最新fluent边界条件设置资料
fluent外流场边界条件设置
fluent外流场边界条件设置Fluent外流场边界条件设置在计算流体力学领域,Fluent是一个广泛使用的计算流体动力学(CFD)软件包,用于模拟和分析流体流动和传热问题。
在Fluent 中,边界条件的设置对于模拟结果的准确性和可靠性至关重要。
本文将重点介绍Fluent中外流场边界条件的设置。
1. 壁面边界条件壁面是流体流动中最常见的边界之一,它可以是实际物体的表面,也可以是虚拟的边界。
在Fluent中,壁面边界条件的设置直接影响着流动的速度和温度分布。
常见的壁面边界条件有:- 固定温度壁面:假设壁面具有固定的温度,适用于需要考虑热传导的问题,如热交换器。
- 固定热流壁面:假设壁面具有固定的热流,适用于需要考虑热辐射的问题,如太阳能集热器。
- 固定速度壁面:假设壁面具有固定的流体速度,适用于需要考虑流体动力学的问题,如风洞实验。
2. 入口边界条件入口边界条件是指流体流动进入计算区域的位置。
在Fluent中,入口边界条件的设置对于模拟结果的准确性和可靠性至关重要。
常见的入口边界条件有:- 固定速度入口:假设流体从入口进入计算区域时具有固定的速度,适用于需要考虑流体动力学的问题,如风洞实验。
- 固定压力入口:假设流体从入口进入计算区域时具有固定的压力,适用于需要考虑压力变化的问题,如管道流动。
- 固定质量流入口:假设流体从入口进入计算区域时具有固定的质量流率,适用于需要考虑质量守恒的问题,如喷气发动机。
3. 出口边界条件出口边界条件是指流体流动离开计算区域的位置。
在Fluent中,出口边界条件的设置对于模拟结果的准确性和可靠性至关重要。
常见的出口边界条件有:- 压力出口:假设流体从出口离开计算区域时具有固定的压力,适用于需要考虑压力变化的问题,如管道流动。
- 压力出流:假设流体从出口离开计算区域时具有与环境相等的压力,适用于需要考虑流体回流或循环的问题,如涡轮机。
- 非滑移壁面:假设流体从出口离开计算区域时与壁面无相对滑移,适用于需要考虑边界层效应的问题,如飞机机翼。
fluent自然对流边界设置
fluent自然对流边界设置自然对流边界是流体力学研究中的一个重要概念,它描述了流体在自由流动的情况下受到的外部约束。
在流体流动过程中,边界条件的设置对于模拟结果的准确性和可靠性起着关键作用。
而Fluent作为一种流体动力学仿真软件,可以有效地模拟和研究自然对流边界的行为。
在Fluent中,自然对流边界主要通过设置壁面的热传导和对流传热条件来实现。
热传导是指热量通过固体表面的直接传导而导致的热交换,而对流传热则是指热量通过流体的运动而导致的热交换。
在自然对流边界中,流体的自由流动会引起温度场的变化,并且会产生对流传热,从而影响流体的运动和热传导。
在设置自然对流边界时,需要注意以下几个方面。
首先,需要根据具体的流体流动情况选择适当的边界类型。
对于自然对流边界来说,通常会选择定温或定热流边界条件。
其次,需要根据实际情况设置边界的温度或热流量。
这一点非常关键,因为温度或热流量的设置会直接影响到流体的温度场和流动特性。
此外,还需要考虑到流体的物性参数,如密度、热导率和比热容等,以便更准确地描述流体的行为。
在Fluent中,可以通过设置边界条件来实现自然对流边界的模拟。
首先,需要选择相应的流动模型,如雷诺平均Navier-Stokes方程或湍流模型等。
然后,可以通过设置壁面的热传导和对流传热条件来模拟自然对流边界的行为。
在设置热传导条件时,可以根据实际情况选择固体的热导率和定温或定热流边界条件。
在设置对流传热条件时,可以选择合适的湍流模型和边界层参数,以描述流体的运动和热交换过程。
在模拟自然对流边界时,还需要注意一些常见的问题和挑战。
首先,由于自然对流边界涉及到流体的运动和热传导过程,因此需要考虑流体的不可压缩性和非定常性等因素。
其次,由于自然对流边界常常涉及到边界层和湍流等复杂现象,因此需要选择合适的湍流模型和边界层参数,以准确描述流体的行为。
此外,还需要注意模拟结果的收敛性和稳定性,以确保模拟结果的准确性和可靠性。
fluent边界条件设置教程
湍流强度 I 定义为相对于平均速度 u_avg 的脉动速度 u^'的均方根。
小于或等于 1%的湍流强度通常被认为低强度湍流,大于 10%被认为是高强度湍流。从 外界,测量数据的入口边界,你可以很好的估计湍流强度。例如:如果你模拟风洞试验,自 由流的湍流强度通常可以从风洞指标中得到。在现代低湍流风洞中自由流湍流强度通常低到 0.05%。.
确认改变之后,区域类型将会改变,名字也将自动改变 (如果初始名字时缺省的请参阅 边界条件区域名字一节),设定区域边界条件的面板也将自动打开。
!注意:这个方法不能用于改变周期性类型,因为该边界类型已经存在了附加限制。创 建边界条件一节解释了如何创建和分开周期性区域。需要注意的是,只能在图一中每一个类 别中改变边界类型(注意:双边区域表面是分离的不同单元区域.)
使用流动边界条件 下面对流动边界条件的使用作一概述 对于流动的出入口,FLUENT 提供了十种边界单元类型:速度入口、压力入口、质量 入口、压力出口、压力远场、质量出口,进风口,进气扇,出风口以及排气扇。 下面是 FLUENT 中的进出口边界条件选项: 速度入口边界条件用于定义流动入口边界的速度和标量 压力入口边界条件用来定义流动入口边界的总压和其它标量。 质量流动入口边界条件用于可压流规定入口的质量流速。在不可压流中不必指定入口的 质量流,因为当密度是常数时,速度入口边界条件就确定了质量流条件。 压力出口边界条件用于定义流动出口的静压(在回流中还包括其它的标量)。当出现回 流时,使用压力出口边界条件来代替质量出口条件常常有更好的收敛速度。 压力远场条件用于模拟无穷远处的自由可压流动,该流动的自由流马赫数以及静态条件 已经指定了。这一边界类型只用于可压流。 质量出口边界条件用于在解决流动问题之前,所模拟的流动出口的流速和压力的详细情 况还未知的情况。在流动出口是完全发展的时候这一条件是适合的,这是因为质量出口 边界条件假定出了压力之外的所有流动变量正法向梯度为零。对于可压流计算,这一条 件是不适合的。 进风口边界条件用于模拟具有指定的损失系数,流动方向以及周围(入口)环境总压和 总温的进风口。 进气扇边界条件用于模拟外部进气扇,它具有指定的压力跳跃,流动方向以及周围(进 口)总压和总温。 通风口边界条件用于模拟通风口,它具有指定的损失系数以及周围环境(排放处)的静 压和静温。 排气扇边界条件用于模拟外部排气扇,它具有指定的压力跳跃以及周围环境(排放处) 的静压。
ansys fluent边界条件
ansys fluent边界条件一、边界条件是啥呢?在ANSYS Fluent这个神奇的世界里呀,边界条件就像是游戏规则一样重要呢。
它告诉这个软件,在我们所研究的这个模型的边界上,各种物理量是怎么个情况。
比如说,流体在边界上是怎么流进来的,速度是多少呀,压力是多大呀,就像你告诉一个小机器人,这个地方的东西得按照这样的规则来办事哦。
这就好比是给流体的活动设定了一个舞台的边界,告诉它在这个边界上你得这么表现,不能乱来哦。
二、常见的边界条件类型。
1. 速度入口边界条件。
这就像是给流体开了个专门的入口,还规定了它们进来的速度呢。
比如说,你可以告诉Fluent,在这个入口处,流体是以每秒5米的速度匀速进来的,就像一群小蚂蚁按照整齐的步伐进入一个小城堡一样。
这个速度入口边界条件在很多实际情况里都特别有用,像模拟水管里的水流进来的时候,你就得知道水进来的速度大概是多少,这样才能准确地算出后面的各种情况呀。
2. 压力入口边界条件。
这个呢,就是从压力的角度来设定边界啦。
你想啊,就像给气球打气一样,你通过控制打气筒的压力来决定气球里面空气的多少。
在Fluent里,你设定了压力入口边界条件,就相当于告诉软件这个入口处的压力是多少,然后软件就会根据这个压力去计算流体的流动情况。
比如说在一些涉及到气体流动的模拟中,像风洞实验的模拟,你就可能会用到这个压力入口边界条件。
3. 壁面边界条件。
壁面边界条件就像是给流体划了个界限,告诉它哪些地方是不能随便穿透的,就像一堵墙一样。
流体到了这个壁面,就只能乖乖地按照一定的规则来行事啦。
比如说,流体在壁面上可能会有速度为零的情况,就像小水珠碰到玻璃壁面,就只能停在那里,不能穿过玻璃。
而且呀,壁面的粗糙度之类的因素也会影响流体的流动,在Fluent里你也可以设定这些参数,就像给壁面穿上不同粗糙度的衣服,看看流体在不同情况下的表现呢。
三、边界条件设置的小窍门。
1. 参考实际情况。
在设置边界条件的时候呀,可不能瞎猜哦。
fluent边界条件设置教程
l 0.07L
其中 L 为管道的相关尺寸。因子 0.07 是基于完全发展湍流流动混合长度的最大值的,对于 非圆形截面的管道,你可以用水力学直径取代 L。
如果湍流的产生是由于管道中的障碍物等特征,你最好用该特征长度作为湍流长度 L 而不是用管道尺寸。
使用流动边界条件 下面对流动边界条件的使用作一概述 对于流动的出入口,FLUENT 提供了十种边界单元类型:速度入口、压力入口、质量 入口、压力出口、压力远场、质量出口,进风口,进气扇,出风口以及排气扇。 下面是 FLUENT 中的进出口边界条件选项: 速度入口边界条件用于定义流动入口边界的速度和标量 压力入口边界条件用来定义流动入口边界的总压和其它标量。 质量流动入口边界条件用于可压流规定入口的质量流速。在不可压流中不必指定入口的 质量流,因为当密度是常数时,速度入口边界条件就确定了质量流条件。 压力出口边界条件用于定义流动出口的静压(在回流中还包括其它的标量)。当出现回 流时,使用压力出口边界条件来代替质量出口条件常常有更好的收敛速度。 压力远场条件用于模拟无穷远处的自由可压流动,该流动的自由流马赫数以及静态条件 已经指定了。这一边界类型只用于可压流。 质量出口边界条件用于在解决流动问题之前,所模拟的流动出口的流速和压力的详细情 况还未知的情况。在流动出口是完全发展的时候这一条件是适合的,这是因为质量出口 边界条件假定出了压力之外的所有流动变量正法向梯度为零。对于可压流计算,这一条 件是不适合的。 进风口边界条件用于模拟具有指定的损失系数,流动方向以及周围(入口)环境总压和 总温的进风口。 进气扇边界条件用于模拟外部进气扇,它具有指定的压力跳跃,流动方向以及周围(进 口)总压和总温。 通风口边界条件用于模拟通风口,它具有指定的损失系数以及周围环境(排放处)的静 压和静温。 排气扇边界条件用于模拟外部排气扇,它具有指定的压力跳跃以及周围环境(排放处) 的静压。
Fluent 第7章 边界条件 ppt课件
2020/12/27
17
流场的入口和出口
对计算区域的流场入口和出口可以选择设置多 种边界条件。
一下列出流场入口和出口可以使用的边界条件:
常用边界条件
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
4
边界条件
边界条件的作用 设置边界条件
流场的入口和出口 壁面、重复周期边界条件 内部单元区域 内部单元边界
2020/12/27
5
边界条件的作用
out
边界条件
边界条件指引并限制流体运动。
边界条件是数学模型中必需的部分。
选择边界对应的几何体
默认值:面
选择边界的类型.
鼠标直接选取.
对定义好的边界可以再 操作 更改、删除.
2020/12/27
13
边界条件的定义——Specify Type
选择边界对应的几何体
默认值:体
选择边界的类型.
鼠标直接选取.
对定义好的边界可以再 操作
更改、删除.
2020/12/27
边界条件的具体内容和计算中采用的物理模型、 边界条件的类型密切相关.
必须仔细确定边界条件的参数
直接影响了求解过程所得到的结果.
2020/12/27
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
指定进入计算区域的通量:
质量 动量 能量
湍流中的K.E. 湍流中的耗散率 组分质量分数
fluent压力出口边界条件设置
fluent压力出口边界条件设置FLUENT是一种基于CFD(计算流体动力学)数值计算的软件,可以用来模拟各种物理场景,如流体流动、热传导、化学反应等。
在模拟流体流动时,FLUENT可以通过设置边界条件来模拟各种不同的情况,其中较为重要的一个条件就是压力出口边界条件。
本文将从步骤、作用以及注意事项等方面来详细介绍如何设置fluent压力出口边界条件。
1.概述压力出口边界条件是FLUENT中十分重要的一个边界条件,它是用来规定在流体通过边界时的压力变化。
设置正确的压力出口边界条件可以使得模拟结果更加准确,这对于各种流体流动问题的研究都具有重要意义。
2.步骤(1)首先打开FLUENT软件,选择要进行计算的模型(通常是一个几何体),打开模型,在界面的BCs(边界条件)标签中找到压力出口。
(2)在压力出口边界条件中,需要设置出口的压力值。
根据实际问题可以选择不同的类型,如静态压力、总压力或者平均压力等。
(3)在压力出口的另外一个设置中,需要设置出流方向,通常FLUENT 会根据模型的几何形状自动识别出出流的方向,可根据实际情况进行调整。
(4)设置完毕后,需要点击Calculate按钮,并选择解算参数,包括数量、误差、最大迭代次数等参数,通常根据实际需要进行设置即可。
(5)最后,点击Run按钮,开始计算。
计算时间根据模型规模不同,可能需要几分钟到几个小时不等。
3.注意事项在设置压力出口边界条件时,需要注意以下几点:(1)在实际计算中,需要确定出口的实际压力值,可以通过实地测量、经验公式或者其他软件计算来确定。
(2)需要根据实际问题选择合适的边界条件类型以及合适的出流方向来进行设置。
(3)在计算过程中,需要注意迭代次数、计算结果的收敛情况以及计算结果的稳定性等问题。
(4)需要注意FLUENT软件的版本和计算参数对于计算结果的影响。
以上就是关于FLUENT压力出口边界条件设置的详细介绍,可以仔细阅读并按照步骤进行设置。
fluent温度壁面边界条件
fluent温度壁面边界条件Fluent温度壁面边界条件一、引言在CFD(Computational Fluid Dynamics)计算中,壁面边界条件是非常重要的一部分,对于温度场的模拟和预测至关重要。
Fluent 作为一种流体力学仿真软件,提供了多种壁面边界条件选项,其中包括温度壁面边界条件。
本文将对Fluent温度壁面边界条件进行详细介绍和分析。
二、壁面边界条件的作用在CFD计算中,壁面边界条件用于模拟流体在实际壁面上的温度变化情况。
通过设定合适的壁面边界条件,可以准确地模拟和预测流体在实际壁面上的温度分布,从而为工程设计和优化提供重要的参考依据。
三、Fluent温度壁面边界条件的选项Fluent提供了多种温度壁面边界条件选项,包括:1. 温度固定壁面(Temperature):该选项适用于需要设定壁面固定温度的情况。
用户可以直接输入所需的壁面温度值,Fluent会将该温度值作为壁面的边界条件进行计算。
2. 热流量固定壁面(Heat Flux):该选项适用于需要设定壁面固定热流量的情况。
用户可以直接输入所需的壁面热流量值,Fluent会根据设定的热流量值计算壁面的温度分布。
3. 对流换热壁面(Convection):该选项适用于需要考虑对流换热的情况。
用户需要输入壁面的对流换热系数和环境温度,Fluent会根据这些参数计算壁面的温度分布。
4. 辐射换热壁面(Radiation):该选项适用于需要考虑辐射换热的情况。
用户需要输入壁面的辐射换热系数和环境温度,Fluent会根据这些参数计算壁面的温度分布。
5. 热通量与温度梯度壁面(Heat Flux and Temperature Gradient):该选项适用于需要同时考虑热通量和温度梯度的情况。
用户需要输入壁面的热通量和温度梯度值,Fluent会根据这些参数计算壁面的温度分布。
四、选取合适的温度壁面边界条件选取合适的温度壁面边界条件需要考虑多个因素,包括实际工程中的壁面热传导、对流换热和辐射换热等因素。
FLUENT边界条件设定
Wall Boundaries
速度:无滑移 切向速度和固壁面速度相等. 法向速度为零 可以定义壁面剪切力. 热边界: 几种不同的条件 包括定义壁面厚度. 定义运动的壁面.
Symmetry and Axis Boundaries
Symmetry Boundary 简化计算量. 不需任何参数. 计算域和几何形状必须对称:
质量、运动、能量等
定义为多空介质 定义旋转等周期性运动. 定义各种运动方式.
Porous Media
按照流体区域处理. 选择 Porous Zone 项. 给定压降参数
可以模拟多种物理现象 硫化床 过滤器 多孔平面
区域定义: Solid
只求解热平衡方程. 确定固体类型 可以定义内部的热源 也可定义各种形式的运动状态.
在Outflow面上所有参数梯度为零
近似于充分发展流
适用于 incompressible flows.
不能和 Pressure Inlet合用; 入口只能是 velocity inlet. 不能用来模拟密度随时间变化的问题.
当存在回流时,很难收敛
不能模拟最终结果存在回流的物理问题.
Pressure Inlet (1)
参数确定:
Total Gauge Pressure
驱使流体运动的能量.
Static Gauge Pressure
超音速流动时静压; 亚音速时忽略 从该边界初始化时有用
Total Temperature
Compressible flows:
利用 UDFs and Profiles可以
定义复杂的边界条件
FLUENT 12 边界条件设置
FLUENT 12 边界条件设置1 Pressure-Inlet(压力进口)> Momentum(动量)Reference Frame(参考系)Gauge Total Pressure(总压)Supersonic/Initial Gauge Pressure(静压)Direction Specification Method(进口流动方向指定方法,Normal to Boundary垂直边界)Turbulence > Specification Method(湍流指定方法,Intensity and Hydraulic Diameter)Turbulent Intensity(湍流强度,一般为1)Hydraulic Diameter(水力半径,一般为管内径)> Thermal(热量)Total Temperature(总温)> Species(组分)2 Velocity -Inlet(速度进口)> Momentum(动量)Velocity Specification Method(进口速度指定方法)Reference Frame(参考系)Velocity Magnitude(速度大小值)Outflow Gauge Pressure(出口表压)Direction Specification Method(进口流动方向指定方法,Normal to Boundary垂直边界)Turbulence > Specification Method(湍流指定方法,Intensity and Hydraulic Diameter)Turbulent Intensity(湍流强度,一般为1)Hydraulic Diameter(水力半径,一般为管内径)> Thermal(热量)Temperature(温度)> Species(组分)3 Mass-Flow -Inlet(质量进口)> Momentum(动量)Reference Frame(参考系)Mass Flow Specification Method(质量进口指定方法,Mass Flow Rate)Mass Flow Rate(质量流率)Supersonic/Initial Gauge Pressure(静压)Direction Specification Method(进口流动方向指定方法,Normal to Boundary垂直边界)Turbulence > Specification Method(湍流指定方法,Intensity and Hydraulic Diameter)Turbulent Intensity(湍流强度,一般为1)Hydraulic Diameter(水力半径,一般为管内径)> Thermal(热量)Total Temperature(总温)> Species(组分)4 Pressure -Outlet(压力出口)> Momentum(动量)Gauge Pressure(表压)Backflow Direction Specification Method(回流方向指定方法)Radial Equilibrium Pressure Distribution(径向平衡压力分布)Target Mass Flow Rate(目标质量流率)Non-Reflecting Boundary(非反射边界)Turbulence > Specification Method(湍流指定方法,点选Intensity and Hydraulic Diameter)Backflow Turbulent Intensity(回流湍流强度,一般为1)Backflow Hydraulic Diameter(回流水力半径,一般为管内径)> Thermal(热量)Backflow Total Temperature(回流总温)> Species(组分)5 Wall(壁面边界)> Thermal(热量,非绝热壁面)Thermal Condition(热条件,点选Temperature)Temperature(壁面温度)Wall Thickness(壁厚)Heat Generation Rate(产热率)Material Name(壁面材料)6 Pressure far field(压力远场)> Momentum(动量)Gauge Pressure(表压)Mach Number(马赫数)Coordinate System(坐标系统)X-component of Flow Direction(由攻角计算)Y-component of Flow Direction(由攻角计算)Z-component of Flow Direction(由攻角计算)Turbulence > Specification Method(湍流指定方法,Intensity and Hydraulic Diameter)Turbulent Intensity(湍流强度,一般为1)Hydraulic Diameter(水力半径,一般为管内径)> Thermal(热量)Temperature(温度)。
Fluent出入口边界条件设置及实例解析
静压是指气流在流动过程中实际存在的一种压强。它应该是压强感受器随气流一起运动时(即与气流无相对运动)所测出来的压 强。
1 流体在静止时所产生的压力。 2 流体在流动时产生的平行于流体运动方向的压力。 3流体中不受流速影响而测得的表压力值。
这些压力之间的关系:
p abs=p static+p ref绝对压力,是静压和参考压力之和 p atm=p gauge+p ref参考压力与表压之和为当地大气压(错误???) p abs=p gauge+p atm绝对压力=表压力+大气压力 p total=p static+p dynamic总压是静压与动压之和(二者可以互变) p dynamic=(ρ?v2)/2 在fluent中会出现这么几个压力: Staticpressure(静压)Dynamicpressure(动压)Totalpressure(总压)这几个压力是空气动力学的概念,它们之间的关系为: Totalpressure(总压)=Staticpressure(静压z)+Dynamicpressure(动压) 滞止压力等于总压(因为滞止压力就是速度为0时的压力,此时动压为0.) Staticpressure(静压)就是你测量的,比如你现在测量空气 压力是一个大气压
fluent教程 _边界条件
Overview
• 边界条件: – 边界条件决定流动. – 数学模型求解的需要. • 给定进入计算区域的流率或通量. – 如 mass, momentum, 和 energy • Fluid/Solid regions represented by cell zones. – Material and Source terms are assigned to cell zones. • Boundaries and internal surfaces are represented by face zones. – Boundary data are assigned to face zones.
outflow condition obeyed
outflow condition closely obeyed
0.8 0.7 0.6 0.5
Y
0.4 0.3 0.2 0.1 0
0
1
2
3
4
5
6
X
多出口边界条件数值模拟
• 应用Outflow边界条件的前提: – 默认设置,所有Outflow边界的质量流量
• 质量进口Mass flow inlet • 压力远场Pressure far-field
– 特别
• Inlet vent, outlet vent, intake fan, exhaust fan
– 不可压缩
• Velocity inlet • Outflow
• •
根据物理过程,选择合适的边界条件. 一般准则:
•
Exhaust Fan/Outlet Vent
– 如果出口有个压力抬升或损失,可以采用exhaust fan/outlet vent给定 出口压力抬升或损失系数,以及环境压力与温度。
fluent自定义速度边界条件
fluent自定义速度边界条件在fluent中,可以通过以下步骤自定义速度边界条件:1. 打开fluent软件,加载模型并创建求解器。
2. 在"Boundary Conditions"选项卡中,选择你想要自定义速度边界条件的边界面。
3. 在"Boundary Details"下拉菜单中选择该边界面的类型,如"wall"、"inlet"或"outlet"。
4. 在"Type"下拉菜单中选择"velocity-inlet",表示你要设置速度入口条件。
5. 在"Parameters"下拉菜单中选择"define->profiles",表示你要定义速度边界条件的剖面。
6. 在弹出的"Profile Definition"对话框中,选择一个适当的剖面类型,比如平均速度剖面或指定速度向量剖面。
7. 根据选择的剖面类型,输入相应的参数值,并点击"OK"确认。
8. 在"Boundary Details"中,可以调整其他参数,如边界面的名称、流体类型、速度方向等。
9. 根据需要,可以设置其他边界条件,并在"OK"按钮上点击确认以应用边界条件。
10. 在求解器中运行模拟,并查看结果以验证自定义的速度边界条件。
请注意,在进行此过程时,你需要对流体动力学和边界条件的基本概念和数学模型有一定的了解。
此外,根据模型和求解器的复杂程度,还可能需要进行进一步的设置和调整,以得到准确和可靠的模拟结果。
fluent边界条件设置
边界条件设置问题1、速度入口边界条件(velocity-inlet):给出进口速度及需要计算的所有标量值。
该边界条件适用于不可压缩流动问题。
Momentum 动量? thermal 温度 radiation 辐射 species 种类DPM DPM模型(可用于模拟颗粒轨迹) multipahse 多项流UDS(User define scalar 是使用fluent求解额外变量的方法)Velocity specification method 速度规范方法: magnitude,normal to boundary 速度大小,速度垂直于边界;magnitude and direction 大小和方向;components 速度组成?Reference frame 参考系:absolute绝对的;Relative to adjacent cell zone 相对于邻近的单元区Velocity magnitude 速度的大小Turbulence 湍流Specification method 规范方法k and epsilon K-E方程:1 Turbulent kinetic energy湍流动能;2 turbulent dissipation rate 湍流耗散率Intensity and length scale 强度和尺寸: 1湍流强度 2 湍流尺度=0.07L(L为水力半径)intensity and viscosity rate强度和粘度率:1湍流强度2湍流年度率intensity and hydraulic diameter强度与水力直径:1湍流强度;2水力直径2、压力入口边界条件(pressure-inlet):压力进口边界条件通常用于给出流体进口的压力和流动的其它标量参数,对计算可压和不可压问题都适合。
压力进口边界条件通常用于不知道进口流率或流动速度时候的流动,这类流动在工程中常见,如浮力驱动的流动问题。
FLUENT边界条件设定
在垂直于边界上不应该
存在很大的参数梯度.
导致不同的结果.
减小边界附近的网格
扭曲度.
导致计算早期误差过大.
1
2
基本的边界类型
外部面
一般: Pressure inlet, Pressure outlet 不可压: Velocity inlet, Outflow 可压: Mass flow inlet, Pressure far-field 特殊: Inlet vent, outlet vent, intake fan, exhaust fan 其它: Wall, Symmetry, Periodic, Axis
从Type中选择新的类型.
给定边界条件参数
在 BC panels中直接赋值.
给选定的边界设定:
从Zone菜单中选择边界. 点击Set按钮
利用Copy按钮可以复制边界条件.
边界条件的内容可以存盘,
也可以读入.
file write-bc and file read
分析流程
1. 来流条件
均匀性 非预混模型 考虑混合效果
Air
1
2
Combustor Wall
3
2. 喷嘴进口
非预混模型 参数要求高
3. 喷嘴出口
预混模型 参数要求高
1 Fuel
Nozzle Manifold box
基本原则
设定在流体的进、出口
可以有利于收敛.
多通道出口
可以利用 Pressure Outlet 和 Outflow boundaries. Pressure Outlets
(完整版)fluent边界条件设置
边界条件设置问题1、速度入口边界条件(velocity-inlet):给出进口速度及需要计算的所有标量值。
该边界条件适用于不可压缩流动问题。
Momentum 动量?thermal 温度radiation 辐射species 种类DPM DPM模型(可用于模拟颗粒轨迹)multipahse 多项流UDS(User define scalar 是使用fluent求解额外变量的方法)Velocity specification method 速度规范方法:magnitude,normal to boundary 速度大小,速度垂直于边界;magnitude and direction 大小和方向;components 速度组成?Reference frame 参考系:absolute绝对的;Relative to adjacent cell zone 相对于邻近的单元区Velocity magnitude 速度的大小Turbulence 湍流Specification method 规范方法k and epsilon K-E方程:1 Turbulent kinetic energy湍流动能;2 turbulent dissipation rate 湍流耗散率Intensity and length scale 强度和尺寸:1湍流强度 2 湍流尺度=0.07L(L为水力半径)intensity and viscosity rate强度和粘度率:1湍流强度2湍流年度率intensity and hydraulic diameter强度与水力直径:1湍流强度;2水力直径2、压力入口边界条件(pressure-inlet):压力进口边界条件通常用于给出流体进口的压力和流动的其它标量参数,对计算可压和不可压问题都适合。
压力进口边界条件通常用于不知道进口流率或流动速度时候的流动,这类流动在工程中常见,如浮力驱动的流动问题。
fluent 翼型边界条件设置
fluent 翼型边界条件设置
在 Fluent 中,设置翼型的边界条件涉及以下几个步骤:
1. 导入翼型的几何模型:在 Fluent 的“File”菜单中选择“Import”->“Geometry”,然后选择翼型的几何模型文件进行导入。
2. 定义边界条件:在 Fluent 的“Define”菜单中选择“Boundary Conditions”。
选择翼型表面上的边界,例如翼型的上表面和下表面,然后给它们分配适当的边界条件。
常见的翼型边界条件有:
- 装壁面:对于翼型的表面,可以选择“Wall”作为边界条件,并指定壁面的摩擦系数。
这样可以模拟气体在壁面处的粘性效应。
- 远场:对于翼型周围的远场区域,可以选择“Far Field”作为边界条件,并指定远场参数,例如空气的压力和速度。
- 入流:对于翼型前端(进气流动方向的一侧),可以选择“Inlet”作为边界条件,并指定入流的参数,例如入流速度、入流温度和入流湍流参数。
- 出流:对于翼型后端(气流流动方向的一侧),可以选择“Outlet”作为边界条件。
可以根据实际情况指定出流的压力、速度和湍流参数。
3. 设置求解器参数:在 Fluent 的“Solver”菜单中选择“Solver Settings”。
根据需要调整求解器的参数,例如迭代次数、收敛准则等。
4. 运行求解器:在 Fluent 的主界面上点击“Calculate”按钮,开始运行求解器进行计算。
通过以上步骤,可以在 Fluent 中设置翼型的边界条件,并进行流场计算和分析。
具体的设置方法还可以根据实际情况进行调整和优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
边界条件设置问题
1、速度入口边界条件(velocity-inlet):给出进口速度及需要计算的所有标量值。
该边界条件适用于不可压缩流动问题。
Momentum 动量?thermal 温度radiation 辐射species 种类
DPM DPM模型(可用于模拟颗粒轨迹)multipahse 多项流
UDS(User define scalar 是使用fluent求解额外变量的方法)
Velocity specification method 速度规范方法:magnitude,normal to boundary 速度大小,速度垂直于边界;magnitude and direction 大小和方向;components 速度组成?Reference frame 参考系:absolute绝对的;Relative to adjacent cell zone 相对于邻近的单元区
Velocity magnitude 速度的大小
Turbulence 湍流
Specification method 规范方法
k and epsilon K-E方程:1 Turbulent kinetic energy湍流动能;2 turbulent dissipation rate 湍流耗散率
Intensity and length scale 强度和尺寸:1湍流强度 2 湍流尺度=0.07L(L为水力半径)intensity and viscosity rate强度和粘度率:1湍流强度2湍流年度率
intensity and hydraulic diameter强度与水力直径:1湍流强度;2水力直径
2、压力入口边界条件(pressure-inlet):压力进口边界条件通常用于给出流体进口的压力和流动的其它标量参数,对计算可压和不可压问题都适合。
压力进口边界条件通常用于不知道进口流率或流动速度时候的流动,这类流动在工程中常见,如浮力驱动的流动问题。
压力进口条件还可以用于处理外部或者非受限流动的自由边界。
Gauge total pressure 总压supersonic/initial gauge pressure 超音速/初始表压constant常数
direction specification method 方向规范方法:1direction vector方向矢量;2 normal to boundary 垂直于边界
3、压力出口边界条件(pressure-outlet):需要给定出口静压(表压)。
而且,该压力只用于亚音速计算(M<1)。
如果局部变成超音速,则根据前面来流条件外推出口边界条件。
需要特别指出的是,这里的压力是相对于前面给定的工作压力。
Gauge pressure表压
backflow direction specification method 回流方向规范方法:1direction vector方向矢量;2 normal to boundary 垂直于边界;3 from neighboring cell 邻近单元
Radial equilibrium pressure distribution 径向平衡压力分布
Target mass flow rate 质量流量指向
4、质量入口边界条件(mass-flow-inlet):给定入口边界上的质量流量。
主要用于可压缩流动问题,对于不可压缩问题,由于密度是常数,可以使用速度入口条件。
如果压力边界条件和质量边界条件都适合流动时,优先选择用压力进口条件。
Mass flow specification method 质量流量规范方法:1 mass flow rate 质量流量;2 mass Flux 质量通量3mass flux with average mass flux 质量通量的平均通量
supersonic/initial gauge pressure 超音速/初始表压
direction specification method 方向规范方法:1direction vector方向矢量;2 normal to boundary 垂直于边界
Reference frame 参考系:absolute绝对的;Relative to adjacent cell zone 相对于邻近的单元区
5、压力远场边界条件(pressure-far-field): 如果知道来流的静压和马赫数,Fluent提供了的压力远场边界条件来模拟该类问题。
该边界条件只适合用理想气体定律计算密度的问题,而不能用于其它问题。
为了满足压力远场条件,需要把边界放到我们关心区域足够远的地方。
Mach number 马赫数x-component of flow direction X分量的流动方向
6、自由流出边界条件(outflow): 不知道流出口的压力或者速度,这时候可以选择流出边界条件。
Flow rate weighting 流量比重
7、固壁边界条件(wall):对于粘性流动问题,Fluent默认设置是壁面无滑移条件。
壁面热边界条件包括固定热通量、固定温度、对流
换热系数、外部辐射换热、外部辐射换热与对流换热等。
adjicent cell zone相邻的单元区
Wall motion 室壁运动:stationary wall 固定墙
Shear condition 剪切条件:no slip 无滑;specified shear 指定的剪切;specularity coefficients 镜面放射系数marangoni stress 马兰格尼压力?
Wall roughness 壁面粗糙度:roughness height 粗糙高度roughness constant粗糙常数Moving wall 移动墙壁
8、进口通风(Inlet Vent):给定入口损失系数(Loss-Cofficient),流动方向和进口环境总压、静压及总温。
Loss coeffcient 损耗系数1 constant 常数;2 piecewise-linear分段线性;3piecewise-polynomial 分段多项式;4 polynomial 多项式
Define 定义in terms of 在一下方面normal-velocity 正常速度coefficients系数
9、进口风扇(Intake Fan):给定压力阶跃(Pressure Jump),流动方向和环境总压和总温。
Pressure jump 压力跃1 constant 常数;2 piecewise-linear分段线性;3piecewise-polynomial 分段多项式;4 polynomial 多项式
10、出口通风(Outlet Vent):给定静压、回流条件、辐射系数、离散相边界条件、损失系数等。
用于模拟出口通风情况,需要给定损失系数、环境(出口)压力和温度。
11、排风扇(Exhaust Fan):用于模拟外部排风扇,给定一个压什和环境压力。
12、对称边界(Symmetry):用于流动及传热时对称的情形。
Translational 平移rotational 转动components 组成。