正丁醇密度、水的表面张力,
件并打开,将光标移动到三通管与大气相连起始的10~20秒处,
E就会显示出来,
E就会在下表显示出
结果。

实验十最大气泡法测溶液的表面张力

实验十最大气泡法测溶液的表面张力

实验十 最大气泡法测溶液的表面张力一、目的和要求1.掌握一种测定表面张力的方法(最大气泡法)。

2.测定不同浓度下乙醇水溶液的表面张力。

二、原理物体表面层分子与内部分子,其周围的环境不同。

内部分子受四周邻近相同分子的作用力是对称的,各方向的力彼此抵消。

但是表面层的分子,则一方面受到本相内相同分子的作用,另一方面又受到性质不同的另一相中物质分子的作用。

因此表面层的性质也与内部不同。

如液体及其蒸气所成的体系;在气液界面上的分子受到指向液体内部的拉力,如果观察液气界面的一些现象,可以觉察到表面上处存在着一种张力,称之为表面张力,它是作用在液体表面的边界线上,垂直于边界线向着表面的内部,或者是作用在液体表面上任一条线的两侧,垂直于该线,沿着液面的平面向着两侧的拉力。

分子受力示意图由于表面张力的作用,在弯曲表面下的液体或气体,不仅承受环境的压力P ,还承受由于表面张力的作用而产生的附加压力△P ,如从浸入液面下的毛细管端鼓出空气泡时,就需要高于外部大气压的附加压力以克服气泡的表面张力,此附加压力与表面张力成正比,与气泡的曲率半径成反比,其关系为:ΔP=P 0-P=2式中:△P 一附加压力; 一表面张力;R——气泡曲率半径。

如果毛细管的半径很小,则形成的气泡基本上是球形的。

当气泡开始形成时,表面几乎是平的,这时曲率半径最大,随着气泡的形成,曲率半径逐渐变小,直到形成半球形,这时曲率半径R 与毛细管半径r 相等,曲率半径达图2毛细.管气泡的形成最小值,根据以上公式,这时附加压力达最大值,气泡进一步长大,R 变大,附加压力则变小,直到气泡逸出。

由此可知,当R=r 的最大附加压力为:02r 为毛细管半径; 为表面张力;△P 为附加压力。

用最大气泡法测定表面张力如图装置:A-抽气瓶;B-表面张力仪;C-玻璃管(下端为毛细管);M-DMP-2B 型数字式微压差测量仪;D-塑料杯;E-恒温槽;N-液滴漏斗图4 仪器装置图图3 气泡曲率半径与表面张力示意图1.毛细管2.支管试管.滴液漏斗4.酒精压力计5.恒温槽将欲测表面张力的液体装入支管试管2中,使毛细管3的端面与液面相切,(这时可忽略鼓泡所需克服的静压力),液面即沿毛细上升,打开漏斗3的活塞进行缓慢抽气,此时毛细管所受的压力大于液面所受的压力(与相切的液面)。

最大气泡法测定液体的表面张力

最大气泡法测定液体的表面张力

最大气泡法测定液体的表面张力(一)、实验目的1.掌握最大气泡法测定液体的表面张力的原理和方法。

2.熟悉表面张力的意义和性质,测定不同浓度液体的表面张力。

3.熟悉表面吸附的性质及与表面张力的关系。

(二)、实验原理溶剂中加入溶质后,溶剂的表面张力要发生变化,加入表面活性物质(能显著降低溶剂表面张力的物质)则它们在表面层的浓度要大于在溶液内部的浓度,加入非表面活性物质则它们在表面层的浓度比溶液内部低。

这种表面浓度与溶液内部浓度不同的现象叫溶液的吸附。

显然,在指定的温度压力下,溶质的吸附量与溶液的表面张力及溶液的浓度有关。

从热力学可知,它们之间的关系遵守吉布斯吸附等温方程:Tdc d RT c ⎪⎭⎫ ⎝⎛-=Γσ (7—1) 式中:Γ—为溶质在单位面积表面层中的吸附量(mol ·m -2); σ—为溶液的表面张力(N ·m -2);c —为溶液浓度(mol ·m -3);;R —气体常数,8.314J ·mol -1·K-1; T —为绝对温度(K )。

当)/(dc d σ< 0时,Γ > 0,即溶液的表面张力随着溶液浓度的增加而下降时,吸附量为正值,称为正吸附,反之,当)/(dc d σ> 0时,Γ< 0称为负吸附。

吉布斯吸附等温方程式应用范围很广,但上述形式只适用于稀溶液。

通过实验测得不同浓度溶液的表面张力1σ、2σ……即可求得吸附量Γ。

本实验采用最大气泡压力法测定正丁醇水溶液的表面张力值。

试验装置如图(7—1)所示。

图7—1 表面张力测定装置1—样品管 2—毛细管 3—压瓶4—精密数字压力计 5—大气平衡管 6—活塞图7—2 气泡曲率半径的变化规律将欲测表面张力的溶液装入样品管中,使毛细管的端口与液面相切,液体即沿毛细管上升,打开减压瓶3的活塞6,使里面的水慢慢的滴出,则系统内的压力慢慢减小,毛细管2液面上受到一个比样品管中液面上大的压力,此时毛细管内液面就会下降,直到在毛细管端面形成一个稳定的气泡。

最大气泡法测定溶液表面张力

最大气泡法测定溶液表面张力

返回
2020/6/1
物理化学实验
讨论:
①当 dγ
dc
<0时,Γ>0,即 c表>c体,正吸附
②当 dγ
dc
>0时,Γ<0,即 c表<c体,负吸附
③ 当 d γ 不变时,T↑→Γ↓,溶液表面吸附是一放热过程
dc
上一内容 下一内容 回主目录
返回
2020/6/1
物理化学实验
引起溶剂表面张力显著降低的物质叫表面活性物质, 被吸附的表面活性物质分子在界面层中的排列,决定于 它在液层中的浓度
(Δp=p大气-p系统)在毛细管端面上产 生的作用力稍大于毛细管口液体
的表面张力时,气泡就从毛细管口脱出。此附加压力与表面张力 成正比,与气泡的曲率半径成反比,其关系式为:
2 ps= R
(2) 式中, ps为附加压力; γ为表面张力;
R为气泡的曲率半径。
上一内容 下一内容 回主目录
返回
2020/6/1
物理化学实验
以上三种情况溶质在表面上的浓度与体相中的都不 相同,这种现象称为溶液表面吸附。根据能量最低原理, 溶质能降低溶剂的表面张力时,表面层中溶质的浓度比 溶液内部大;反之,溶质使溶剂的表面张力升高时,它 在表面层中的浓度比在内部的浓度低。
上一内容 下一内容 回主目录
返回
2020/6/1
物理化学实验
物理化学实验
如果毛细管半径很小,则形成的气泡基本上是球形的。当气泡 开始形成时,表面几乎是平的,这时曲率半径最大;随着气泡的形成,
曲率半径逐渐变小,直到形成半球形,这时曲率半径R和毛细管半径 r相等,曲率半径达最小值,根据(2)式这时附加压力达最大值。 根据(2)式,R=r时的最大附加压力为:
Δpmax

最大气泡法测定溶液的表面张力

最大气泡法测定溶液的表面张力

最大气泡法测定溶液的表面张力一、前言表面张力是指液体表面上的分子间相互作用力,它对于液体的物理性质和化学性质都有着重要的影响。

因此,测定液体的表面张力是研究其性质和应用的基础之一。

最大气泡法是一种常用的测定溶液表面张力的方法,本文将详细介绍最大气泡法测定溶液表面张力的原理、仪器设备、实验步骤以及注意事项等内容。

二、原理在液体中形成一个平衡状态下的气泡,需要克服两种力:一种是气泡内部压强产生的膨胀力;另一种是由于液体表面张力引起的收缩力。

当这两种力相等时,气泡停止膨胀并保持稳定状态。

因此,可以通过测量形成最大气泡所需压强来计算出溶液表面张力值。

三、仪器设备1. 水槽:用于放置容器和调节温度。

2. 水平支架:用于支撑容器。

3. 外壳:包裹水槽和容器。

4. 管道系统:用于通气和排放气体。

5. 气泡发生器:用于生成气泡。

6. 压力计:用于测量气泡内部压强。

四、实验步骤1. 准备工作:将水槽中的水加热到所需温度,将容器放在水槽中,并调整水平支架,使容器位于水平位置。

将外壳套在水槽上,并保证密封性。

连接好管道系统和气泡发生器,调整好通气量和排放量。

2. 测定最大气泡:将容器中的溶液注入到气泡发生器中,并在一定时间内形成一个稳定的最大气泡。

记录下形成最大气泡所需的压强值。

3. 重复实验:重复以上操作,测定多组数据并取均值。

4. 计算表面张力:根据以下公式计算表面张力:γ = (P - P0) * V / (2 * L)其中,γ为表面张力;P为最大气泡所需压强;P0为环境压强;V为最大气泡体积;L为环绕最大气泡的液体周长。

五、注意事项1. 实验过程中要保持环境稳定,避免外界干扰。

2. 测定前要确保仪器设备的清洁和无漏气现象。

3. 测量压强时要注意气泡内部压强和环境压强的差值,以避免误差。

4. 测定时要注意控制通气量和排放量,保证气泡的稳定性。

5. 温度对表面张力有较大影响,应在实验中进行温度控制。

六、总结最大气泡法是一种常用的测定溶液表面张力的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、绘制C/Г—C等温线,进行线性拟合,斜率
k=1/ Г∞,求出Г∞,并计算S。;
4、绘制Г—C关系图。
上一内容 下一内容 回主目录
返回
2020/5/1
物理化学实验
以上三种情况溶质在表面上的浓度与体相中的都不 相同,这种现象称为溶液表面吸附。根据能量最低原理, 溶质能降低溶剂的表面张力时,表面层中溶质的浓度比 溶液内部大;反之,溶质使溶剂的表面张力升高时,它 在表面层中的浓度比在内部的浓度低。
上一内容 下一内容 回主目录
返回
2020/5/1
物理化学实验
在指定的温度和压力下,溶质的吸附量与溶液的表面张 力及溶液的浓度之间的关系遵守吉布斯(Gibbs)吸附方程.
Γ=- c ( d ) RT dc
吸附量(Γ) ─ 单位面积的溶液表面上所含溶质的量超过同量溶剂
在溶液本体中所含溶质的量,量纲为: mol·m-2
γ为表面张力;C 为吸附达到平衡时溶质在介质中的浓度
物理化学实验
一 实验目的 (1) 测定不同浓度正丁醇溶液的表面张力,计算吸附量。 (2) 掌握最大气泡法测定溶液表面张力的原理和技术。 (3) 了解气液界面的吸附作用,计算表面层被吸附分子
的截面积
上一内容 下一内容 回主目录
返回
2020/5/1
物理化学实验
二.实验原理
从热力学观点来看,液体表面缩小是一 个自发过程,这是使体系总自由能减小的过 程,欲使液体产生新的表面ΔA,就需对其 做功,其大小应与ΔA成正比:
2
r
(3)
上一内容 下一内容 回主目录
返回
2020/5/1
物理化学实验
已知水在试验条件下的表面张力,测得Δpmax
Δpmax(H2O)= 2
r
(4) r= 2γ/ Δpmax
(5)
再测量正丁醇溶液的Δpmax, 利用上面两式可以得出: γ=[Δp/Δp(H2O)]* γ(H2O)
上一内容 下一内容 回主目录
如果毛细管半径很小,则形成的气泡基本上是球形的。当气泡 开始形成时,表面几乎是平的,这时曲率半径最大;随着气泡的形成,
曲率半径逐渐变小,直到形成半球形,这时曲率半径R和毛细管半径 r相等,曲率半径达最小值,根据(2)式这时附加压力达最大值。 根据(2)式,R=r时的最大附加压力为:
Δpmax
= Ps(max)=
返回
2020/5/1
物理化学实验
测定溶液的表面张力有多种方法,较为常用的有 最大气泡法和扭力天平法。本实验使用最大气泡法测 定溶液的表面张力,其测量方法基本原理图如下
上一内容 下一内容 回主目录
返回
2020/5/1
物理化学实验
将待测表面张力的液体装于表面张力仪中,使毛细管的端面 与液面相切,液面即沿毛细管上升,打开漏斗的活塞缓缓抽气, 毛细管内液面上受到一个比A瓶中液面上大的压力,当此压力差
δ wr = γ dA (1)
上一内容 下一内容 回主目录
返回
2020/5/1
物理化学实验
如果ΔA为1m2,则W′= γ是在恒温恒压下形成1m2
新表面所需的可逆功,所以γ称为比表面吉布斯自由能, 其单位为J·m-2。也可将γ看作为作用在界面上每单位长 度边缘上的力,称为表面张力,其单位是N·m-1。在定温 下纯液体的表面张力为定值,当加入溶质形成溶液时, 表面张力发生变化,其变化的大小决定于溶质的性质和 加入量的多少。
返回
2020/5/1
物理化学实验
四、实验步骤 ⑴ 配制0.5mol·dm-3正丁醇250mL,然后用该溶液
配制下列溶液各50mL:
c/ mol·dm-3
0.025 0.05 0.10 0.20 0.25 0.30
0.15
上一内容 下一内容 回主目录
返回
2020/5/1
物理化学实验
五 数据处理
1、记录数据
上一内容 下一内容 回主目录
返回
2020/5/1
物理化学实验
讨论:
①当
dγ dc
<0时,Γ>0,即 c表>c体,正吸附
②当
dγ dc
>0时,Γ<0,即 c表<c体,负吸附
③ 当 dγ 不变时,T↑→Γ↓,溶液表面吸附是一放热过程
dc
上一内容 下一内容 回主目录
返回
2020/5/1
物理化学实验
引起溶剂表面张力显著降低的物质叫表面活性物质, 被吸附的表面活性物质分子在界面层中的排列,决定于 它在液层中的浓度
c
ΔPmax
(mol·dm-3)
0.000
0.025
0.050
0.100
0.150
0.200
0.250
0.300
γ (N·m-1)
dγ/dc
上一内容 下一内容 回主目录
Γ
Γ
(mol·m-2)
返回
2020/5/1
物理化学实验
五 数据处理
2、根据上述计算结果,绘制γ—C 等温线,并拟合
成 y=a-a*bln(1+x/c) 的形式,得出b,c的值 ,从而出 dγ/dc ,计算Γ ;
(Δp=p大气-p系统)在毛细管端面上产 生的作用力稍大于毛细管口液体
的表面张力时,气泡就从毛细管口脱出。此附加压力与表面张力 成正比,与气泡的曲率半径成反比,其关系式为:
ps=
2
R
(2) 式中, ps为附加压力; γ为表面张力;
R为气泡的曲率半径。
上一内容 下一内容 回主目录
返回
2020/5/1
物理化学实验
上一内容 下一内容 回主目录
返回
2020/5/1
物理化学实验
上一内容 下一内容 回主目录
返回
2020/5/1
物理化学实验
根据朗格谬尔(Langmuir)公式:
1
C C
上式可以写为如下形式
C C 1
以C/Г对C作图,得一直线,该直线的斜率为1/Г∞。
由所求得的Г∞代入
S 1 N0
上一内容 下一内容 回主目录
返回
2020/5/1
物理化学实验
三、仪器与药品
恒温槽 DP—AW精密数字(微差压)压力计 带夹套的样品管 毛细管 滴液漏斗 250mL容量瓶 50mL容量瓶 移液管 烧杯 正丁醇
上一内容 下一内容 回主目录
一台 一台 一支 一支 一个 一个 七个 2mL、5mL和10mL各一支 100mL和500mL各一个 AR
上一内容 下一内容 回主目录
返回
2020/5/1
物理化学实验
水溶液表面张力与其组成的关系大致有三种情况: ①随溶质浓度增加表面张力略有升高; ②随溶质浓度增加表面张力降低,并在开始时降得快些; ③溶质浓度低时表面张力就急剧下降,于某一浓度后表
面张力几乎不再改变。
上一内容 下一内容 回主目录
返回
2020/5/1
相关文档
最新文档