高中数学必修1课件:集合总复习
北师大版高中数学必修1第一章《集合复习课》课件
A. 2 C. 5
B. 3 D. 8
5.已知集合A {x | 2 x 2, x R}, B {x | x a}且A B, 则实数a的取值范围是 ________ .
5.已知集合A {x | 2 x 2, x R},
一、基本知识:
1. 空集、有限集、无限集.
2. 集合元素的三个特征: 确定性、互异性、无序性. 3. 集合的表示方法: 描述法、列举法、图示法.
4. 元素与集合的关系: a A 集合与集合的关系: A B, M N
4. 元素与集合的关系: a A 集合与集合的关系: A B, M N 5. 常见数集: N N Z Q R
2 2
B {x R | x ax a 12 0}
2
且 A B A ,求实数 a 的取值集合.
作业:
1. 设数集 A {a , 2}, B {1, 2,3, 2a 4}, 2 C {6a a 6}, 如果 C A, C B, 求a 的取值集合.
7. 设集合U {1, 2, 3, 4, 5} A {1, 3, 5} A. {1, 2, 4} C. {3, 5} B {2, 3, 5} B. {4} D. Φ
A 则CU ( A B) ________.
8. 设A、B、I均为非空集合, 且满足 A B I . 则下列各式中错误的 是 ________ . A. (CI A) B I B. (CI A) (CI B) I C. A (CI B) Φ D. (CI A) (CI B ) CI B
其中正确的个数有 _____个.
高一数学复习知识讲解课件1 集合的概念(第1课时)
1.1集合的概高一数学复习知识合的概念(第1课时)习知识讲解课件要点1 元素与集合的概念(1)元素:一般地,我们把__________(2)集合:把一些元素组成的_____叫做研究对象总体(3)元素a 与集合A 的关系:a___A 要点2 常用数集自然数集(非负整数集)____;正整数集实数集____.∈N R _____统称为元素,用a ,b ,c ,…表示. 叫做集合,用A ,B ,C ,…表示. A 或a___A. 整数集________;整数集____;有理数集___;∉N *或N +Z Q要点3 集合的表示(简单的列举法)把集合的所有元素___________出来法叫做列举法.如集合{a ,b ,c }.一一列举要点4 集合中元素的性质________,________,___________确定性互异性无序性) 出来,并用花括号“{}”括起来表示集合的方___.例如:若a ∈{a 2,1},则a =0.1.有一位牧民非常喜欢数学,但他怎教了一位数学家:“尊敬的先生,请你告诉念,数学家很难回答.一天,他看到牧民正在向羊圈里赶羊数学家突然灵机一动,高兴地告诉牧民: 答:集合就是把某些东西放到一起.但他怎么也想不明白集合的意义,于是他请你告诉我集合是什么?”集合是不定义的概赶羊,等到牧民把羊全赶进羊圈并关好门,:“这就是集合.”你能理解集合了吗? .2.“中国男子足球队中技术较差的队员 答:不能.因为集合中的元素具有确定的队员”能否构成一个集合?有确定性.3.{2,2,3}能否表示一个集合?有互异性.答:不能.因为集合中的元素具有互异4.集合{1,2,3}和{3,2,1}答:不是,应是同一个集合,集合中的以及{1,3,2}是三个不同的集合吗? 合中的元素具有无序性.课时学案题型一题型一 集合例1 判断下列每组对象的全体能否构(1)接近于2 022的数;(2)大于2 022的数;(3)衡水中学高一(1)班性格开朗的女生(4)二十国集团的成员国; (5)函数y =x 2图象上的点.【解析】 (1)(3)由于标准不明确,故不 集合的概念能否构成一个集合?的女生;故不能构成集合;(2)(4)(5)能构成集合.探究1 (1)集合是数学中最原始的不定等),只能给出描述性说明.(2)集合中的元素具有广泛性:任何一组图形等都可以作为集合中的元素.(3)本例也体现了集合中元素的性质随之确定.对于集合A 和某一对象a ,的不定义的概念(此外还有点、直线、平面何一组确定的对象都可以组成集合.数、式、质1(确定性):给定一个集合,其中的元素a ∈A 或者a ∉A 二者必居其一.思考题1 【多选题】下列每组对象A .《高考调研·必修Ⅰ》的作者B .中国的大城市C .直角坐标平面内第一象限的点D .方程x 2-2=0在实数范围内的解组对象的全体能构成集合的是( )ACD 的解探究2 研究元素与集合的关系,应首然后再判断所给对象是否为集合中的元素应首先明确集合是由怎样的元素组成的,元素.探究3列举法表示集合的步骤:(1)明确集合中的元素.(2)把集合中的所有元素写在花括号““{}”内.思考题3 用列举法表示下列集合(1)所有绝对值等于3的数的集合A (2)所有绝对值小于3的整数的集合(3)由1~12内的所有素数组成的集合 【解析】 (1)A ={-3,3}.(2)B ={-2,-1,0,1,2}.(3){2,3,5,7,11}.集合:;合B ;集合.题型四题型四 集合中例4 (1)集合{a ,a 2}中,实数a 的取值 【解析】 根据集合中元素的互异性得集合中元素的性质的取值范围是________________.a ≠0且a ≠1性得a ≠a 2,即a ≠0且a ≠1.【讲评】 已知一元素属于某个集合,并且在该集合中只能出现一次.因此,在本排除.,那么此元素就具备集合中元素的特点,在本例中出现元素同时等于-3的情况应探究4 集合中元素的性质:性质1(确定性):见例1.性质2(互异性):对于一个给定的集合的,任何两个相同的对象在同一个集合中时性质3(无序性):集合中的元素没有顺一个集合.的集合,集合中的任何两个元素是互不相同合中时,只能算作集合中的一个元素.没有顺序,比如{a ,b ,c }和{c ,b ,a }表示同思考题4 (1)已知集合A 中含有两个________. a ≠±1【解析】 由集合中元素的互异性,可知有两个元素1和a 2,则实数a 的取值范围是可知a 2≠1,∴a ≠±1.(2)已知集合A ={0,1,x }.若x 2【解析】 当x 2=0时,得x =0,此时集当x 2=1时,得x =±1.若x =1,此时集合A 中有两个相同的元若x =-1,此时集合A 中有三个元素当x 2=x 时,得x =0或x =1,由上述可综上可知,符合题意的x 的值为-1.∈A ,求实数x 的值.此时集合A 中有两个相同的元素,舍去. 同的元素,舍去;元素0,1,-1,符合题意.上述可知都不符合题意.1.(3)已知集合A ={x ,y },B ={2,2x ,y 的值.【解析】 若A ,B 表示同一个集合,x },如果A ,B 表示同一个集合,求实数则 x =2,y =2x 或 x =2x ,y =2,即 x =2,y =4或 x =0,y =2.课 后 巩 固1.判断对错(对的打“√”,错的打(1)在一个集合中不能找到两个相同的元(2)高中数学新教材人教A 版第一册课2(3)由方程x -4=0和x -2=0的根组(4)由形如x =3k +1(k ∈Z )的数组成集合属于集合A .( ) ×解析 (4)1∈A ,-1∉A ,-11∈A . 的打“×”).同的元素.( )一册课本上的所有难题能组成集合.( )√×的根组成的集合中有3个元素.( ) 成集合A ,则1,-1,-11这三个元素都×3.若集合A ={-x ,|x |},则x A .x >0.=C x 0解析 由元素的互异性可知|x |≠-x ,应满足( )B .x <0 .≤A D x 0 ,∴x >0.4.“young ”中的字母构成一个集合,中的字母构成一个集合,该集合中的元素有,该集合中的元素有________个;“book ”5元素有________个. 35.已知集合A 中含有两个元素a (1)若-3∈A ,试求实数a 的值;(2)若a ∈A ,试求实数a 的值.解析 (1)因为-3∈A ,所以-3=a 此时集合A 中含有两个元素-3,-1,此时集合A 中含有两个元素-4,-3,符合的值为0或-1.(2)因为a ∈A ,所以a =a -3或a ==2a -1时,有a =1,此时集合A 中含有两满足题意的实数a 的值为1. -3和2a -1,a ∈R .-3或-3=2a -1.若-3=a -3,则a =0,,符合题意;若-3=2a -1,则a =-1,符合题意.综上所述,满足题意的实数a 2a -1.当a =a -3时,显然不成立;当a 含有两个元素-2,1,符合题意.综上所述,。
高中数学必修一集合 ppt课件
“{}”本身具有“全体”的意思
常用集合的表示
R: 实数集 Q: 有理数集 Z: 整数集 N: 自然数集 N*:合与元素的关系
{{x11∈, ,A 22, ,二者35, ,必居531其}},一5} {x2∉,A 3,5,1}
∈ 属于
集合的分类
有限集 {1,2,3} 无限集 {1,2,3,…,+∞} 单元素集 {a} 空集 ø
思考
√ {(a,b)}是单元素集吗? √ {0},{},{ø}三者中哪些是空集? √ {全体实数}和{实数},哪一个写法正
讲师:
数 学
必修一 §1 集合(上)
什么是集合
集合:具有某种共同属 性的对象的全体
香蕉,苹果, 三角形1,大,2鸭四,梨边3,形4,,圆5 形
集合的性质
从属性:集合元素必具有 某种共同属性
确定性:集合中元素的 从属性要明确
{1,2,3,1,5}
互异性:集合中的元素 必须能判定彼此
规定:
集合中相同元素只写一 个代表
高一数学必修1 第一章集合复习课 ppt
解得:m = -6,n = -9, ∴B = {3,-3}.
例6 :已知集合A = x | ax 2 − 3x + 2 = 0, x ∈ R, a ∈ R}.
(1 ) 若 A 是空集 , 求 a 的取值范围 ;
(2)若A中只含有一个元素求a的值, 并求出这个元素;
高 一 数 学
∉ 例1:用符号“ ∈”或“
⑴、0 2
∉ ∅, 0 ∈ N, π Q; ∉ Z, ∉ { ⑵ 2 3∉ {x|x< 11 }, 2 + 5 ∈ x | x ≤ 2 + 3}; ⑶、3 ∉{x | x = n + 1, n ∈ N }, 5 ∈{x | x = n + 1, n ∈ N }; ⑷、(-1,1) ∉ { y | y = x }, (−1,1) ∈ {( x, y ) | y = x }.
(2) x1 ∈ S , x2 ∈ S , 不妨设x2 = m + n 2 , x2 = p + q 2 , m, n, p, q ∈ Z .
∴ x1 + x2 = (m + p ) + (n + q ) 2 , 且(m + p ), (n + q) ∈ Z ,.
∴ ( x1 + x2 ) ∈ S .
{
9 (1) A = {x | ∈ N , x ∈ N }; 9− x
9 9 解 : 当x = 0时, = 1; x = 6时, = 3; 9− x 9− x 9 x = 8时, = 9, 9− x ∴ A = {0,6,8}
9 9 (2) B = { | x ∈ N且 ∈ N }; 9− x 9− x
【课件】第一单元集合与常用逻辑用语知识点复习课件高一上学期数学人教A版(2019)必修第一册
第1章 集合与常用逻辑用语
N*
N
Z
Q
R
什么是集合?什么是元素?
“对象”
集合中的“对象”所指的范围非常广泛,现实生活中
我看到的、听到的、想到的、触摸到的事物和抽象的符号
等等,都可以看做对象。比如数、点、图形、多项式、方
程、函数、人等等、
“总体”
集合是一个整体,已暗含“所有”“全部”“全体”
互异性
一个给定的集合当中的元素是互不相同的,即集合中的元素不会重复
出现
无序性
集合中的元素排列没有顺序之分,只要某两个集合当中的元素相同,
那么它们就是相等的集合。{1,2,3}和{3,2,1}是同样的集合
集合和元素怎么表示?它们之间有什么关系?
一般来说:
用大写拉丁字母A、B、C…等表示集合
用小写拉丁字母, , …等表示元素
元素与集合的关系:
如果是是集合A的元素,那么就说属于集合A,记作∈A;
如果是不是集合A的元素,那么就说不属于集合A,记作∉A;
比如,3∈自然数集;4∉奇数集
常用的数集比如自然数集怎么表示?
【自然数集】全体自然数组成的集合,包括0,1,2…等,记作N,也叫非负整数集
【正整数集】全体正整数组成的集合,记作N*或N+;
y 2 ≥ 0”
【3】全称量词命题中一般含有全称量词,但是有些全称量词命题中的全称
量词是省略的,理解时需要把它补充出来,例如“平行四边形的对角
线互相平分”应理解为“所有的平行四边形对角线都互相平分”
全称量词命题怎么判断真假?
要判断全称量词命题“∀x ∈ M, p x ”是真命题,需要对集合中每一个
人教版高中数学必修1课件:第一章__集合与函数概念_章末归纳总结课件
①方程(※)有两不等实根⇔Δ>0,方程(※)有两相等
实根⇔Δ=0,方程(※)无实根⇔Δ<0,方程(※)有实数解
⇔Δ≥0.
②方程(※)有零根⇔c=0.
Δ≥0 ③ 方 程 (※) 有 两 正 根 ⇔ x1+x2>0
x1x2>0
⇔较小的根 x=
-b- 2a
Δ >0 (a>0)
⇔-f(02)b>a>00
.
(2)集合 A 是直线 y=x 上的点的集合,集合 B 是抛物线 y=x2 的图象上点的集合,∴A∩B 是方程组yy= =xx2 的解为坐 标的点的集合,∴A∩B={(0,0),(1,1)}.
2.熟练地用数轴与Venn图来表达集合之间的关系 与运算能起到事半功倍的效果.
[例2] 集合A={x|x<-1或x>2},B={x|4x+p<0}, 若B A,则实数p的取值范围是________.
当 a≠0 时,应有 a=1a,∴a=±1.故选 D.
二、函数的定义域、值域、单调性、奇偶性、最值 及应用
1.解决函数问题必须第一弄清函数的定义域
[ 例 1] 函 数 f(x) = x2+4x 的 单 调 增 区 间 为 ________.
[解析] 由x2+4x≥0得,x≤-4或x≥0,又二次函数u =x2+4x的对称轴为x=-2,开口向上,故f(x)的增区间为 [0,+∞).
高一数学集合ppt课件
3. 如果A⊆B且B和C是两个互不相交的集 合(即B与C没有交集),那么A与C也是 互不相交的。
2. 如果A⊆B且B⊆C,那么A⊆C。
子集的性质
1. 任何一个集合都是其本身的子集,即 A⊆A。
真子集的定义与性质
真子集的定义:如果 一个集合A是集合B的 一个子集,并且A和B 中至少有一个元素不 相同,那么我们称A 是B的真子集,记为 A⊈B。
集合通常用大写字母 表示,如A、B、C等 。
集合的元素
元素是集合中的个体,可以用小 写字母表示,如a、b、c等。
一个元素可以属于一个或多个集 合,不同元素可以属于同一个集
合。
空集是指不含有任何元素的集合 。
集合的表示方法
列举法
图示法
把集合中的元素一一列举出来,用大 括号{}括起来。
用一条封闭的曲线表示集合,内部可 以填充颜色或点上小点表示元素。
如果一个集合不是另一个集合 的真子集,那么称它为该集合 的真超集。
04
集合的交集、并集、补集的图形 表示
交集的图形表示
总结词
交集是指两个或两个以上集合的公共 部分,可以用符号 "∩" 表示。
详细描述
在图形表示中,交集通常用两个或多 个集合的公共部分来表示。例如,在 两个圆的重叠部分中,重叠部分的元 素就是两个圆的交集。
集合的运算性质
01
02
03
交换律
若A、B是两个集合,则A 并B等于B并A,A交B等于 B交A。
结合律
三个集合的交集和并集, 等于这三个集合分别交、 并后再合并得到的交集和 并集。
分配律
两个集合的并集与另一个 集合的交集相等,等于这 两个集合分别与另一个集 合的交集的并集。
高一数学必修1总复习课件
导数法、定义法、图象法等。
单调性的应用
求极值、求最值、比较大小等。
02
三角函数
角的概念及度量
角的概念
角是由两条射线公共端点出发的 两条射线的位置关系所形成的, 分为平面角和球面角。
角的度量
角度的大小是用实数表示的,通 常使用度、弧度、密位等单位来 度量角的大小。
三角函数的定义
正弦函数
求和公式
Sn=a1*(1-q^n)/1-q,其中Sn是前n项和,a1是 第一项,q是公比
3
应用
利用求和公式可以计算等比数列的和,解决实际 问题
05
算法初步
算法的概念及程序框图
总结词
01
理解算法的概念和程序框图的绘制方法
算法的概念
02
算法是指一系列解决问题的清晰指令,它按照一定的顺序执行
,能够得到确定的结果。
值域的性质
闭区间、开区间、左开右闭、左闭右开等。
值域与定义域的关系
函数的值域总是定义域的子集。
函数的单调性
单调性的定义
如果对于任意$x_{1} < x_{2}$都有$f(x_{1}) leq f(x_{2})$或 $f(x_{1}) geq f(x_{2})$,则称函数在区间内单调递增或单调递减。
子集;不属于某个集合的元素组成的集合称为该集合的补集。
集合的运算
并集
两个集合中所有元素组 成的集合称为这两个集
合的并集。
交集
两个集合中共有的元素 组成的集合称为这两个
集合的交集。
差集
从第一个集合中去掉与 第二个集合共有的元素 组成的集合称为这两个
集合的差集。
集合运算的性质
结合律、交换律、分配 律等。
高考数学总复习集合必修1
正解: ∵ y x2 4x 3 ( x 2) 2 1≥ 1 ,
y x2 2x 2 (x 1)2 3≤ 3 ,
∴ A y ≥y 1 B y y ≤ 3
,
,
∴ A B y 1≤ y≤ 3 .
解析:这道题要注意研究的元素(看竖线前的元素) ,均是 y,所以要求出两个集合中
围再求交集, A 中的 y 范围是求表达式的值域、因此此题是表示两个函数值域的集合.
用心 爱心 专心
-1-
( 3)无序性
集合中的元素的次序无先后之分.如:由 1,2,3 组成一个集合,也可以写成 1,3,2 组成一个
集合,它们都表示同一个集合. 帮你总结:学习集合表示方法时应注意的问题
( 1)注意 a 与 a 的区别. a 是集合 a 的一个元素,而 a 是含有一个元素 a 的集合,二
{ x a x b, x R, a b} 记作闭区间 [ a, b] , R 记作 ( , ).
定义 7 空集 ?是任何集合的子集,是任何非空集合的真子集。 补充知识点 对集合中元素三大性质的理解 ( 1)确定性
集合中的元素,必须是确定的.对于集合 A 和元素 a ,要么 a A ,要么 a A ,二者必
,则 实数
x2 y2
{( x, y) |
2. (2010. 湖北卷 2. )设集合 A=
4
16 1} , B={( x, y) | y 3x} , 则 A∩B 的子集的
个数是(
)
A. 4 B.3 C.2 D.1
方法:注意研究元素,是点的形式存在, A 是椭圆, B 是指数函数,有数形结合方法,交于两
{ x x 0}
如 { 有理数 } ,
分别表示有理数集和正实数集。
人教版(新教材)高中数学第一册(必修1)精品课件:第一章集合与常用逻辑用语章末复习课
【例1】 (1)设集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},则集合B中元
素的个数是( )
A.4
B.5
C.6
D.7
(2)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是( )
A.1
B.3
ቤተ መጻሕፍቲ ባይዱ
C.5
D.9
解析 (1)∵a∈A,b∈A,x=a+b,所以x=2,3,4,5,6,8,∴B中有6个元素, 故选C. (2)当x=0,y=0时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y =-2;当x=1,y=0时,x-y=1;当x=1,y=1时,x-y=0;当x=1,y=2时,x -y=-1;当x=2,y=0时,x-y=2;当x=2,y=1时,x-y=1;当x=2,y=2时, x-y=0.根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个. 答案 (1)C (2)C
【训练4】 (1)若p:x2+x-6=0是q:ax+1=0的必要不充分条件,则实数a的值为 ________. (2) 若 - a<x< - 1 成 立 的 一 个 充 分 不 必 要 条 件 是 - 2<x< - 1 , 则 a 的 取 值 范 围 是 ________.
解析 (1)p:x2+x-6=0,即x=2或x=-3. q:ax+1=0,当 a=0 时,方程无解;当 a≠0 时,x=-1a. 由题意知p q,q p,故a=0舍去;
当 a≠0 时,应有-1a=2 或-1a=-3,解得 a=-12或 a=13. 综上可知,a=-12或 a=13. (2)根据充分条件、必要条件与集合间的包含关系,应有{x|-2<x<-1} {x|-a<x< -1},故有a>2. 答案 (1)-12或13 (2)a>2
高中数学必修1复习 PPT课件 图文
(4)已知f(幂 2)8 , 函求 数 f(x)函 的数 解析
函数单调性
y
f(x2)
f(x1)
在给定区间上任x取 1, x2,
x1 x2
f(1x)f(2x)
函数f (x)在给定区间
O
x1 x2 x
上为增函数。
注意
增函数、减函数、单调函数是 对定义域上的某个区间而言的。
y
在给定区间上任x取 1, x2,
真数 自变量
函数 y=logax 叫作指数函数
底数(a>0且a≠1) 常数
指数函数与对数函数
y
1
0
x
R
y
y
y
1
1
o
1
x
o
x
0
x
单调性
(0, ) 相同
(0, )
(0, 1)
在R上是增函数 在R上是减函数
R
(1, 0)
在( 0 , + ∞ )上是 在( 0 , + ∞ )上是
增函数
减函数
指数函数与对数函数
x3,2
5 4 3 2 1
0 1 3 -8 -6 -4 -2
2 4 6 810
-1
x=2
-2
-3
-4
-5
二、函数的表示法
1、解 析 法 2、列 表 法 3、图 像 法
例10 (1)已f知 (x)x24x3,求 f(x1)
(2)已f知 (x1)x22x,求 f(x)
x23 x0 (3)已知 f(x) 1 x0,求 f[f(4)]
(3) loaM g nnloaM g (n R ).
几个重要公式
(1)logabllooggccballggba
人教版高中数学必修一课件:1.1《集合》 (共23张PPT)
一个给定集合中的元素是互不相同的.即集合 中的元素是不重复出现的。
(3)无序性:
元素完全相同的两个集合相等,而与列举顺序 无关。
【注】两个集合相等当且仅当构成
这两个集合的元素是完全一样的.
三、元素与集合的关系
常见数集:
1. 自然数集(非负整数集): N 2. 正整数集: N*或N+ 3. 整数集: Z 4. 有理数集: Q 5. 实数集: R
(2) 描述法:
{ x I | P( x)}
元素符号 范围 元素的特征
【例2】试分别用列举法和描述法表示下列 集合 (1)方程x2-2=0的所有实数根组成的集合; (2)由大于10小于20的所有整数组成的集合.
【思考题】用列举法表示集合:
ab 1) A { x | x ,
a, b为非零实数}
3.
方程组
x x
y9 y3
的解集用列举
法或描述法表示为
。
4、已知x2∈ {1, x, 0}, 求实数x的值.
52、) 补充 : 含有三个实数的集合可
表示为{ a, b , 1 }, 也可表示为 a
{a 2 , aabb,,00},}求, 求a 2a0120006 b b . 20120006.
6、已知集合A={x∈R|mx2-2x+3=0, m∈R}且A中只有一个元素,求m的值.
课堂练习 P5 练习1、2
小结
1. 集合的概念; 2. 元素与集合的关系; 3. 集合的元素特征; 4. 集合的表示方法;
ab
2) B {k N | 6 Z} 3k
思考:B { 6 Z | k N }呢? 3k
1. 已知集合S中有三个元素 a, b, c
人教A版高一数学必修一第一章综合复习 PPT课件 图文
必修1 第一章 集合与函数的概念
栏目导引
2.函数及其表示
(1)本节是函数部分的起始部分,以考查函数的概念 、三要素及表示法为主,同时考查实际问题中的建 模能力.
(2)以多种题型出现在高考试题中,要求相对较低, 但很重要.特别是函数的表达式,对以后函数应用 起非常重要的作用.
必修1 第一章 集合与函数的概念
必修1 第一章 集合与函数的概念
栏目导引
(2)集合间的基本关系
①理解集合之间包含与相等的含义,能识别给定集合的 子集.
②在具体情境中,了解全集与空集的含义.
(3)集合的基本运算
①理解两个集合的并集与交集的含义,会求两个简单集 合的并集与交集.
②理解在给定集合中一个子集的补集的含义,会求给定 子集的补集.
B.{x|x≥0}
C.{x|x≥1 或 x≤0} D.{x|0≤x≤1}
解析:
1-x≥0, x≥0
⇔0≤x≤1.故选 D.
答案: D
必修1 第一章 集合与函数的概念
栏目导引
3.若定义在R上的函数f(x)满足:对任意x1,x2∈R 有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确 的是( )
当 x<0 时,函数 f(x)=(x+1)2-2 的最小值为-2,
最大值为 f(-3)=2.故函数 f(x)的值域为[-2,2].
必修1 第一章 集合与函数的概念
栏目导引
1.已知集合A={x|x<a},B={x|1<x<2},且
A∪(∁RB)=R,则实数a的取值范围是( )
A.a≥2
B.a<1
C.a≤2
解析: 假设存在x,使得B∪(∁AB)=A, 即B A.
①若x+2=3,则x=1,此时A={1,3,-1},B= {1,3},符合题意.
高中数学必修一集合复习课件
集合A 2,2 B A B 或B 2或B 2或B 2, 2
变式:条件“B A”改为“B A”求满足条件的B集合
则:B 或B 2或B 2
(2)子集的个数
例: 已知集合M ,3 1 2,,则:
⑤练习回顾:
已知A x | x 3k , k Z B x | x 6k , k Z , 则A、B集合的 , (或者B A) B A 关系是
例题剖析 已知A x | x 2 x 0 B x | x 2 2 x 2 0 ,
那么: 0
解: A B
x 1 x 2 1 x x 2
,或
x 1 x 2 x 1 x 2
解得:x 1.经检验,x 1不满足集合的互异性 而x 1符合条件 x 1.
考点3:集合间的关系:含于(子集)、 真 含于(真子集) (1)空集是任何集合的子集;是任何非空集合的真子集. 例1、若集合A x | x 2 4 0, B A, 求集合B
找公共元素集合的运算描述法列举法集合常用表示法无理数集有理数集q负整数集正整数集自然数集n研究对象
1.1 集合
研究对象:元素(唯一与集合的关系:属于a∈A 或 不属于a∈A 自然数集 N 正整数集 N * 实数集 R 有理数集 Q 整数集 Z 负整数集 无理数集 (常用数集) 有限集:如{1,2,3} 集合的分类 无限集:如 R、Q、Z、…… 集 空集: (表示没有任何元素的集合) 合 列举法 集合常用表示法 描述法 真子集 集合间的关系: 子集 子集:互为子集的两个集合是相等集合 交集:找公共元素 集合的运算 并集:几个集合的所有元素 补集:去掉自己后,全集中剩余的部分
高中数学必修一集合 PPT课件 图文
A、1 B、2 C、3 D、4
例题4:已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条
件A⊆C⊆B的集合C的个数为( ) A、1 B、2 C、3 D、4
例题5:若规定E={a1,a2,a3,…a10}的子集{ai1,ai2,…ain}为E的第K个子集,其中
K=2i1-1+2i2-1+…+2in-1,则 (1){a1,a3}是E的第_____个子集; (2)E的第211个子集为________
例题2:已知 A { x 集 |a x 1 合 0 }且 ,1 A ,求 a 的 实 . 值 数 例题3:设 y x 2 a b , x A { x |y x } { a } M , { a , b ) ( 求 } M ., 例题4:已知集A合 {xR|ax2 3x20,aR}.
第二节 集合间的基本关系 —考试题型及要点解析
1、判断两个集合之间的关系
解题要点:考察其中一个集合的所有元素是否全都在另一个集合; 考察其中一个集合是否为空集;
例题1:判断下列两个集合之间的关系:
(1) A={2,3,6},B={x| x是12的约数} ( 2) A={0,1},B={x|x2+y2=1,y∈N}
(1)若A中不含有任何元a的 素取 ,值 求范 . 围 (2)若A中只有一个元a素 的, 值求 ,并把这个出元来 .素写 (3)若A中至多有一个元a的 素取 ,值 求范 . 围
第二节 集合间的基本关系 —知识点总结
1、子集的三种语言
2、空集
(1)空集的概念:不含任何元素的集合,记作_∅__. (2)_空__集__是任何集合的子集, _空__集__是任何非空集合的 真子集.
高一数学集合ppt课件
03
集合的性质
集合的无序性
总结词
集合中的元素无顺序要求,即集合中元素的排列顺序不影响集合本身。
详细描述
在集合中,元素的顺序并不重要,无论元素以何种顺序排列,它们都属于同一个集合。例如,集合 {1,2,3}和集合{3,2,1}表示的是同一个集合。
集合的确定性
总结词
集合中的元素具有明确性,每个元素都属于或者不属于某个集合。
集合的并集
总结词
表示两个集合中所有的元素(不考虑重复)
详细描述
并集是指两个集合中所有的元素组成的集合,记作A∪集
总结词
表示属于某个集合但不属于另一个集 合的元素组成的集合
详细描述
补集是指属于某个集合但不属于另一 个集合的元素组成的集合,记作A-B 。补集的概念对于理解集合之间的关 系非常重要。
是小于5的偶数}。
基础习题2
判断以下两个命题的真假:P1:5 不属于集合A,P2:集合A和集合 B的交集为空集。
基础习题3
已知集合M = {x | x = 3k, k ∈ Z}, N = {x | x = 2k, k ∈ Z},求M和N 的交集。
进阶习题
进阶习题1
已知集合U = {x | x 是小于10的正整数} ,A ⊆ U,B ⊆ U,且A和B的并集等于U ,求A和B的交集。
集合的表示方法
总结词
集合可以用大括号{}、圆括号()、尖 括号<>或方括号[]来表示。
详细描述
在数学中,我们通常用大括号{}、圆括 号()、尖括号<>或方括号[]来表示集 合。例如,集合A可以表示为{a, b, c} 。
集合的分类
总结词
根据元素的特点和性质,集合可以分为有限集、无限集和空 集。