西南大学《数学分析选讲》网上作业题及答案

合集下载

西南大学网上作业 高等数学选讲第三次作业答案

西南大学网上作业  高等数学选讲第三次作业答案

高等数学选讲 第四次作业答案1. (1)04590851707114272021571171102021504270202171102021502021427071102021502021427071100251020214214==----=-----=----=----=(2)21412141312150620123212325625062-==2.11112305811-11240561-11051290⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=--=- ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭AB058111213223230562111217202901114292-⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-=⨯--⨯-=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭AB A⎪⎪⎪⎭⎫ ⎝⎛-==092650850AB B A T3.11112222111312632251126310001000100010001200010002001100213000100130201012140001021410011000100010001000010000010000001000030100004100140101⎛⎫⎛⎫⎪⎪- ⎪ ⎪→ ⎪ ⎪- ⎪⎪-⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪-- ⎪→→ ⎪---- ⎪---⎝⎭⎝⎭1122111263511182412410001000010000001000001⎪⎪⎪⎛⎫ ⎪- ⎪→ ⎪-- ⎪--⎝⎭ 所以⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=-4112124581316121212110000001A 4.714191921191971419192321019147186335421863018763000000010010000B -----⎛⎫⎛⎫⎛⎫⎪ ⎪⎪=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭-⎛⎫⎪→- ⎪⎪⎝⎭基础解系为T T )1,0,197,191(,)0,1,1914,192(=--=βα 5.解:设样本空间为U ,则U 所含基本事件的总数为n =350C 。

西南大学《数学分析选讲》网上作业及参考答案

西南大学《数学分析选讲》网上作业及参考答案

===================================================================================================1:[论述题]《数学分析选讲》第一次主观题作业答案一、判断题 1.(正确) 2.( 正确 ) 3.(错误 ) 4.( 正确 ) 5.( 正确) 二、 选择题1、A2、A3、B4、B5、C6、C7、D8、D三、计算题解 1、902070902070902070583155863lim )15()58()63(lim⋅=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=--++∞→+∞→x x x x x x x x 2、211lim()2x x x x +→∞+=-21111lim 2211xx x x x x →∞⎛⎫⎛⎫++ ⎪ ⎪⋅= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭211lim 21xx x x →∞⎛⎫+ ⎪= ⎪ ⎪-⎝⎭2(4)21[(1)]lim 2[(1)]x x x x x→∞--+- 264e e e-==. 3、解:因2n ≤++≤+1n n==, 故 21n n →∞++=+。

4、 当0x <时,有221()lim lim 11x x x x x x n n n n n f x n n n --→∞→∞--===-++;同理当0x >时,有()1f x =.而(0)0f =,所以1,0()sgn 0,01,0x f x x x x -<⎧⎪===⎨⎪>⎩。

所以0是f 的跳跃间断点.四、证明题===================================================================================================证 由b a <,有b b a a <+<2. 因为2lim ba a a n n +<=∞→,由保号性定理,存在01>N ,使得当1N n >时有2b a a n +<。

西南大学网络学习数学分析选讲网上在线第二次作业答案

西南大学网络学习数学分析选讲网上在线第二次作业答案

西南大学网络学习数学分析选讲网上在线第二次作业答案题目:若函数f在区间I上单调,则f在I上的任一间断点必是第一类间断点正确错误批阅:选择答案:正确正确答案:正确得分:10题目:若两个函数的导数处处相等,则这两个必相等正确错误批阅:选择答案:错误正确答案:错误得分:10题目:若函数f在数集D上的导函数处处为零,则f在数集D上恒为常数。

正确错误批阅:选择答案:错误正确答案:错误得分:10题目:可导的周期函数,其导函数必是周期函数正确错误批阅:选择答案:正确正确答案:正确得分:10题目:任一实系数奇次方程至少有一个实根正确错误批阅:选择答案:正确正确答案:正确得分:10题目:若函数f的导函数在区间I上有界,则f在I上一致连续。

正确错误批阅:选择答案:正确正确答案:正确得分:10题目:若f,g均为区间I上的凸函数,则f+g也为I上的凸函数。

正确错误批阅:选择答案:正确正确答案:正确得分:10题目:若f在区间I上连续,则f在I上存在原函数。

正确错误批阅:选择答案:正确正确答案:正确得分:10题目:不存在仅在一点可导,而在该点的任一空心邻域内皆无连续点的函数。

正确错误批阅:选择答案:错误正确答案:错误得分:10题目:若函数在某点的左右导数都存在,则在该点可导正确错误批阅:选择答案:错误正确答案:错误得分:10题目:若函数在某点可导,则在该点的左右导数都存在正确错误批阅:选择答案:正确正确答案:正确得分:10题目:可导的单调函数,其导函数仍是单调函数。

正确错误批阅:选择答案:错误正确答案:错误得分:10题目:若f、g在[a,b]上的可积,则fg在[a,b]上也可积正确错误批阅:选择答案:正确正确答案:正确得分:10题目:闭区间上的可积函数是有界的正确错误批阅:选择答案:正确正确答案:正确得分:10题目:若f是[a,b]上的单调函数,则f在[a,b]上可积。

正确错误批阅:选择答案:正确正确答案:正确得分:10题目:若f在实数集R上是偶函数,则x=0是f的极值点。

《数学分析选讲》 第一次作业解答

《数学分析选讲》 第一次作业解答

《数学分析选讲》 第一次作业解答一、判断下列命题的正误1. 有上界的非空数集必有上确界. (正确)2. 收敛数列必有界. (正确)3. 两个收敛数列的和不一定收敛.(错误)4.若S 为无上界的数集,则S 中存在一递增数列趋于正无穷.(正确)5.若一数列收敛,则该数列的任何子列都收敛. (正确)二、选择题1.设2,1()3,1x x f x x x -≤⎧=⎨->⎩, 则 [(1)]f f =( A ) .A 3- ;B 1- ;C 0 ;D 22.“对任意给定的)1,0(∈ε,总存在正整数N ,当N n ≥时,恒有2||2n x a ε-≤”是数列}{n x 收敛于a 的( C ).A 充分条件但非必要条件;B 必要条件但非充分条件;C 充分必要条件;D 既非充分又非必要条件3.若数列}{n x 有极限a ,则在a 的ε邻域之外,数列中的点( B ) A 必不存在 ; B 至多只有有限多个;C 必定有无穷多个 ;D 可以有有限个,也可以有无限多个 4.设a x n n =∞→||lim ,则 ( D )A 数列}{n x 收敛;B a x n n =∞→lim ;C a x n n -=∞→lim ; D 数列}{n x 可能收敛,也可能发散5.数列}{n x 收敛,数列}{n y 发散,则数列}{n n y x ( D ).A 收敛;B 发散;C 是无穷大;D 可能收敛也可能发散 6.若函数)(x f 在某点0x 极限存在,则( C ) A )(x f 在0x 的函数值必存在且等于极限值;B )(x f 在0x 的函数值必存在,但不一定等于极限值;C )(x f 在0x 的函数值可以不存在;D 如果)(0x f 存在的话必等于函数值7.下列极限正确的是( C )A 01lim sin1x x x→=; B sin lim1x x x→∞=; C 01limsin 1x x x→=; D 1lim sin0x x x→∞=8. =+-→11lim11x x x e e ( A )A 不存在;B 1 ;C 1- ;D 0三、计算题1.求极限 902070)15()58()63(lim --++∞→x x x x .解: 902070902070902070583155863lim)15()58()63(lim⋅=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=--++∞→+∞→x x x x x x x x2.求极限 211lim ()2x x x x +→∞+-.解:211lim ()2x x x x +→∞+=-21111lim 2211xx x x x x →∞⎛⎫⎛⎫++ ⎪ ⎪⋅= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭211lim 21xx x x →∞⎛⎫+⎪= ⎪ ⎪-⎝⎭2(4)21[(1)]lim2[(1)]x x x x x→∞--+-264e e e-==.3. 求极限 1111lim (1)23n n n→∞++++解:由于111111(1)23nn n n≤++++≤ ,又lim 1n →∞=, 由迫敛性定理1111lim (1)123n n n→∞++++=4.考察函数),(,lim)(+∞-∞∈+-=--∞→x nn n n x f xxx x n 的连续性.若有间断点指出其类型.解: 当0x <时,有221()limlim11x x x xxxn n n n n f x n nn--→∞→∞--===-++;同理当0x >时,有()1f x =.而(0)0f =,所以1,0()sgn 0,01,0x f x x x x -<⎧⎪===⎨⎪>⎩。

西南大学数学分析作业答案

西南大学数学分析作业答案

西南⼤学数学分析作业答案三、计算题1.求极限 902070)15()58()63(lim --++∞→x x x x .解: 902070902070902070583155863lim)15()58()63(lim=?-??-?→x x x x x x x x 2.求极限 211lim ()2x x x x +→∞+-.解:211lim ()2x x x x +→∞+=-21111lim 2211xx x x x x →∞++ ? ??= ? ? ? ? --?211lim 21xx x x →∞?+= -2(4)21[(1)]lim2[(1)]x x x x x264e e e-==.3.求极限 1 111lim (1)23n n n→∞++++解:由于11 1111(1)23nn n n≤++++≤ ,⼜lim 1n →∞=,由迫敛性定理1111lim (1)123n n n→∞4.考察函数),(,lim)(+∞-∞∈+-=--∞→x nn n n x f xx x xn 的连续性.若有间断点指出其类型.解:当0x <时,有221()limlim11x x x xxxn n n n n f x n nn--→∞→∞--===-++;同理当0x >时,有()1f x =.⽽(0)0f =,所以1,0()sgn 0,01,0x f x x x x -===??>?。

所以0是f 的跳跃间断点.四、证明题设a a n n =∞→lim ,b b n n =∞→lim ,且b a <. 证明:存在正整数N ,使得当N n >时,有n n b a <.证由b a <,有b b a a <+<2. 因为2lim ba a a n n +<=∞lim b a b b n n +>=∞→,所以,⼜存在02>N ,使得当2N n >时有2b a b n +>. 于是取},max{21N N N =,当N n >时,有n n b b a a <+<2《数学分析选讲》第⼆次主观题作业⼀、判断下列命题的正误1. 若函数在某点⽆定义,则在该点的极限可能存在.2. 若)(x f 在[,]a b 上连续,则)(x f 在[,]a b 上⼀致连续.3. 若()f x 在[,]a b 上有定义,且()()0f a f b <,则在(,)a b 内⾄少存在⼀点ξ,使得()0f ξ=.4. 初等函数在其定义区间上连续. 5.闭区间[,]a b 的全体聚点的集合是[,]a b 本⾝.⼆、选择题1.下⾯哪些叙述与数列极限A a n n =∞→lim 的定义等价()A )1,0(∈?ε,0>?N ,N n ≥?,ε≤-||A a n ;B 对⽆穷多个0>ε,0>?N ,N n >?,ε<-||A a n ;C 0>?ε,0>?N ,有⽆穷多个N n >,ε<-||A a n ;D 0>?ε,有}{n a 的⽆穷多项落在区间),(εε+-A A 之内2.任意给定0>M ,总存在0>X ,当X x -<时,M x f -<)(,则()A -∞=-∞→)(lim x f x ; B -∞=∞→)(lim x f x ; C ∞=-∞→)(lim x f x ; D ∞=+∞→)(lim x f x3.设a 为定数.若对任给的正数ε,总存在0>X ,当X x -<时,()f x a ε-<,则().A lim ()x f x a →+∞=; B lim ()x f x a →-∞=; C lim ()x f x a →∞=; D lim ()x f x →∞=∞A 2e ;B 2e - ;C 1e - ;D 1 5.21sin(1)lim1x x x →-=-()A 1 ;B 2 ;C 21 ; D 06.定义域为],[b a ,值域为),(∞+-∞的连续函数() A 存在; B 可能存在; C 不存在; D 存在且唯⼀7.设 =)(x f 1(12) , 0 , 0x x x k x ??-≠??=? 在0=x 处连续,则=k ()A 1 ;B e ;C 1- ;D 21e8.⽅程410x x --=⾄少有⼀个根的区间是()A 1(0,)2; B 1(,1)2; C (2,3) ; D (1,2) 三、计算题1.求极限 n nn 313131212122++++++∞→ 2.求极限lim n →∞+++3.求极限 )111)(110()110()13()12()1(lim2222--++++++++∞→x x x x x x x4.求极限 112sin lim-+→x x x四、证明题设,f g 在],[b a 上连续,且()(),()()f a g a f b g b ><. 证明:存在(,),a b ξ∈使得()()f g ξξ=.数学分析选讲作业系统1、若f,g 均为区间I 上的凸函数,则f+g 也为I 上的凸函数。

西南大学网络学习数学分析选讲网上在线第三次作业答案

西南大学网络学习数学分析选讲网上在线第三次作业答案

西南大学网络学习数学分析选讲网上在线第三次作业答案题目:幂级数的收敛区间必然是闭区间正确错误批阅:选择答案:错误正确答案:错误得分:10题目:任何有限集都有聚点正确错误批阅:选择答案:错误正确答案:错误得分:10题目:不绝对收敛的级数一定条件收敛正确错误批阅:选择答案:错误正确答案:错误得分:10题目:设f在(a,b)内可导,且其导数单调,则其导数在(a,b)内连续正确错误批阅:选择答案:正确正确答案:正确得分:10题目:有限区间上两个一致连续函数的积必一致连续正确错误批阅:选择答案:正确正确答案:正确得分:10题目:处处间断的函数列不可能一致收敛于一个处处连续的函数。

正确错误批阅:选择答案:错误正确答案:错误得分:10题目:条件收敛级数一定含有无穷多个不同符号的项。

正确错误批阅:选择答案:正确正确答案:正确得分:10题目:收敛级数一定绝对收敛正确错误批阅:选择答案:错误正确答案:错误得分:10题目:在级数的前面加上或去掉有限项不影响级数的收敛性正确错误批阅:选择答案:正确正确答案:正确得分:10题目:设f是(a,b)内可导的凸函数,则其导函数在(a,b)内递增正确错误批阅:选择答案:正确正确答案:正确得分:10题目:实数集R上的连续周期函数必有最大值和最小值正确错误批阅:选择答案:正确正确答案:正确得分:10题目:闭区间[a,b]的所有聚点的集合是[a,b] 正确错误批阅:选择答案:正确正确答案:正确得分:10题目:收敛级数任意加括号后仍收敛正确错误批阅:选择答案:正确正确答案:正确得分:10。

21春西南大学[0088]《数学分析选讲》作业辅导资料

21春西南大学[0088]《数学分析选讲》作业辅导资料

0088 20211单项选择题1、1. 02. 13.-14. 22、1.2.3.4.3、1. F.2.3.4.4、1.2.3.4.5、1.2.3.4.6、1. C. 最小值2.极大值3.最大值4.极小值7、1.2.3.4.8、1. -12. 23. 14. 39、1.第二类间断点2.可去间断点3.跳跃间断点4.连续点10、1.2.3.4.11、1.2.3.4.12、下列函数中为奇函数的是()1.2.3.4.13、1.不存在2.存在且唯一3.可能存在4.存在14、1.2.3.4.15、1. -12.03. 24. 116、下述命题成立的是()1. D. 可导的偶函数,其导函数是偶函数2.可导的递增函数,其导函数是递增函数3.可导的递减函数,其导函数是递减函数4.可导的偶函数,其导函数是奇函数17、1.是无穷大2.发散3.可能收敛,也可能发散4.收敛18、1. 12. 03. 24.-119、1.2.3.4.20、1.2.3.4.21、1.02. 23. 44. 122、1. 12. 43. 24. 023、1.绝对收敛2.可能收敛,也可能发散3.条件收敛4.发散24、1.既非充分又非必要条件2.充要条件3.必要条件4.充分条件25、1. 32. 23. 84. 426、1. 62.-13. 24. 527、1.2.3.4.28、1.连续点2.第二类间断点3.跳跃间断点4.可去间断点判断题29、( )1. A.√2. B.×30、( )1. A.√2. B.×31、( )1. A.√2. B.×32、(1. A.√2. B.×33、( )1. A.√2. B.×34、常量函数 f(x)=c 是以任何正数为周期的周期函数,但不存在基本周期. ( )1. A.√2. B.×35、( )1. A.√2. B.×36、( )1. A.√2. B.×37、 (1. A.√2. B.×38、 ( )1. A.√2. B.×39、 ( )1. A.√2. B.×40、( )1. A.√2. B.×41、任一实系数奇次方程至少有一个实根. ( )1. A.√2. B.×42、 ( )1. A.√2. B.×43、( )1. A.√2. B.×44、若 f(x) 在点 a 处可导,则 f(x) 在点 a 处可微. ( )1. A.√2. B.×45、可导的奇函数,其导函数为偶函数. ( )1. A.√2. B.×46、( )1. A.√2. B.×47、( )1. A.√2. B.×48、( )1. A.√2. B.×49、( )1. A.√2. B.×50、(1. A.√2. B.×51、( )1. A.√2. B.×52、数集 S 的最大数一定是 S 的上确界. ( )1. A.√2. B.×53、若函数f(x)在闭区间[a,b]上连续,则函数f(x)在[a,b]上必有最大值和最小值1. A.√2. B.×主观题54、55、参考答案:56、参考答案:57、参考答案:58、59、参考答案:60、参考答案:。

2013年春西南大学《数学分析选讲》1、2、3次客观题答案(已整理)

2013年春西南大学《数学分析选讲》1、2、3次客观题答案(已整理)

2013年春西南大学《数学分析选讲》1、2、3次客观题答案(已整理)第一次作业客观题【判断题】狄利克雷函数D(x)是有最小正周期的周期函数错【选择题】设数列{An}收敛,数列{Bn}发散,则数列{AnBn} D【判断题】收敛数列必有界对【判断题】两个(相同类型的)无穷小量的和一定是无穷小量对【判断题】若函数在某点无定义,则在该点的极限不存在错【选择题】设 f,g 为区间 (a,b)上的递增函数,则 min{f(x),g(x)}是(a,b) 上的A【选择题】设f在[a,b]上无界,且f(x)不等于0,则1/f(x)在[a,b]上D【判断题】闭区间上的连续函数是一致连续的对【判断题】两个收敛数列的和不一定收敛错【判断题】有上界的非空数集必有上确界对【判断题】两个无穷小量的商一定是无穷小量错【选择题】若函数f在(a,b)的任一闭区间上连续,则f B【选择题】一个数列{An}的任一子列都收敛是数列{An}收敛的C【判断题】若f,g在区间I上一致连续,则fg在I上也一致连续。

错【判断题】区间上的连续函数必有最大值错【判断题】两个收敛数列的商不一定收敛对【选择题】设函数f(x)在(a-c,a+c)上单调,则f(x)在a处的左、右极限B【选择题】定义域为[a,b],值域为(-1,1)的连续函数B【选择题】y=f(x)在c处可导是y=f(x)在点(c,f(c))处存在切线的A【判断题】最大值若存在必是上确界对【选择题】设f,g在(-a,a)上都是奇函数,则g(f(x))与f(g(x)) A【判断题】两个无穷大量的和一定是无穷大量错【选择题】函数f在c处存在左、右导数,则f在c点B【判断题】若函数在某点可导,则在该点连续对【判断题】若f(x)在[a,b]上有定义,且f(a)f(b)<0,则在(a,b)内至少存在一点c,使得f(c)=0 错第二次作业客观题【判断题】若f在区间I上连续,则f在I上存在原函数。

对【判断题】不存在仅在一点可导,而在该点的任一空心邻域内皆无连续点的函数。

《数学分析选讲》作业参考答案

《数学分析选讲》作业参考答案

《数学分析选讲》作业参考答案一.填空1. 点0P 的任一邻域内都有点集E 的无穷多个点。

2.}1:),{(22≤+y x y x 3.),(),(0d c b a E ⨯=4. }1)2()1(:),{(22≥++-y x y x ;5. 点0P 为点集E 的界点是指:点0P 的任一邻域中既有E 的点又有E 的余集的点; 6. φ,2R .7. 存在0P 的一个邻域完全包含在点集E 之中 8. 曲顶柱体的体积 9. 22)()()(d b c a E d -+-=10.)()(lim 00P f P f P P =→11. (2,1); 12. 连通 二.判断题1. 对; 2. 对; 3. 对; 4. 对; 5. 错; 6. 错; 7. 对; 8. 对; 9. 对; 10. 错; 11. 对; 12.对;. 13. 对; 14. 对; 15. 对; 16. 错; 17. 对; 18. 对; 19. 对; 20. 对; 21.错 22. 对; 23. 对; 24. 对 三.计算题1. 解 视y 为x 的函数,对原方程两边关于x 求导得:022='--'+y ax ay y y x解出y '得:axy x ay y --='222. 令22),(αα+=x x f ,则函数f 在]1,1[]1,1[-⨯-上连续.从而,由定理19.1知:函数x x I d )(1122⎰-+=αα在]1,1[-上连续,特别在0=α处连续.于是1d ||)0()(lim d lim 1111220====+⎰⎰-→-→x x I I x x αααα.3. 由于}0,22:),{(2px px y px y x D ≤≤≤≤-=为x -型闭区域,所以由定理2知:002/0222/0===⎰⎰⎰⎰⎰-dx x ydy xdx xydxdy p px pxp D.4. 解 由公式计算知:().310d )12353210(d )1(4)1)1(2()1)1(2(d )(d 21231222=-+-=--+-++-=-+⎰⎰⎰x x x x x x x x x x yx y x xy L5. 解 由定理19.4知:()().d e y 22d e y -2d )(223535223522xy -2xy -2⎰⎰⎰--=-+=-+∂∂='-------x xx x x x x xx x x xxy y exee xey e x e y e xx F6. 由定义知.0 00lim )0,0()0,0(lim)0,0(00=-=-+=→→xx f x f f x x x同理可得0)0,0(=y f .7. 解 视y 为常数,关于x 求导数得:)cos(23y x xy z x ++=. 视x 为常数,关于求导数得: )cos(3322y x y x z y ++=.8. 先求f 在点)3,1(关于x 的偏导数,为此,令3=y ,得到以x 为自变量的一元函 数276)3,(23-+=x x x f ,求它在1=x 的导数,得15)123()3,(d d)3,1(121=+====x x x x x x f x f .再求f 在)3,1(关于y 的偏导数,先令1=x ,得到以y 为自变量的一元函数321),1(y y y f -+=,求它在3=y 的导数,得.25)32(),1(d d)3,(323-=-====y y y y y f y x f9. 令22),(by ax y x f +=,则ax y x f x 2),(=,by y x f y 2),(=在整个平面上连续,从而由定理17.2知:f 在),(000y x P =处可微.因此,由定理17.4知该曲面在),,(000z y x M =点有不平行于z 轴的切平面且其方程为)(2)(200000y y by x x ax z z -+-=-.再由(4.2)式知,法线方程为12200000--=-=-z z by y y ax x x .10.令x x x f ααcos ),(2=,则函数f 在]2,0[]1,1[⨯-上连续.从而,则定理19.1知:函数x x x I d cos )(202⎰=αα在]1,1[-上连续,特别在0=α处连续.于是38d )0()(lim d cos lim 22022====⎰⎰→→x x I I x x x αααα; 11.0,0;12. 由定理知:.2012)13(41)13(213)d y y 3()d xy y ()(24422231323133+=-+-=+=+∂∂='⎰⎰x x y x y x x x I13.解 由公式知πθθππ)]0()([)]([)()(2200221022022f R f d r f rdr r f d dxdy y x f R RD-=='=+'⎰⎰⎰⎰⎰14.解 由于直线段→--AB 的方程为)10(21,1≤≤+=+=t t y t x ,所以由公式(1)知: .625d )251(d ]2)21)(1[(d )(d 1021=++=+++=-+⎰⎰⎰t t t tt t t y x y x xy L四.证明题1.证明 因为),(,0+∞-∞∈≥∀y x 有22111cos xx xy +≤+ 且反常积分⎰∞++02d 11x x 收敛,所以由M-判别法知含参量积分⎰∞++02d 1cos x x xy 在区间),(+∞-∞上一致收敛.2. 由推广的链式法则知:.cos )sin (cos cos )sin (d d d d d d d d t t t e tt u ve tt t z t v v z t u u z t z t t +-=+-+=∂∂+∂∂+∂∂= 3. 证明 应用不等式:(1)000(,)||||n n n P P x x y y ρ≤-+-;(2) 0000||(,), ||(,) (1,2,)n n n n x x P P y y P P n ρρ-≤-≤=可知。

西南大学2016数学分析1422868706613

西南大学2016数学分析1422868706613

《数学分析选讲》 第四次作业一、判断下列命题的正误1.若函数)(x f 在],[b a 上可积,则)(x f 在],[b a 上有界. 对2.若)(x f 在[,]a b 上可积,则2()f x 在[,]a b 上也可积.对3.若)(x f 在区间I 上有定义,则)(x f 在区间I 上一定存在原函数.错4.若)(x f 为],[b a 上的增函数,则)(x f 在],[b a 上可积.对5.若)(x f 在],[b a 上连续,则存在[,]a b ξ∈,使()()()ba f x dx fb a ξ=-⎰.对二、选择题1.对于不定积分⎰dx x f )( ,下列等式中( A ) 是正确的. A )()(x f dx x f dx d =⎰; B ⎰=')()(x f dx x f ; C )()(x f x df =⎰; D ⎰=)()(x f dx x f d2.若⎰+=c e x dx x f x 22)(,则=)(x f ( D )A x xe 22 ;B x e x 222 ;C x xe 2 ;D )1(22x xe x +3.设5sin x 是)(x f 的一个原函数,则⎰='dx x f )(( B )A c x +-sin 5 ;B c x +cos 5 ;C 5sin x ;D x sin 5-4.若)(x f '为连续函数,则(41)'+=⎰f x dx ( B ) A 1(41)4++f x c ; B ()f x c +; C (41)++f x c ; D 4(41)++f x c 5.若⎰+=c x dx x f 2)(,则⎰=-dx x xf )1(2( C )A c x +-22)1(2 ;B c x +--22)1(2;C c x +--22)1(21 ; D c x +-22)1(21 6. =+⎰xdx cos 1 ( C ) A tan sec x x c -+ ; B csc cotx x -+; C tan 2x c + ; D tan()24x π-7.=-⎰)d(e x x ( D )A c x x +-e ;B c x x x +---e e ;C c x x +--e ;D c x x x ++--e e8. 已知x e f x +='1)( ,则=)(x f ( D )A 1ln x c ++ ;B 212x x c ++ ;C 21ln ln 2x x c ++ ; D ln x x c + 三、计算题1.求不定积分(2)x x e e dx -⎰. 2.求不定积分sin x xdx ⎰.sin cos x xdx xd x =-⎰⎰ [cos cos ]x x xdx =--⎰cos sin x x x c =-++ .3.求不定积分21+⎰x dx x .4.求不定积分⎰dx .四、证明题设f 为连续函数.证明:00(sin )(sin )2x f x dx f x dx πππ=⎰⎰.证 令t x -=π ,则 0(sin )xf x dx π⎰ ⎰---=0)][sin()(πππdt t f t 0()(sin )t f t dt ππ=-⎰0000(sin )(sin )(sin )(sin )f t dt t f t dtf x dx xf x dx ππππππ=-=-⎰⎰⎰⎰故00(sin )(sin )2xf x dx f x dx πππ=⎰⎰。

20年6月西南大学课程考试[0088]《数学分析选讲》 大作业(完整答案)

20年6月西南大学课程考试[0088]《数学分析选讲》 大作业(完整答案)

西南大学培训与继续教育学院课程考试试题卷学期:2020年春季课程名称【编号】: 数学分析选讲【0088】 A 卷考试类别:大作业 满分:100 分一、 判断下列命题的正误(每小题2分,共16分)1. 函数()3sin 2cos f x x x =- 既不是奇函数,也不是偶函数. ( √ ) 2.有界的非空数集必有上确界. ( × ) 3.若数列{}n a 收敛,则数列{}n a 也收敛. ( × ) 4.若数列}{n x 收敛,数列}{n y 发散,则数列{}n n x y +发散. ( √ ) 5.任一实系数奇次方程至少有一个实根. ( √ ) 6.若()f x 在0x 处连续,则()f x 在0x 处一定可导. ( × ) 7.若()f x 在0x 处可导,则()f x 在0x 处的左导数与右导数都存在. ( × ) 8.若函数()f x 在[,]a b 上有无限多个间断点,则()f x 在[,]a b 上一定不可积. ( × )二、选择题(每小题 5分,共30分)1.设21,1()3,1x x f x x x -≤⎧=⎨->⎩, 则 (1)f =( C ) .A 1- ;B 0 ;C 1 ;D 2 2.设()f x 在[,]a b 上无界,且()f x 不等于0,则1()f x 在[,]a b 上 ( B ) A 无界 ; B 有界;C 有上界或有下界 ;D 可能有界,也可能无界 3.定义域为[,]a b ,值域为(1,1)-的连续函数( C )A 存在;B 可能存在;C 不存在;D 存在且唯一4.设f 可导,则 2(cos )d f x = ( B )A 2(cos )f x dx '; B 2(cos )sin 2f x x dx '-; C 22(cos )cos f x xdx '; D 22(cos )sin f x xdx '5.15411x x dx --=⎰( A )A 0 ;B 1- ;C 1 ;D 2 6.2x xe dx +∞-=⎰( C )A 1 ;B 12 ;C 0 ;D 12-三、计算题(每小题9分,共45分)1.求极限11lim 2x x x x +→∞+⎛⎫⎪-⎝⎭.2.设22()2ln(2)f x x x x =+-++,求()f x '.3.求函数543551y x x x =-++在区间[1,2]-上的最大值与最小值.4.求不定积分arctan x dx⎰.5.求定积分⎰10dx e x. `四、证明题(9分)证明:若函数(),()f x g x 在区间[,]a b 上可导,且()(),()()f x g x f a g a ''>=,则在(,]a b 内有()()f x g x >.答:证明:设辅助函数F (x )=f (x )-g(x ),则F (x )在区间[a ,b ]上可导,且F ¢(x )=f ¢(x )-g(x )>0,故F (x )在区间[a ,b ]上是增函数,因此,当x Î(a ,b )时,F (x )>F (a ),而F (a )=f (a )-g (a )=0,即F (x )>0,f (x )-g (x )>0,∴ f (x )>g (x )。

西南大学2020年秋季数学分析选讲【0088】机考大作业参考答案

西南大学2020年秋季数学分析选讲【0088】机考大作业参考答案
西南大学培训与继续教育学院课程考试试题卷
学期:2020年秋季
课程名称【编号】:数学分析选讲【0088】A卷
考试类别:大作业 满分:100分
一、判断下列命题的正误(每小题2分,共20分)
1.设 为二实数,则 . √
2.函数 为 上的有界函数.√
3. 若数列 收敛,则数列 一定收敛.×
4.设数列 收敛, 发散,则数列 一定发散.√
A ;B ;C ;D
2.设 , ,则极限 (C)
A ; B ; C ; D
3.若 为连续函数,则 ( B ).
A ; B ; C ; D
三、计算题(每小题10分,共50分)
1.求极限 .
2.求极限 .
3.设 ,求 及 .
4.求不定积分 .
5、求定积分 .`
5.若函数 在 处可导,则 在 处连续.√
6.若 在 上连续,则 在 上一定有最大值和最小值.×
7.若函数 在点 处的左、右导数都存在,则 在 处必可导.×
8.若 , ,则 在 内递增.√
9.若 在 上可积,则 在 上也可积. ×
10.若级数 收敛,则 .√
二、选择题(每小题5分,共20分)
1.设 , 则 (D).
四、证明题( 10分)
证明:当 时, .

《数学分析选讲》第三次作业

《数学分析选讲》第三次作业

《数学分析选讲》 第三次作业 一、判断下列命题的正误1. 若函数)(x f 在点0x 处的左、右导数都存在,则)(x f 在0x 处必连续.(正确)2. 若)(x f 在0x 处可导,则)(x f 在0x 处可微.(正确)3. 若两个函数在区间I 上的导数处处相等,则这两个函数必相等.(错误)4. 若)(x f 是可导的偶函数,则(0)0f '=. (正确) 5.若0(,)x a b ∈是)(x f 的导函数的间断点,则0x 是()f x '的第二类间断点. (正确) 6. 若00()0,()0f x f x '''=≠,则0x 一定是)(x f 的极值点.(正确)二、选择题1.设f 是奇函数,且0)(lim=→xx f x , 则 ( A ) A )(x f y =在0=x 的切线平行于x 轴; B 0=x 是f 的极大值点; C 0=x 是f 的极小值点; D )(x f y =在0=x 的切线不平行于x 轴 2.设 )()()(x a x x f ϕ-=,其中)(x ϕ在a x =处连续但不可导,则()f a '=( B ) A )(a ϕ; B ()a ϕ' ; C ()a ϕ'- ; D 不存在 3.设f 可导,则 (sec )d f x = ( B )A 2(sec )sec f x x dx '; B (sec )sec tan f x x xdx ';C (sec )sec f x xdx ';D 2(sec )tan f x xdx '4.设函数()f x 可导且下列极限均存在,则不成立的是( B )A 0()(0)lim(0)x f x f f x →-'= ; B 0000(2)()lim ()h f x h f x f x h→+-'=;C 0000()()lim ()2h f x h f x h f x h →+--'= ;D 0000()()lim ()h f x f x h f x h→--'=5.设()ln f x x x =,且0()2f x '= , 则0()f x =( C )Ae 2 ; B 2e; C e ; D 1 6. 已知()x f e y = ,则y ''=( C )A ()()f x ef x ''; B ()x f e ; C ()2{[()]()}f x e f x f x '''+ ; D ()[()()]f x e f x f x '''+7.下列结论中正确的有( D )A 如果点0x 是函数()f x 的极值点,则有0()0f x '=;B 如果0()0f x '=,则点0x 必是函数()f x 的极值点;C 函数()f x 在区间(,)a b 内的极大值一定大于极小值;D 如果点0x 是函数()f x 的极值点,且0()f x '存在, 则必有0()0f x '=8.设)(x f 可导,则220()()limh f x h f x h→+-=( B ) A ()f x ' ; B 2()f x ' ; C 0 ; D 2()()f x f x '三、计算题1.已知221ln(1)y x x x =+-++,求y '.解:y ′=121221122222++++-+x x x x xx x=11122+-+x x x =112+-x x2.设21arcsin y x x x =-+,求y '. 解:y ′=22221111xxx x ----- =2212xx --3.设⎩⎨⎧<+≥=11)(2x b ax x x x f ,试确定a ,b 的值,使f 在1=x 可导.解:要使在可导,在必连续,于是必左连续.,从而.在的右导数.左导数为,只要,则在的左导数与右导数相等,从而可导.这时4.用洛比塔法则求极限 )111(lim 0--→x x e x . 解:.四、证明题设()f x '在有限区间(,)a b 上有界,证明()f x 在(,)a b 上有界.证: 由假设,存在,使当时有.取定,对任意的,由Lagrange 中值定理,存在介于之间,使得=(),于是故在上有界.。

数学分析选讲参考答案

数学分析选讲参考答案

《数学分析选讲》A/B 模拟练习题参考答案一、选择题:(共18题,每题3分) 1、下列命题中正确的是( A B )A 、若'()()F x f x =,则()F x c +是()f x 的不定积分,其中c 为任意常数B 、若()f x 在[,]a b 上无界,则()f x 在[,]a b 上不可积C 、若()f x 在[,]a b 上有界,则()f x 在[,]a b 上可积D 、若()f x 在[,]a b 上可积,则()f x 在[,]a b 上可积 2、设243)(-+=x x x f ,则当0→x 时,有( B ) A .)(x f 与x 是等价无穷小 B .)(x f 与x 同阶但非是等价无穷小 C.)(x f 是比x 高阶的无穷小 D.)(x f 是比x 低阶的无穷小3、若f 为连续奇函数,则()x f sin 为( A ) A 、奇函数 B、偶函数C、非负偶函数 D、既不是非正的函数,也不是非负的函数. 4、函数()f x 在[,]a b 上连续是()f x 在[,]a b 上可积的( A )条件 A . 充分非必要 B 。

必要非充分C 。

充分必要条件D . 非充分也非必要条件。

5、若f 为连续奇函数,则()x f cos 为( B ) A 、奇函数 B、偶函数C、非负偶函数 D 、既不是非正的函数,也不是非负的函数。

6、设arctan (),xf x x=则0x =是()f x 的( B ) A 。

连续点 B. 可去间断点 C.跳跃间断点 D. 第二类间断点7、设+N ∈∃N ,当N n >时,恒有n n b a >,已知A a n n =∞→lim ,B b n n =∞→lim .则正确的选项是( A )A 、B A ≥ B 、B A ≠C 、B A > D、A 和B 的大小关系不定. 8、函数f (x,y) 在点00(,)x y 连续是它在该点偏导数都存在的( A ) A 。

2019年3月西南大学网络教育3月大作业答案-0088数学分析选讲

2019年3月西南大学网络教育3月大作业答案-0088数学分析选讲
西南大学网络与继续教育学院课程考试试题卷
类别:网教专业:数学与应用数学(数学教育)2019年3月
课程名称【编号】:数学分析选讲【0088】A卷
大作业满分:100分
答案必须做在答题卷上,做在试题卷上不予记分。
一、判断下列命题的正误(每小题3分,共15分)
1.函数 为 上的增函数.(√)
2.若数列 无界,则数列 一定发散.(√)
A ;B ;C ;D
6. (B)
A ;B ;C ;D
三、计算题(每小题9分,共45分)
1.求极限 .
解:
2.设 ,求 .
解:
3.求函数 在区间 上的最大值与最小值.
解:
4.求不定积分 .
解:
5.求定积分 .`
解:
四、证明题(9分)
证明:若函数 在区间 上可导,且 ,则在 内有 .
3.若 在 处不可微,则 在 处一定不可导.(√)
4.任一实系数奇次方程至少有一个实根.(√)
5.若 在 处的左导数与右导数都存在,则 在 处可导.(×)
6.若数列 收敛,数列 发散,则数列 发散.(√)
7.若函数 在数集 上的导函数处处为零,则 在数集 上恒为常数.(.×)
8.若 与 在 上都可积,则 在 )
1.设 在 上是偶函数,则 在 上是(A)
A偶函数;B奇函数;
C既不是奇函数,也不是偶函数;D可能是奇函数,也可能是偶函数
2.极限 ()
A ;B ;C ;D
3.下列极限正确的是(C)
A ;B ;C ;D
4.设 是 的一个原函数,则 (C)
A ;B ;C ;D
5. ( ).

西南大学网上作业题及参考答案

西南大学网上作业题及参考答案

西南大学网上作业题及参考答案西南大学《社会科学研究方法》网上作业题及答案.doc 西南大学《色彩》网上作业题及答案.doc西南大学《人力资源开发与管理》网上作业题及答案.doc 西南大学《区域分析与规划》网上作业题及答案.doc西南大学《园艺植物研究法》网上作业题答案.doc西南大学《遗传学》网上作业题答案.doc西南大学《仪器分析》网上作业题答案.doc西南大学《消费者行为学》网上作业题答案.doc西南大学《西方经济学(下)》网上作业题答案.doc西南大学《文字设计》网上作业题答案.doc西南大学《外语教育技术》网上作业题答案.doc西南大学《外国音乐简史》网上作业题答案.doc西南大学《土地利用规划学》网上作业题答案.doc西南大学《土地规划学》网上作业题答案.doc西南大学《商务沟通》网上作业题答案.doc西南大学《论文写作》网上作业题答案.doc西南大学《旅游地理学》网上作业题答案.doc西南大学《合唱指挥常识》网上作业题答案.doc西南大学《歌剧艺术欣赏》网上作业题答案.doc西南大学《高效率教学》网上作业题答案.doc西南大学《儿童哲学》网上作业题答案.doc西南大学《动物生物学》网上作业题答案.doc西南大学《动物生物化学》网上作业题答案.doc西南大学《动物生理学》网上作业题答案.doc西南大学《邓小平教育思想》网上作业题答案.doc西南大学《财务会计》网上作业题答案.doc西南大学《中国教育哲学思想》网上作业题及答案.doc 西南大学《中国法制史》网上作业题答案.doc西南大学《中国法律思想史》网上作业题及答案.doc 西南大学《政治学与管理》网上作业题及答案.doc西南大学《政治学》网上作业题及答案.doc西南大学《证券学》网上作业题及答案.doc西南大学《影视摄影》网上作业题及答案.doc西南大学《英语阅读一》(高)网上作业题答案.doc西南大学《英语阅读四(高)》网上作业题及答案.doc 西南大学《英语阅读二》(高)网上作业题答案.doc西南大学《英语听说二》(专)网上作业题及答案.doc 西南大学《英语国家概况》网上作业题及答案.doc西南大学《房地产经营管理》网上作业题及答案.doc西南大学《房地产估价》网上作业题及答案.doc西南大学《电子政务》网上作业题及答案.doc西南大学《当代中国公共政策》网上作业题及答案.doc 西南大学《城市地理学》网上作业题及答案.doc西南大学《财务会计》网上作业题及答案.doc西南大学《办公自动化》网上作业题及答案.doc西南大学《班主任工作》网上作业题及答案.doc西南大学《课堂教学艺术》网上作业题及答案.doc西南大学《经济地理学》网上作业题及答案.doc西南大学《计算机图象处理基础》网上作业题及答案.doc 西南大学《计算机辅助设计》网上作业题及答案.doc西南大学《花卉栽培学概》网上作业题及答案.doc西南大学《果树栽培学概论》网上作业题及答案.doc西南大学《国际贸易》网上作业题及答案.doc西南大学《管理中的计算机应用》网上作业题及答案.doc 西南大学《管理学》网上作业题及答案.doc西南大学《古代文化》网上作业题及答案.doc西南大学《公务员制度》网上作业题及答案.doc西南大学《公文写作》网上作业题及答案.doc西南大学《工程地质》网上作业题及答案.doc西南大学《政治经济学》网上作业题及答案.doc西南大学《语文教学方法论》网上作业题及答案.doc西南大学《行政管理学》网上作业题及答案.doc西南大学《行政法与行政诉讼法》网上作业题及答案.doc 西南大学《小学数学教学方法》网上作业题及答案.doc 西南大学《系统工程》网上作业题及答案.doc西南大学《无土栽培》网上作业题及答案.doc西南大学《土地管理学基础》网上作业题及答案.doc西南大学《蔬菜栽培学概论》网上作业题及答案.doc西南大学《社会学》网上作业题及答案.doc西南大学《素描》网上作业题及答案.doc西南大学《思想政治教育学》网上作业题及答案.doc西南大学《数学分析选讲》网上作业题答案.doc西南大学《世界旅游市场》网上作业题及答案.doc西南大学《审计学》网上作业题及答案.doc西南大学《社会学概论》网上作业题答案.doc西南大学《社会心理学》网上作业题答案.doc西南大学《社会调查与研究方法》网上作业题答案.doc 西南大学《社会保障》网上作业题及答案.doc西南大学《商品流通企业会计》网上作业题及答案.doc 西南大学《商法学》[下]网上作业题及答案.doc西南大学《人力资源管理》网上作业题及答案.doc 西南大学《人口地理学》网上作业题及答案.doc西南大学《人格心理学》网上作业题及答案.doc西南大学《企业管理》网上作业题及答案.doc西南大学《普通心理学》网上作业题答案.doc西南大学《普通物理选讲一》网上作业题及答案.doc 西南大学《民间文学》网上作业题答案.doc西南大学《民法总论》网上作业题答案.doc西南大学《民法分论》网上作业题及答案.doc西南大学《艺术概论》网上作业题及答案.doc西南大学《形式逻辑》网上作业题及答案.doc西南大学《行政法学》网上作业题及答案.doc西南大学《刑法总论》网上作业题答案.doc西南大学《刑法分论》网上作业题及答案.doc西南大学《新税制》网上作业题及答案.doc西南大学《心理学》网上作业题及答案.doc西南大学《心理测量学》网上作业题及答案.doc西南大学《宪法学》网上作业题答案.doc西南大学《线性代数》网上作业题答案.doc西南大学《现代化学教学论》网上作业题答案.doc 西南大学《现代汉语下》网上作业题及答案.doc西南大学《现代汉语上》网上作业题答案.doc西南大学《现代汉语词汇》网上作业题答案.doc西南大学《西方哲学史》网上作业题及答案.doc西南大学《西方经济学》网上作业题及答案.doc西南大学《文字学》网上作业题及答案.doc西南大学《外国文学下》网上作业题及答案.doc西南大学《外国文学上》网上作业题及答案.doc西南大学《土地管理》网上作业题及答案.doc西南大学《统计学原理》网上作业题答案.doc西南大学《体育新闻》网上作业题及答案.doc西南大学《综合英语一》网上作业题答案.doc西南大学《综合英语四》网上作业题及答案.doc西南大学《综合英语七》网上作业题及答案.doc西南大学《综合英语二》网上作业题及答案.doc西南大学《专业英语》网上作业题答案.doc西南大学《中级无机化学》网上作业题答案.doc西南大学《中国新诗与中外文化》网上作业题答案.doc 西南大学《古代散文》网上作业题及答案.doc西南大学《公司法学》网上作业题答案.doc西南大学《公共事业管理导论》网上作业题答案.doc 西南大学《工程地质学》网上作业题及答案.doc西南大学《高等有机化学》网上作业题及答案.doc西南大学《分子生物学》网上作业题及答案.doc西南大学《房地产法》网上作业题及答案.doc西南大学《法理学》网上作业题答案.doc西南大学《电算化会计》网上作业题及答案.doc西南大学《道德》网上作业题及答案.doc西南大学《单片机及应用》网上作业题及答案.doc西南大学《大学英语二》网上作业题答案.doc西南大学《成本会计》网上作业题及答案.doc西南大学《财政学》网上作业题及答案.doc西南大学《财务会计学》网上作业题答案.doc西南大学《材料化学》网上作业题及答案.doc西南大学《标准日本语四》网上作业题及答案.doc西南大学《旅游政策与法规》网上作业题答案.doc西南大学《旅游英语上》网上作业题及答案.doc西南大学《旅游心理学》网上作业题答案.doc西南大学《旅游企业投资与管理》网上作业题及答案.doc 西南大学《旅游美学》网上作业题及答案.doc西南大学《旅游景区开发与管理》网上作业题及答案.doc 西南大学《旅游经济学》网上作业题及答案.doc西南大学《领导科学》网上作业题及答案.doc西南大学《课程论》网上作业题及答案.doc西南大学《经济法》网上作业题及答案.doc西南大学《金融理论与实务》网上作业题及答案.doc 西南大学《教育学》网上作业题及答案.doc西南大学《教育心理学》网上作业题答案.doc西南大学《教育统计学》网上作业题及答案.doc西南大学《教育生理学》网上作业题及答案.doc西南大学《教育社会学》网上作业题及答案.doc西南大学《教育科研方法》网上作业题及答案.doc西南大学《教育经济学》网上作业题及答案.doc西南大学《教育法学》网上作业题及答案.doc西南大学《教学论》网上作业题及答案.doc西南大学《计算机应用》网上作业题及答案.doc西南大学《计算机导论》网上作业题答案.doc西南大学《基础语法下》网上作业题及答案.doc西南大学《婚姻法》网上作业题及答案.doc西南大学《环境学概论》网上作业题及答案.doc西南大学《环境伦理学》网上作业题及答案.doc西南大学《化学实验教学研究》网上作业题及答案.doc 西南大学《合同法》网上作业题及答案.doc西南大学《美学原理》网上作业题及答案.doc西南大学《体育文献检索》网上作业题及答案.doc西南大学《体育社会学》网上作业题及答案.doc西南大学《体育公共关系》网上作业题及答案.doc西南大学《唐宋词研究》网上作业题答案.doc西南大学《微积分初步》网上作业题及答案.doc西南大学《网页设计》网上作业题及答案.doc西南大学《土木工程材料》网上作业题及答案.doc西南大学《土地资源学》网上作业题及答案.doc西南大学《土地制度与政策》网上作业题及答案.doc西南大学《土地管理学》网上作业题及答案.doc西南大学《土地法学》网上作业题及答案.doc西南大学《田间试验设计》网上作业题及答案.doc西南大学《天然药物化学》网上作业题及答案.doc西南大学《体育教育学(方法论)》网上作业题及答案.doc 西南大学《水力学》网上作业题及答案.doc西南大学《数学活动》网上作业题及答案.doc西南大学《蔬菜栽培学》网上作业题及答案.doc西南大学《市场营销》网上作业题及答案.doc西南大学《社会心理学》网上作业题及答案.doc西南大学《色彩构成》网上作业题及答案.doc西南大学《企业战略管理》网上作业题及答案.doc西南大学《普通测量学》网上作业题及答案.doc西南大学《盆景制作》网上作业题及答案.doc西南大学《民族民间音乐》网上作业题及答案.doc西南大学《面向对象程序设计》网上作业题及答案.doc西南大学《乐理》网上作业题及答案.doc西南大学《中学数学课堂教学设计》网上作业题及答案.doc 西南大学《中国音乐史》网上作业题及答案.doc西南大学《中国古代文学二》网上作业题及答案.doc西南大学《政府经济学》网上作业题及答案.doc西南大学《园艺产品营销学》网上作业题及答案.doc西南大学《园艺产品采后处理与商品化》网上作业题及答案.doc 西南大学《园林制图》网上作业题及答案.doc西南大学《园林艺术设计》网上作业题及答案.doc西南大学《园林苗圃学》网上作业题及答案.doc西南大学《园林建筑》网上作业题及答案.doc西南大学《园林工程概预算》网上作业题及答案.doc西南大学《园林工程初步》网上作业题及答案.doc西南大学《英语语法》网上作业题及答案.doc西南大学《英语写作》网上作业题及答案.doc西南大学《音乐》网上作业题及答案.doc西南大学《药物化学》网上作业题及答案.doc西南大学《遥感概论》网上作业题及答案.doc西南大学《学校心理学》网上作业题及答案.doc西南大学《学习心理学》网上作业题及答案.doc西南大学《信息安全》网上作业题及答案.doc西南大学《心理学教学法(方法论)》网上作业题及答案.doc西南大学《小学数学教育学》网上作业题及答案.doc西南大学《小学数学教学案例分析》网上作业题及答案.doc 西南大学《西方文学与文化》网上作业题及答案.doc西南大学《国际私法》网上作业题及答案.doc西南大学《国际经济法》网上作业题及答案.doc西南大学《管理学原理》网上作业题及答案.doc西南大学《管理思想史》网上作业题及答案.doc西南大学《学校管理学》网上作业题及答案.doc西南大学《学校德育》网上作业题及答案.doc西南大学《学前心理学》网上作业题及答案.doc西南大学《学前教育学》网上作业题及答案.doc西南大学《新文学思潮与流派》网上作业题答案.doc西南大学《线性代数》网上作业题及答案.doc西南大学《西方经济学(上)》网上作业题及答案.doc西南大学《物业管理》网上作业题及答案.doc西南大学《土地评价与管理》网上作业题答案.doc西南大学《非营利组织会计》网上作业题及答案.doc西南大学《房屋建筑学2》网上作业题及答案.doc西南大学《房屋建筑学1》网上作业题及答案.doc西南大学《法律逻辑》网上作业题及答案.doc西南大学《发展心理学》网上作业题及答案.doc西南大学《地理信息系统原理》网上作业题及答案.doc西南大学《当代西方经济思潮》网上作业题及答案.doc西南大学《大气》网上作业题及答案.doc西南大学《存在主义疗法》网上作业题及答案.doc西南大学《城市园林绿地规划》网上作业题及答案.doc西南大学《测量学》网上作业题及答案.doc西南大学《奥林匹克学》网上作业题及答案.doc西南大学《C语言》网上作业题及答案.doc西南大学《钢筋混凝土结构与砌体结构》网上作业题及答案.doc 西南大学《课堂教学技术(教学论)》网上作业题及答案.doc 西南大学《酒店房务管理》网上作业题及答案.doc西南大学《金融学》网上作业题及答案.doc西南大学《解剖》网上作业题及答案.doc西南大学《结构力学》网上作业题及答案.doc西南大学《教育心理学》网上作业题及答案.doc西南大学《建筑制图2》网上作业题及答案.doc西南大学《建筑制图1》网上作业题及答案.doc西南大学《建筑力学》网上作业题及答案.doc西南大学《建筑工程招投标与合同管理》网上作业题及答案.doc 西南大学《建筑给水排水工程》网上作业题及答案.doc西南大学《建筑CAD》网上作业题及答案.doc西南大学《计算机制图基础(CAD)》网上作业题及答案.doc西南大学《基础工程》网上作业题及答案.doc西南大学《化工制图》网上作业题及答案.doc西南大学《化工技术经济学》网上作业题及答案.doc西南大学《花卉学》网上作业题及答案.doc西南大学《果树栽培学》网上作业题及答案.doc西南大学《果树盆景盆栽技术》网上作业题及答案.doc 西南大学《国际投资》网上作业题及答案.doc西南大学《国际金融》网上作业题及答案.doc西南大学《管理哲学》网上作业题及答案.doc西南大学《公共关系》网上作业题及答案.doc西南大学《工程建设监理》网上作业题及答案.doc西南大学《歌词创作与鉴赏》网上作业题及答案.doc西南大学《文献检索与应用》网上作业题及答案.doc西南大学《杜甫研究》网上作业题及答案.doc西南大学《第四纪地质学》网上作业题及答案.doc西南大学《地理信息系统》网上作业题答案.doc西南大学《导游业务》网上作业题及答案.doc西南大学《当代世界政治与经济》网上作业题及答案.doc 西南大学《操作系统》网上作业题及答案.doc西南大学《标准日本语三》网上作业题及答案.doc西南大学《标准日本语二》网上作业题及答案.doc西南大学《比较文学》网上作业题答案.doc西南大学《体育产业学导论》网上作业题及答案.doc 西南大学《税收学》网上作业题及答案.doc西南大学《生物化学》网上作业题及答案.doc西南大学《区域经济学》网上作业题及答案.doc西南大学《欧洲文化入门》网上作业题及答案.doc西南大学《面向对象技术》网上作业题答案.doc西南大学《美国文学史及选读》网上作业题及答案.doc 西南大学《马克思主义哲学》网上作业题及答案.doc 西南大学《旅游商品学》网上作业题及答案.doc西南大学《旅行社经营管理》网上作业题及答案.doc 西南大学《科学教育》网上作业题及答案.doc西南大学《经济数学(下)》网上作业题及答案.doc西南大学《经济数学(上)》网上作业题及答案.doc西南大学《教育案例研究》网上作业题答案.doc西南大学《建筑工程制图》网上作业题及答案.doc西南大学《会计学基础》网上作业题答案.doc西南大学《会计核算》网上作业题及答案.doc西南大学《会计电算化》网上作业题及答案.doc西南大学《化工基础》网上作业题及答案.doc西南大学《古代汉语下》网上作业题及答案.doc西南大学《高数选讲》网上作业题及答案.doc西南大学《概率统计》网上作业题答案.doc西南大学《分析化学(定量)》网上作业题答案.doc西南大学《房屋建筑学》网上作业题及答案.doc西南大学《多媒体技术》网上作业题及答案.doc西南大学《综合自然地理学》网上作业题及答案.doc 西南大学《综合英语八》网上作业题及答案.doc西南大学《资产管理》网上作业题及答案.doc西南大学《中学英语教学法》网上作业题及答案.doc 西南大学《中华人民共和国史》网上作业题及答案.doc 西南大学《植物生物学》网上作业题及答案.doc西南大学《语言学导论》网上作业题及答案.doc西南大学《英语阅读二》网上作业题及答案.doc西南大学《英语文体学引论》网上作业题答案.doc西南大学《英语听力一》(高)网上作业题及答案.doc西南大学《英语听力三》(高)网上作业题及答案.doc西南大学《英语词汇学》网上作业题及答案.doc西南大学《英国文学史及选读》网上作业题及答案.doc 西南大学《汇编语言》网上作业题及答案.doc西南大学《环境化学》网上作业题答案.doc西南大学《数学教育学》网上作业题及答案.doc西南大学《营销学》网上作业题及答案.doc西南大学《音乐审美常识》网上作业题及答案.doc西南大学《学校体育学》网上作业题及答案.doc西南大学《行政论理学》网上作业题及答案.doc西南大学《行政管理案例分析》网上作业题及答案.doc 西南大学《刑事诉讼法》网上作业题及答案.doc西南大学《心理诊断学》网上作业题及答案.doc西南大学《项目投资与分析》网上作业题及答案.doc 西南大学《现代教育技术》网上作业题及答案.doc西南大学《现代教学技术》网上作业题及答案.doc西南大学《现代广告学》网上作业题及答案.doc西南大学《系统论》网上作业题及答案.doc西南大学《物流管理》网上作业题及答案.doc西南大学《物理教育学》(方法论)网上作业题答案.doc 西南大学《物理化学》网上作业题答案.doc西南大学《网络原理》网上作业题及答案.doc西南大学《外国民商法》网上作业题及答案.doc西南大学《土木工程施工技术》网上作业题及答案.doc 西南大学《土木工程概预算》网上作业题及答案.doc 西南大学《土力学》网上作业题及答案.doc西南大学《土地经济学》网上作业题及答案.doc西南大学《投资经济学》网上作业题及答案.doc西南大学《统计物理基础》网上作业题及答案.doc西南大学《天文概论》网上作业题及答案.doc西南大学《体育经济学》网上作业题及答案.doc西南大学《体育概论》网上作业题及答案.doc西南大学《特稀蔬菜概论》网上作业题及答案.doc西南大学《数字电路》网上作业题及答案.doc西南大学《数学物理方法》网上作业题答案.doc西南大学《园艺作物无公害生产》网上作业题及答案.doc西南大学《园艺植物育种理论及实践》网上作业题及答案.doc 西南大学《园艺植物生物技术》网上作业题及答案.doc西南大学《园艺植物化学调控》网上作业题及答案.doc西南大学《园林植物造景设计》网上作业题及答案.doc西南大学《园林植物配置》网上作业题及答案.doc西南大学《园林建筑设计与构造》网上作业题及答案.doc西南大学《园林工程》网上作业题及答案.doc西南大学《语言学概论》网上作业题答案.doc西南大学《思想政治教育教学方法论》网上作业题及答案.doc 西南大学《税务会计》网上作业题及答案.doc西南大学《数学建模》网上作业题及答案.doc西南大学《食用菌栽培学》网上作业题及答案.doc西南大学《化学与社会》网上作业题答案.doc西南大学《古代汉语上》网上作业题答案.doc西南大学《公关语言》网上作业题及答案.doc西南大学《公共关系学》网上作业题及答案.doc西南大学《工程概预算》网上作业题及答案.doc西南大学《歌剧艺术欣赏》网上作业题及答案.doc西南大学《高级财务会计》网上作业题及答案.doc西南大学《钢琴教学法》网上作业题及答案.doc西南大学《钢筋混凝土结构基本原理》网上作业题及答案.doc 西南大学《钢结构设计》网上作业题及答案.doc西南大学《钢结构基本原理》网上作业题及答案.doc西南大学《儿童心理障碍》网上作业题及答案.doc西南大学《电子商务概论》网上作业题及答案.doc西南大学《地理科学》网上作业题及答案.doc西南大学《地籍管理》网上作业题及答案.doc西南大学《邓小平理论》网上作业题及答案.doc西南大学《城市园林绿地规划设计》网上作业题及答案.doc 西南大学《草坪学》网上作业题及答案.doc西南大学《变态心理学》网上作业题及答案.doc西南大学《花卉栽培》网上作业题及答案.doc西南大学《国际法》网上作业题及答案.doc西南大学《观光农场经营管理》网上作业题及答案.doc西南大学《市场营销学》网上作业题及答案.doc西南大学《世界政治制度史》网上作业题及答案.doc西南大学《实验心理学》网上作业题答案.doc西南大学《生物学》网上作业题及答案.doc西南大学《生物工程》网上作业题及答案.doc西南大学《生态学》网上作业题及答案.doc西南大学《人力资源开发与管理》网上作业题答案.doc西南大学《企业管理学》网上作业题及答案.doc西南大学《普通物理选讲二》网上作业题及答案.doc西南大学《盆景装饰》网上作业题及答案.doc西南大学《暖通空调》网上作业题及答案.doc西南大学《毛泽东思想概论》网上作业题及答案.doc西南大学《马克思主义哲学》网上作业题答案.doc西南大学《旅游规划与开发》网上作业题及答案.doc西南大学《鲁迅研究》网上作业题及答案.doc西南大学《领导心理学》网上作业题答案.doc西南大学《理论力学》网上作业题答案.doc西南大学《乐理常识》网上作业题及答案.doc西南大学《跨文化交际》网上作业题及答案.doc西南大学《教育统计与测评》网上作业题及答案.doc西南大学《建设法规》网上作业题及答案.doc西南大学《基础教育阶段英语课程》网上作业题及答案.doc 西南大学《基础会计学》网上作业题及答案.doc。

西南大学《数学分析选讲》作业及答案(共5次)

西南大学《数学分析选讲》作业及答案(共5次)

2013年春 西南大学《数学分析选讲》作业及答案(共5次,已整理) 第一次作业 【主观题】 【论述题】一、判断下列命题的正误1. 设S 为非空数集。

若S 有上界,则S 必有上确界;若S 有下界,则S 必有下确 (正确)2. 收敛数列必有界. (正确)3. 设数列{}n a 与{}n b 都发散,则数列{}n n a b +一定发散.(错误)4.若S 为无上界的数集,则S 中存在一递增数列趋于正无穷. (正确) 5.若一数列收敛,则该数列的任何子列都收敛. (正确)二、选择题1.设2,1()3,1x x f x x x -≤⎧=⎨->⎩, 则 [(1)]f f =( A ) .A 3- ;B 1- ;C 0 ;D 2 2.“对任意给定的)1,0(∈ε,总存在正整数N ,当N n ≥时,恒有2||2n x a ε-≤”是数列}{n x 收敛于a 的( A ).A 充分必要条件;B 充分条件但非必要条件;C 必要条件但非充分条件;D 既非充分又非必要条件 3.若数列}{n x 有极限a ,则在a 的(0)ε>邻域之外,数列中的点( B ) A 必不存在 ; B 至多只有有限多个;C 必定有无穷多个 ;D 可以有有限个,也可以有无限多个 4.数列}{n x 收敛,数列}{n y 发散,则数列{}n n x y + ( D ). A 收敛; B 发散; C 是无穷大; D 可能收敛也可能发散5.设a x n n =∞→||lim ,则 ( C )A 数列}{n x 收敛;B a x n n =∞→lim ;C 数列}{n x 可能收敛,也可能发散;D a x n n -=∞→lim ;6.若函数)(x f 在点0x 极限存在,则( C ) A )(x f 在0x 的函数值必存在且等于极限值;B )(x f 在0x 的函数值必存在,但不一定等于极限值;C )(x f 在0x 的函数值可以不存在;D 如果)(0x f 存在的话必等于函数值7.下列极限正确的是( D )A 01lim sin 1x x x →=;B sin lim1x x x →∞=; C 1lim sin 0x x x →∞=; D 01lim sin 1x x x →= 8. 1121lim21xx x→-=+( D )A 0;B 1 ;C 1- ;D 不存在三、计算题1.求极限 902070)15()58()63(lim --++∞→x x x x . 解: 902070902070902070583155863lim )15()58()63(lim⋅=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=--++∞→+∞→x x x x x x x x 2.求极限 211lim()2x x x x +→∞+-. 解:211lim()2x x x x +→∞+=-21111lim 2211xx x x x x →∞⎛⎫⎛⎫++ ⎪ ⎪⋅= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭211lim 21xx x x →∞⎛⎫+ ⎪= ⎪ ⎪-⎝⎭2(4)21[(1)]lim 2[(1)]x x x x x→∞--+- 264e e e-==. 3. 求极限 1111lim(1)23n n n→∞++++ 解:由于111111(1)23nnn n≤++++≤ 又1n =, 由迫敛性定理1111lim(1)123n n n→∞++++= 4.考察函数),(,lim )(+∞-∞∈+-=--∞→x n n n n x f xxxx n 的连续性.若有间断点指出其类型.解: 当0x <时,有221()lim lim 11x x x xx x n n n n n f x n n n --→∞→∞--===-++;同理当0x >时,有()1f x =.而(0)0f =,所以1,0()sgn 0,01,0x f x x x x -<⎧⎪===⎨⎪>⎩。

(完整版)数学分析选讲参考答案

(完整版)数学分析选讲参考答案

《数学分析选讲》A/B 模拟练习题参考答案1、选择题:(共18题,每题3分)1、下列命题中正确的是( A B )A 、若,则是的不定积分,其中为任意常数'()()F x f x =()F x c +()f x c B 、若在上无界,则在上不可积()f x [,]a b ()f x [,]a b C 、若在上有界,则在上可积()f x [,]a b ()f x [,]a b D 、若在上可积,则在上可积()f x [,]a b ()f x [,]a b 2、设,则当时,有( B )243)(-+=x x x f 0→x A .与是等价无穷小)(x f x B .与同阶但非是等价无穷小)(x f x C .是比高阶的无穷小)(x f x D .是比低阶的无穷小)(x f x 3、若为连续奇函数,则为( A )f ()x f sin A 、奇函数 B 、偶函数C 、非负偶函数D 、既不是非正的函数,也不是非负的函数.4、函数在上连续是在上可积的( A )条件()f x [,]a b ()f x [,]a b A. 充分非必要 B. 必要非充分C. 充分必要条件D. 非充分也非必要条件.5、若为连续奇函数,则为( B )f ()x f cos A 、奇函数 B 、偶函数C 、非负偶函数D 、既不是非正的函数,也不是非负的函数.6、设 则是的( B )arctan (),xf x x=0x =()f x A. 连续点 B. 可去间断点 C.跳跃间断点 D. 第二类间断点7、设,当时,恒有,已知,.则正确的+N ∈∃N N n >n n b a >A a n n =∞→lim B b n n =∞→lim 选项是( A )A 、B 、C 、D 、A 和B 的大小关系不定.B A ≥B A ≠B A >8、函数f(x,y) 在点连续是它在该点偏导数都存在的( A )00(,)x y A.既非充分也非必要条件 B 充分条件C.必要条件 D.充要条件9、极限( D )=+-∞→3321213limx x x A 、B 、C 、D 、不存在.323323-323±10、部分和数列有界是正项级数收敛的( C )条件}{n S ∑∞=1n n u A. 充分非必要 B. 必要非充分 C.充分必要 D.非充分非必要11、极限( A )=⎪⎭⎫ ⎝⎛-→210sin lim x x x x A 、 B 、 C 、 D 、不存在.13e -13e 3e -12、与的定义等价的是( B D )lim n n x a →∞=A 、 总有0,ε∀>n x a ε-<B 、 至多只有的有限项落在之外0,ε∀>{}n x (,)a a εε-+C 、存在自然数N ,对当,有0,ε∀>n N >n x a ε-<D 、存在自然数N ,对有0(01),εε∀><<,n N ∀>n x a ε-<13、曲线( D )2211x x ee y ---+=A 、没有渐近线B 、仅有水平渐近线C 、仅有垂直渐近线D 、既有水平渐近线, 也有垂直渐近线14、下列命题中,错误的是( A D )A 、若在点连续,则在既是右连续,又是左连续 ()f x 0x ()f x 0xB 、若对在上连续,则在上连续0,()f x ε∀>[,]a b εε+-()f x (,)a bC 、若是初等函数,其定义域为,,则()f x (,)a b 0(,)x a b ∈00lim ()()x x f x f x →=D 、函数在点连续的充要条件是在点的左、右极限存在且相()y f x =0x ()f x 0x 等15、设 为单调数列,若存在一收敛子列,这时有( A ){}n a {}j n aA 、 j n j n n a a ∞→∞→=lim lim B 、不一定收敛 {}n a C 、不一定有界{}n a D 、当且仅当预先假设了为有界数列时,才有A 成立{}n a 16、设在R 上为一连续函数,则有( C ) )(x f A 、当为开区间时必为开区间 I )(I f B 、当为闭区间时必为闭区间)(I f I C 、当为开区间时必为开区间 )(I f I D 、以上A,B,C 都不一定成立17、下列命题中错误的是( A C )A 、若,级数收敛,则收敛;lim 1nn nu v →∞=1n n v ∞=∑1n n u ∞=∑B 、若,级数收敛,则不一定收敛;(1,2)n n u v n ≤= 1n n v ∞=∑1n n u ∞=∑C 、若是正项级数,且有则收敛;1n n u ∞=∑,,N n N ∃∀>11,n n u u +<1n n u ∞=∑D 、若,则发散lim 0n n u →∞≠1n n u ∞=∑18、设 为一正项级数,这时有( D )∑∞=1n n uA 、若,则 收敛 0lim =∞→n n u ∑∞=1n n u B 、若 收敛,则∑∞=1n n u 1lim1<+∞→nn n u u C 、若 收敛,则 ∑∞=1n n u 1lim <∞→n n n u D 、以上A,B,C 都不一定成立2、填空题:(共15题,每题2分)1、设,则2或-22sin cos cos 20x y y y -+=='=2πy y 2、=n n n )11(lim -∞→e 13、=111(lim +∞→+n n n e 4、= 2 221lim 220---→x x x x 5、设收敛,则= 1021(10)n n x ∞=-∑lim n n x →∞6、= 121lim 221---→x x x x 327、2(,)limx y →=8、8 =-+→114sin limx xx9、设,则3()cos F x x '==)(x F C xx +-3sin sin 310、设,则 x y e =(2016)y =x e 11、幂级数的收敛半径为 11n ∞=12、积分的值为 0321421sin 21x xdx x x -++⎰13、曲线与轴所围成部分的面积为 36228y x x =--x 14、lim 1xx x x →∞⎛⎫= ⎪+⎝⎭1e -15、= 02222)0,0(),(lim y x y x y x +→三、计算题:(共15题,每题8分)1、求.⎰222,2sin 2cos 2cos 4cos t t tdt t d t t t t tdt===-=-+⎰⎰⎰⎰222cos 4sin 2cos 4sin 4sin t t td t t t t t tdt=-+=-+-⎰⎰=2x C-+2、将展开成的幂级数,并指出其收敛域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(0088)《数学分析选讲》网上作业题答案1:第一次作业2:第二次作业3:第三次作业4:第四次作业5:第五次作业1:[判断题]两个无穷小量的和一定是无穷小量参考答案:正确1、应注意写出要点;2、注意检查语法和拼写错误;3、文理通顺,中心突出。

2:[判断题]两个无穷大量的和一定是无穷大量参考答案:错误1、应注意写出要点;2、注意检查语法和拼写错误;3、文理通顺,中心突出。

3:[单选题]设f,g在(-a,a)上都是奇函数,则g(f(x))与f(g(x))A:都是奇函数B:都是偶函数C:一是奇函数,一是偶函数D:都是非奇、非偶函数参考答案:A社会实践是检验认识是否具有真理性的唯一标准,这是由真理的本性和实践的特点所决定的。

第一,真理的本性是主观同客观相符合。

要判明认识是否具有真理性的标准,只能通过一种能够把主观同客观联系、沟通起来的桥梁,这就是人们的社会实践,舍此别无它路。

它成为“实践是检验真理的唯一标准”的内在根据。

第二,实践的过程是一个主体能动地使自己的目的物化或对象化的过程,因而它具有直接现实性。

因此实践可以使主观与客观相对照,从而直接检验出主观认识是否与客观相符合以及符合的程度。

4:[判断题]闭区间上的连续函数是一致连续的参考答案:正确1、应注意写出要点;2、注意检查语法和拼写错误;3、文理通顺,中心突出。

5:[单选题]设数列{An}收敛,数列{Bn}发散,则数列{AnBn}A:收敛B:发散C:是无穷大D:可能收敛也可能发散参考答案:D马克思主义认为,劳动创造了人本身,同时也就创造了人类社会。

因此,只有实践,才是社会生活的真正本质。

说实践是社会的本质,主要理由是:首先,实践是社会关系的发祥地。

其次,实践构成了社会生活的基本领域。

最后,实践构成了社会发展的动力。

6:[判断题]最大值若存在必是上确界参考答案:正确1、应注意写出要点;2、注意检查语法和拼写错误;3、文理通顺,中心突出。

7:[判断题]若f,g在区间I上一致连续,则fg在I上也一致连续。

参考答案:错误1、应注意写出要点;2、注意检查语法和拼写错误;3、文理通顺,中心突出。

8:[判断题]若函数在某点可导,则在该点连续参考答案:正确1、应注意写出要点;2、注意检查语法和拼写错误;3、文理通顺,中心突出。

9:[单选题]一个数列{An}的任一子列都收敛是数列{An}收敛的A:充分条件,但不是必要条件B:必要条件,但不是充分条件C:充分必要条件D:既不是充分条件,也不是必要条件参考答案:C1、应注意写出要点;2、注意检查语法和拼写错误;3、文理通顺,中心突出。

10:[判断题]若f(x)在[a,b]上有定义,且f(a)f(b)参考答案:错误1、应注意写出要点;2、注意检查语法和拼写错误;3、文理通顺,中心突出。

11:[判断题]两个收敛数列的商不一定收敛参考答案:正确1、应注意写出要点;2、注意检查语法和拼写错误;12:[单选题]设函数f(x)在(a-c,a+c)上单调,则f(x)在a处的左、右极限A:都存在且相等B:都存在,但不一定相等C:至少有一个存在D:都不存在参考答案:B1、应注意写出要点;2、注意检查语法和拼写错误;3、文理通顺,中心突出。

13:[单选题]若函数f在(a,b)的任一闭区间上连续,则fA:在[a,b]上连续B:在(a,b)上连续C:在(a,b)上不连续D:在(a,b)上可能连续,也可能不连续参考答案:B1、应注意写出要点;2、注意检查语法和拼写错误;3、文理通顺,中心突出。

14:[判断题]有上界的非空数集必有上确界参考答案:正确1、应注意写出要点;2、注意检查语法和拼写错误;15:[单选题]定义域为[a,b],值域为(-1,1)的连续函数A:在一定的条件下存在B:不存在C:存在且唯一D:存在但不唯一参考答案:B1、应注意写出要点;2、注意检查语法和拼写错误;3、文理通顺,中心突出。

16:[单选题]函数f在c处存在左、右导数,则f在c点A:可导B:连续C:不可导D:不连续参考答案:B1、应注意写出要点;2、注意检查语法和拼写错误;3、文理通顺,中心突出。

17:[单选题]y=f(x)在c处可导是y=f(x)在点(c,f(c))处存在切线的A:充分条件B:必要条件C:充要条件D:既不是充分条件,也不是必要条件参考答案:A1、应注意写出要点;2、注意检查语法和拼写错误;3、文理通顺,中心突出。

18:[判断题]收敛数列必有界参考答案:正确1、应注意写出要点;2、注意检查语法和拼写错误;3、文理通顺,中心突出。

19:[判断题]两个收敛数列的和不一定收敛参考答案:错误1、应注意写出要点;2、注意检查语法和拼写错误;3、文理通顺,中心突出。

20:[单选题]设f在[a,b]上无界,且f(x)不等于0,则1/f(x)在[a,b]上A:无界B:有界C:有上界或有下界D:可能有界,也可能无界参考答案:D1、应注意写出要点;2、注意检查语法和拼写错误;21:[判断题]区间上的连续函数必有最大值参考答案:错误1、应注意写出要点;2、注意检查语法和拼写错误;3、文理通顺,中心突出。

22:[单选题]设f,g 为区间(a,b)上的递增函数,则min{f(x),g(x)}是(a,b) 上的A:递增函数B:递减函数C:严格递增函数D:严格递减函数参考答案:A马克思主义认为,劳动创造了人本身,同时也就创造了人类社会。

因此,只有实践,才是社会生活的真正本质。

说实践是社会的本质,主要理由是:首先,实践是社会关系的发祥地。

其次,实践构成了社会生活的基本领域。

最后,实践构成了社会发展的动力。

23:[判断题]两个无穷小量的商一定是无穷小量参考答案:错误1、应注意写出要点;2、注意检查语法和拼写错误;3、文理通顺,中心突出。

24:[判断题]若函数在某点无定义,则在该点的极限不存在参考答案:错误1、应注意写出要点;2、注意检查语法和拼写错误;25:[判断题]狄利克雷函数D(x)是有最小正周期的周期函数参考答案:错误1、应注意写出要点;2、注意检查语法和拼写错误;3、文理通顺,中心突出。

26:[论述题]1267585623638.doc参考答案:1267585623639.doc1:[判断题]不存在仅在一点可导,而在该点的任一空心邻域内皆无连续点的函数。

参考答案:错误1267585623639.doc2:[判断题]闭区间上的可积函数是有界的参考答案:正确1267585623639.doc3:[判断题]任一实系数奇次方程至少有一个实根参考答案:正确1267585623639.doc4:[判断题]可导的偶函数,其导函数必是奇函数参考答案:正确1267585623639.doc5:[判断题]若函数在某点可导,则在该点的左右导数都存在参考答案:正确1267585623639.doc6:[判断题]若函数f的导函数在区间I上有界,则f在I上一致连续。

参考答案:正确1267585623639.doc7:[判断题]可导的单调函数,其导函数仍是单调函数。

参考答案:错误1267585623639.doc8:[判断题]可导的周期函数,其导函数必是周期函数参考答案:正确1267585623639.doc9:[判断题]若函数在某点的左右导数都存在,则在该点可导参考答案:错误1267585623639.doc10:[判断题]若函数f在区间I上单调,则f在I上的任一间断点必是第一类间断点参考答案:正确1267585623639.doc11:[判断题]若两个函数的导数处处相等,则这两个必相等参考答案:错误1267585623639.doc12:[判断题]若函数在某点的左右导数都存在,则在该点连续。

参考答案:正确1267585623639.doc13:[判断题]若函数f在数集D上的导函数处处为零,则f在数集D上恒为常数。

参考答案:错误1267585623639.doc14:[判断题]若f在实数集R上是偶函数,则x=0是f的极值点。

参考答案:错误1267585623639.doc15:[判断题]若f在区间I上连续,则f在I上存在原函数。

参考答案:正确1267585623639.doc16:[判断题]若f、g在[a,b]上的可积,则fg在[a,b]上也可积参考答案:正确1267585623639.doc17:[判断题]若f是[a,b]上的单调函数,则f在[a,b]上可积。

参考答案:正确1267585623639.doc18:[判断题]若f,g均为区间I上的凸函数,则f+g也为I上的凸函数。

参考答案:正确1267585623639.doc19:[判断题]实轴上的任一有界无限点集至少有一个聚点参考答案:正确1267585623639.doc20:[论述题]1267585623640.doc参考答案:1267585623639.doc1:[判断题]条件收敛级数一定含有无穷多个不同符号的项。

参考答案:正确1267585623641.doc2:[判断题]收敛级数一定绝对收敛参考答案:错误1267585623641.doc3:[判断题]在级数的前面加上或去掉有限项不影响级数的收敛性参考答案:正确1267585623641.doc4:[判断题]幂级数的收敛区间必然是闭区间参考答案:错误1267585623641.doc5:[判断题]收敛级数任意加括号后仍收敛参考答案:正确1267585623641.doc6:[判断题]不绝对收敛的级数一定条件收敛参考答案:错误1267585623641.doc7:[判断题]设f在(a,b)内可导,且其导数单调,则其导数在(a,b)内连续参考答案:正确1267585623641.doc8:[判断题]有限区间上两个一致连续函数的积必一致连续参考答案:正确1267585623641.doc9:[判断题]任何有限集都有聚点参考答案:错误1267585623641.doc10:[判断题]闭区间[a,b]的所有聚点的集合是[a,b]参考答案:正确1267585623641.doc11:[判断题]实数集R上的连续周期函数必有最大值和最小值参考答案:正确1267585623641.doc12:[判断题]设f是(a,b)内可导的凸函数,则其导函数在(a,b)内递增参考答案:正确1267585623641.doc13:[判断题]处处间断的函数列不可能一致收敛于一个处处连续的函数。

参考答案:错误1267585623641.doc14:[论述题]1267585623642.doc参考答案:1267585623641.doc1:[论述题]1267585623644.doc参考答案:1267585623643.doc1:[论述题]1267585623646.doc参考答案:1267585623647.doc。

相关文档
最新文档