高分遥感影像信息处理与信息提取 ppt课件

合集下载

高光谱遥感影像的提取和处理方法

高光谱遥感影像的提取和处理方法

高光谱遥感影像的提取和处理方法近年来,随着遥感技术的不断发展,高光谱遥感影像的获取成为了现实。

高光谱遥感影像是指通过遥感仪器获取的光谱范围较广的遥感影像,其相较于传统遥感影像具有更高的空间和光谱分辨率。

在许多领域,包括环境保护、农业、城市规划等,高光谱遥感影像的提取和处理方法具有重要的应用价值。

一、高光谱遥感影像的获取高光谱遥感影像的获取需要使用高光谱遥感仪器,该仪器能够捕捉到丰富的光谱信息。

一般来说,高光谱遥感仪器由多个波段的传感器组成,这些传感器能够同时记录多个波段的图像。

获取的高光谱遥感影像通常具有数百个波段,使得我们在遥感影像处理中能够获取更多的光谱信息。

二、高光谱遥感影像的预处理在进行高光谱遥感影像的提取和处理之前,我们需要对其进行预处理。

预处理的目的是提高图像的质量和减小噪声的影响。

常见的预处理步骤包括辐射校正、大气校正、几何校正等。

辐射校正旨在消除遥感影像中的辐射差异,以便更好地比较不同区域的反射率。

大气校正则旨在消除大气引起的影响,使得遥感影像更加准确。

几何校正则是为了将遥感影像的几何形状与地形相匹配。

三、高光谱遥感影像的特征提取高光谱遥感影像的特征提取是指从遥感影像中提取出我们感兴趣的信息。

常见的特征提取方法有以下几种:1. 光谱特征提取光谱特征提取是指通过对高光谱遥感影像每个波段的分析,提取出不同波长下的光谱信息。

这些信息可以用于分类、识别和分析。

常见的光谱特征提取方法包括光谱曲线拟合、波段选择、光谱角等。

2. 空间特征提取空间特征提取是指通过对高光谱遥感影像空间分布的分析,提取出图像上不同位置的信息。

常见的空间特征提取方法包括纹理特征、形状特征、结构特征等。

3. 混合特征提取混合特征提取是指将光谱特征和空间特征相结合,提取出更全面的图像信息。

这种方法更常用于高光谱遥感影像的分类与识别。

四、高光谱遥感影像的分类与识别高光谱遥感影像的分类与识别是利用图像处理和分类算法对遥感影像进行分析,将其划分为不同的类别。

《遥感技术应用》幻灯片PPT

《遥感技术应用》幻灯片PPT
位置、波长间隔的大小。
多光谱遥感、高光谱遥感、超光谱遥感之间的区别, 本质上就是光谱分辨率在数量级上的不同。
黑白全色航片、彩色相片、多光谱影像、高光谱影 像,光谱分辨率越来越高。
光谱分辨率的提高,有利于提高遥感应用分析的效 果;但并不是简单的波段数量越多越好。
光学遥感技术的开展-光谱分辨率不断提高
时间分辨率是关于遥感影像间隔时间的一项性能指 标。
遥感探测器按一定的时间周期重复采集数据,这种 重复周期是由卫星的轨道高度、轨道倾角、运行周期、 轨道间隔、偏移系数等参数所决定。这种重复观测的 最小时间间隔就称为时间分辨率。
采用适宜时间分辨率的数据,是成功进展遥感变化 检测的关键问题之一。
空间分辨率与光谱分辨率之间的关系
〔1〕根据卫星轨道参数〔包括位置、姿态、轨道及扫 描特征〕校正影像,为提高精度有时需要参加DEM。这 种情况不需要GCP,一般利用卫星数据自带的一个参数 文件完成纠正。在低分辨率的遥感影像上,GCP的选择 比较困难,可以考虑采用这种方式。 〔2〕利用几何校正模型〔如多项式〕+GCP的方式。 一般中分辨率的遥感数据〔如TM影像〕可以考虑采用这 种方式,但具体情况下还需考虑地形的影响。 〔3〕利用轨道参数+地面控制点+DEM进展纠正,即 进展正射纠正,这种方式精度最高,但对信息的需求也 最多,适合高分辨率的遥感数据的纠正。 说明:第二种情况是练习的重点。
Panchromatic
Hyperspectral
Multispectral
主要通过形状〔空间 信息〕识别地物
Color Photography
加强型的颜色感知
主要通过光谱 信息识别地物
增加了颜色的感知
2. 空间分辨率〔Spatial Resolution〕

遥感导论课程报告遥感图像一般预处理流程ppt课件

遥感导论课程报告遥感图像一般预处理流程ppt课件

几何校正模型
主要有: 仿射变换(RST) 多项式 局部三角网(Delaunay Triangulation)
图像配准
经常在实际数据生产中会遇到,同一地区的图像 或者相邻地区有重叠区的图像,由于几何校正误 差的原因,重叠区的相同地物不能重叠,这种情 况对图像的融合、镶嵌、动态监测等应用带来很 大的影响。遇到这种情况,可以利用重叠区的匹 配点和相应的计算模型进行精确配准。
地球曲率及空气折射,地形影响等
几何校正:纠正系统和非系统因素引起的几 何畸变。
背景知识——卫星姿态引起的图 像变形
背景知识——动态扫描图像的变 形
几何校正模型
主要有: 仿射变换(RST) 多项式 局部三角网(Delaunay Triangulation)
几何粗校正
几何粗校正:这种校正是针对引起几何畸变的原 因进行的,地面接收站在提供给用户资料前,已 按常规处理方案与图像同时接收到的有关运行姿 态、传感器性能指标、大气状态、太阳高度角对 该幅图像几何畸变进行了校正。
Modis传感器参数
校 正 前
校 正 后
在google earth上显示校正后 的结果
几何精校正
基于地面控制点,利用几何校正模型,构建图像 与地面坐标/与图像之间的几何关系完成几何校 正,当控制点选择源是图像(有地理坐标)时候, 又属于图像配准范畴。
多项式模型 x=a0+a1x+a2Y+a3x2+a4xy+a5y2+…… y=b0+b1x+b2Y+b3x2+b4xy+b5y2+…… 最少控制点个数 N=(n+1)*(n+2)/2 误差计算 RMS Eerror=sqrt((x’-x)2+(y’-y)2)

高分辨率遥感影像的处理与分析

高分辨率遥感影像的处理与分析

高分辨率遥感影像的处理与分析在当今科技飞速发展的时代,高分辨率遥感影像已经成为了获取地球表面信息的重要手段。

它就像我们观察地球的“超级眼睛”,能够以极高的清晰度和精度呈现出地球上的各种地貌、植被、建筑物等。

然而,要想从这些海量的影像数据中提取出有价值的信息,就需要进行一系列复杂的处理和分析工作。

高分辨率遥感影像的特点十分显著。

首先,它具有极高的空间分辨率,这意味着我们能够看到更加精细的地物细节,比如建筑物的门窗、道路上的标线等。

其次,它包含丰富的光谱信息,能够让我们更好地区分不同类型的地物。

但与此同时,高分辨率遥感影像也带来了一些挑战。

比如,数据量巨大,处理起来需要耗费大量的时间和计算资源;由于成像条件的影响,可能存在几何变形、噪声等问题。

在对高分辨率遥感影像进行处理时,几何校正至关重要。

由于卫星在拍摄过程中可能会受到各种因素的影响,导致影像存在几何变形,使得影像中的地物位置与实际位置产生偏差。

为了纠正这种偏差,我们需要通过选取地面控制点,并利用相应的数学模型来进行几何校正,从而使影像能够准确地反映地物的真实位置和形状。

辐射校正也是必不可少的一步。

由于传感器的性能差异、大气散射等原因,影像的辐射亮度值可能会存在偏差。

通过辐射校正,我们可以消除这些偏差,使得不同时间、不同传感器获取的影像具有可比性,从而更准确地进行地物信息的提取和分析。

图像增强是为了突出影像中的有用信息,提高影像的可读性和可解译性。

常见的图像增强方法包括对比度拉伸、直方图均衡化等。

对比度拉伸可以加大影像中灰度值的差异,使得地物的轮廓更加清晰;直方图均衡化则是通过重新分布影像的灰度值,来增强影像的整体对比度。

影像融合则是将不同分辨率、不同光谱特性的影像进行整合,以获取更全面、更准确的信息。

例如,将高分辨率的全色影像与低分辨率的多光谱影像融合,可以在保持高空间分辨率的同时,又具有丰富的光谱信息。

在完成了影像的处理之后,接下来就是对其进行分析。

如何进行遥感图像的影像处理与信息提取

如何进行遥感图像的影像处理与信息提取

如何进行遥感图像的影像处理与信息提取遥感技术在许多领域中发挥着重要作用,包括农业、环境研究、资源管理等。

遥感图像的影像处理和信息提取是实现遥感应用的关键步骤之一。

本文将探讨如何进行遥感图像的影像处理与信息提取,帮助读者更好地理解和应用这一技术。

一、遥感图像的基本概念和分类在深入讨论遥感图像的影像处理和信息提取之前,我们先来了解一下遥感图像的基本概念和分类。

遥感图像是通过卫星、飞机等遥感平台获取的地球表面的图像,它包含了丰富的地物信息。

根据不同传感器的工作原理和波段范围,遥感图像可以分为光学图像、雷达图像等不同类型。

二、遥感图像的预处理遥感图像在获取后需要进行一系列的预处理,以消除噪声、增强图像质量,为后续的影像处理和信息提取做准备。

常见的预处理步骤包括辐射校正、大气校正、几何校正等。

辐射校正用于消除图像中的辐射噪声,保证图像的准确性和一致性。

大气校正则是为了消除大气对图像的影响,使得图像能够真实地反映地表特征。

几何校正则是校正图像的几何形状和位置,使其与现实地物保持一致。

三、遥感图像的影像处理影像处理是指对遥感图像进行一系列的处理操作,以增强图像的特征、提取信息或获得更高层次的图像产品。

常见的遥感图像影像处理方法包括图像增强、图像分类和图像融合等。

图像增强主要是通过增加图像的对比度、调整亮度等方式,使地物特征更加明显。

图像分类则是将遥感图像中的像素划分为不同的类别,用于分析地物类型和覆盖状况。

图像融合则是将多个遥感图像进行融合,以获取更全面和准确的地物信息。

四、遥感图像的信息提取信息提取是指从遥感图像中提取具有特定含义和应用价值的信息。

常见的信息提取任务包括地表覆盖分类、目标检测、变化检测等。

地表覆盖分类是将遥感图像中的地物按照不同的类别进行分类,如森林、湖泊、城市等。

目标检测则是在遥感图像中寻找特定目标,并进行识别和定位。

变化检测是对不同时间获取的遥感图像进行比较,找出地物变化的区域和变化趋势。

《遥感技术》课件

《遥感技术》课件

总结词
遥感技术能够快速、准确地监测环境状 况,为环境保护和治理提供数据支持。
VS
详细描述
遥感技术可以监测大气污染、水体污染、 土壤污染等情况,通过遥感数据的分析, 可以了解污染源的分布和排放情况,为环 境治理和保护提供科学依据。同时,遥感 技术还可以监测自然灾害和生态变化等环 境问题,为灾害预警和生态保护提供数据 支持。
THANKS
感谢观看
无人机遥感技术
无人机遥感技术是指利用无人机搭载遥感器进行遥感数据采 集和处理的技术。无人机遥感技术具有机动灵活、快速响应 、成本低廉等优点,因此在应急救援、环境保护、农业监测 等领域得到广泛应用。
无人机遥感技术可以快速获取高分辨率的遥感数据,对于需 要快速响应的应用场景具有重要意义。同时,无人机遥感技 术还可以结合其他传感器和通信设备,实现多源数据的融合 和传输,提高遥感应用的综合效益。
森林资源调查
总结词
遥感技术是进行森林资源调查的重要手段,能够快速获取森林面积、覆盖率、生 长状况等信息。
详细描述
通过卫星遥感技术,可以获取大范围、高分辨率的森林资源数据,包括森林面积 、覆盖率、树种分布、生长状况等。这些数据有助于了解森林资源的现状和变化 趋势,为森林保护和可持续发展提供科学依据。
遥感数据的接收与处理
遥感数据的接收
遥感数据通过卫星轨道接收站、地面站和飞机接收站等设备 进行接收。
遥感数据处理
遥感数据处理包括辐射定标、大气校正、几何校正和图像解 译等步骤,以提取有用的信息。
03 遥感图像处理
遥感图像的预处理
辐射定标
将传感器接收到的辐射亮 度转化为地表的反射率或 温度等物理量,为后续图 像处理提供准确数据。
电磁波谱

《遥感信息的获取和处理》 讲义

《遥感信息的获取和处理》 讲义

《遥感信息的获取和处理》讲义一、引言遥感技术作为一种非接触式的探测手段,能够从远距离获取地球表面的各种信息。

这些信息对于资源调查、环境监测、城市规划等众多领域都具有极其重要的价值。

要想充分利用遥感技术所获取的信息,就必须了解其获取和处理的方法。

接下来,让我们一起深入探讨遥感信息的获取和处理。

二、遥感信息的获取(一)遥感平台遥感平台是搭载传感器的工具,常见的遥感平台包括卫星、飞机和无人机等。

卫星遥感平台具有覆盖范围广、重复观测周期短等优点,能够获取大面积的地球表面信息。

例如,陆地卫星系列可以提供多光谱、高分辨率的影像,用于土地利用、植被监测等方面。

飞机遥感平台则具有灵活性高、可以根据特定需求进行飞行任务规划的特点。

它适用于小范围、高精度的遥感数据获取,比如在地质勘探、城市规划中发挥重要作用。

无人机遥感平台近年来发展迅速,其操作简便、成本相对较低,能够在复杂地形和近地面获取高分辨率的影像数据。

传感器是遥感系统中用于收集和记录电磁辐射能量的装置。

根据工作原理的不同,传感器可分为光学传感器和微波传感器。

光学传感器利用可见光、近红外和短波红外等波段的电磁波进行成像。

常见的有电荷耦合器件(CCD)传感器和互补金属氧化物半导体(CMOS)传感器。

它们能够获取色彩丰富、细节清晰的影像,广泛应用于农业、林业和生态环境监测等领域。

微波传感器则通过发射和接收微波信号来获取信息,不受天气和光照条件的限制,具有穿透云雾、雨雪的能力。

合成孔径雷达(SAR)就是一种重要的微波传感器,在灾害监测、海洋监测等方面有着独特的优势。

(三)遥感数据的类型遥感数据主要包括图像数据和非图像数据。

图像数据是最常见的遥感数据类型,如多光谱图像、高光谱图像和全色图像等。

多光谱图像包含多个波段的信息,能够反映地物的不同特征;高光谱图像具有数百个甚至上千个波段,能够提供更丰富的光谱信息,有助于地物的精细分类;全色图像则具有较高的空间分辨率,能够清晰地显示地物的细节。

遥感图像信息提取ppt课件

遥感图像信息提取ppt课件

3.4 规则描述——表达式与变量
表达式 基本运算符
三角函数
关系/逻辑
其他符号
部分可用函数 +、-、*、/ Sin、cos、tan asin、acos、 atan Sinh、cosh、 tanh…. LT、LE、EQ…. and、or、not…. 最大值、最小值
指数(^)、exp 对数alog 平方根(sqrt)、 绝对值(adb) ……
• 这一步是可选项,如果不需要可以直接跳过。
面向对象分类练习——分块精炼
• FX提供了一种阈值法(Thresholding)进一步精炼分块的 方法。它是基于亮度值的栅格操作,根据分割后结果中的 一个波段的亮度值聚合分块。对于具有高对比度背景的特 征非常有效(例如,明亮的飞机对黑暗的停机坪)。
• 这一步是可选项,如果不需要可以直接跳过。
- 集合临近像元为对象用来识别感兴趣的光谱要素 - 充分利用高分辨率的全色和多光谱数据,利用空间,
纹理,和光谱信息来分割和分类的特点 - 以高精度的分类结果或者矢量输出
4.2 与基于像元分类的区别
类型
基本原理
影像的最小单元 适用数据源
缺陷
传 统 基 于 地 物 的 光 谱 信 息 单个的影像像元 中低分辨率多光 丰 富 的 空 间 信 息
面向对象分类练习——特征提取
• 直接输出矢量
- 输出Shapefile矢量文件 - 属性
面向对象分类练习——特征提取
• 监督分类
- 根据一定样本数量以及其对应的属性信息,利用K邻近法和支 持向量机监督分类法进行特征提取
面向对象分类练习——特征提取
• 规则分类
- 每一个分类有若干个规则(Rule)组成,每一个规则有若干 个属性表达式来描述。规则与规则直接是与的关系,属性表 达式之间是并的关系

(完整ppt)第五章 遥感数据的信息提取与应用

(完整ppt)第五章 遥感数据的信息提取与应用
第五章 遥感数据的信息提取与应用
➢ §1 信息提取的原理和方法 ➢ §2 航空遥感图像的信息提取 ➢ §3 卫星遥感图像的信息提取 ➢ §4 遥感影像地图 ➢ §5 遥感数据的应用
§1 信息提取的原理和方法
遥感图像中目标地物的特征是地物电磁波的辐射差异 在遥感影像上的反映。 一、信息提取 1、概念:依据遥感图像上的地物特征,识别地物类 型、性质、空间位置、形状、大小等属性的过程(既 按照应用目的,将影像中代表不同地物的像元区别开) 叫信息提取,也叫影像分类或是影像解译。
1、解译标志(判读标志)
–地物本身的性质、形态等特征在像片上的反映,这些影像 特征统称为解译标志。
目视判读的标志
色调/色彩:判读前通过反差调整和彩色增强后,成为 目视判读的重要标志。
形状:是目视判读最直观的标志。
纹理:也叫内部结构,指遥感图像中目标地物内部色调 有规则变化造成的影像结构。
大小:根据地物间的相对大小,区分地物。
2、信息提取的方法有:
❖ (1)目视判读法:是目前常用的方法。
❖ (2)计算机分类法:有监督分类、非监督分类、 模式识别、神经网络分类、分形分类、模糊分类、 人工智能等数据挖掘技术方法。
二、目视解译(目视判读)
–凭借人眼观察或借助简单的仪器(放大镜、立体镜等), 对遥感影像进行分析判断、量测,区别地物类别,勾绘地物 分布边界,识别属性,从而获取所需要信息。
逻辑推理法:根据地学规律,分析地物之间的内在必然 分布规律,由某种地物推断出另一种地物的存在及属性。 如由植被类型可推断出土壤的类型,根据建筑密度可判 断人口规模等。或者是根据两种地物之间的区别来判断 具体是哪种地物,例如公路与铁路。
目视解译的特点:
–直观、速度快 –运用人脑进行的定性分析 –常用于对评价影像增强处理效果、评价计算机解

基于高分辨率遥感影像的建筑物轮廓信息提取

基于高分辨率遥感影像的建筑物轮廓信息提取
当前您的位置: 首页 >> 国土信息资源 >> 国土资源信息化>> 正文
关键词:
范围:
标题 内容 高级搜索
基于高分辨率遥感影像的建筑物轮廓信息提取
发布日期:2009-07-03 09:27:08 浏览数: 字号:〖大 中 小〗
推荐新闻
·金坛“金土地”联动窗口.. ·常州坚持“四个确保”,.. ·新北国土系统对不良作风.. ·全国矿业权实地核查技术.. ·找准突破口 抓好着力点 ·省国土资源厅领导首次出.. ·全省耕地保护暨基本农田.. ·全省土地登记人员上岗资.. ·全省国土资源执法监察管.. ·常州市龙汤温泉地热探采..
现有的一些研究大多集中在比较规则和特征明显的建筑物,通用性较差,而且当建筑物比较密集时提取的效果一 般。鉴于这些原因,本文选用人工建筑物密集的大学校园为本次研究的典型试验区,以Quickbird(快鸟)为基础数据 源,运用图像图形处理和分析、模式识别技术、现代计算机技术,设计了一套从单时相高分辨率遥感影像上快速提取建 筑物二维轮廓信息的技术方案。
/html/gtxxzy_gtzyxxh/2009-7-3/0973927849643182.html
2011/7/5
基于高分辨率遥感影像的建筑物轮廓信息提取 __常州市国土资源局
页码,3/4
3.6区域标识
区域标识是进行独立区域的特征量测和统计处理的关键步骤。经过初步分割,二值图像被分为一系列区域,为了进 一步区分建筑物目标区域与噪声区域,需要对图像中所有独立区域进行标识,然后才能够进行区域的特征测量,提取建 筑物目标。区域标识的基本思想是:第一从图像的某一位置出发,逐一像素进行扫描,对于同一行中不连通的行程(灰 度相同)标上不同的号,不同的列也标上不同的号;第二是逐次扫描全图,如果两个相邻的行(列)中有相连通的形成 则下行(列)的号改为上行(列)的号;第三是对标记的号进行排列,则可得到图像中不连通区域的标识序列。得到了 图像中目标区域的标识序列,就可以对每一个感兴趣目标进行特征量测。

遥感制图.PPT

遥感制图.PPT
目前应用最多及着重研究的是利用Landsat的MSS 图象制图。由于多波段的卫星图象具有信息量丰 富、现势性强,利用它编图周期短等优点,在制 图方面得到了广泛的应用。
•.
•2
遥感制图的信息源
1.主要信息源 2.空间分辨率及制图比例尺的选择 3.波谱分辨率与波段选择 4.时间分辨率与时相的选择
统计概率法:是根据物体的光谱特征进行自 动识别。
语言结构法:是根据物体的图形进行识别。
模糊数学法:是根据物体最明显的本质特征 (光谱的或图像的本质特征) 进行识别。
•.
•15
粗处理是为消除传感器本身及外部因素的影响所引 起的各种系统误差而进行的处理。
精处理是指为进一步提高卫星遥感图像的几何精度 而进行的几何校正和辐射校正,以满足专题制图的 要求。
•.
•11
遥感图像的处理方法
2.遥感图像的增强处理
在对遥感图像判读之前,要进行图像增强处理, 这包括光学处理和数字处理两类。
遥感制图
§1 遥感制图概述 §2 遥感制图的信息源 §3 遥感图像的处理方法 §4 遥感图像专题信息提取方法
•.
•1
遥感制图概述
遥感制图是指通过对遥感图像目视判读或利用图 像处理系统对各种遥感信息进行增强与几何纠正 并加以识别、分类和制图的过程。
遥感图象有航空遥感图象和卫星遥感图象,制图 方式有计算机制图与常规制图。
•.
•5
一个像元所对应地面范
围的大小即为遥感图像
的分辨率。
•.
•6
不同规模的环境特征对地面分辨率的要求
巨型环境特征
地壳 10km
大陆架 2km
洋流
2km
自然地带 2km
大型环境特征
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 实际工作表明,选取最少数目的控制点来校正图像,效果 往往不好。在图像边缘处,在地面特征变化大的地区,如 河流拐弯处等,由于没有控制点,而靠计算推出对应点, 会使图像变形。因此,在条件允许的情况下,控制点数的 选取都要大于最低数很多。
控制点的选取
• 控制点选取的原则
– 一般来说,控制点应选取图像上易分辨且较精细 的特征点,这很容易通过目视方法辨别,如道路 交叉点、河流分叉处、海岸线弯曲处、飞机场、 城廓边缘等。
遥感数据的融合
遥感数据的融合主要指不同传感器的遥感数据 的融合,以及不同时相的遥感数据的融合。融 合方式的确定应根据目标空间分布、光谱反射 特性及时相规律方面的特征选择不同的遥感图 像数据,它们在空间分辨率、光谱分辨率和时 间分辨率方面相互补充,以形成一个更有利的 识别环境,来识别所要识别的目标或类型。
几何畸变校正
常用的是一种通用的精校正方法,适合于在地面平 坦,不需考虑高程信息,或地面起伏较大而无高程 信息,以及传感器的位置和姿态参数无法获取的情 况时应用。有时根据遥感平台的各种参数已做过一 次校正,但仍不能满足要求,就可以用该方法作遥 感影像相对于地面坐标的配准校正,遥感影像相对 于地图投影坐标系统的配准校正,以及不同类型或 不同时相的遥感影像之间的几何配准和复合分析, 以得到比较精确的结果。
介于0和1之间,很难达到理想值。根据经验取某个阈值P0 ,如果P> P0,则匹配成功; P< P0,则匹配失败。
金字塔模板匹配
• 为了加快搜索速度,很多影像匹配 方法使用金字塔影像。
• 对影像进行一次采样率为 1/n(n=2,3)的重采样,即把影像的 每n×n个像素变为一个像素,这 样就得到一对长、宽都为原来1/n 的影像,把它作为金字塔的第二层 。
以影像为主要类型的空间数据获取能力得到不断提高,而高分 辨率遥感更是逐渐成为了面向社会发展、经济建设、国防安全和社 会大众需求等最重要的空间信息来源,我国中长期科学和技术发展 规划中明确提出要建设高分辨率对地观测系统,系统建成后将全面 应用服务于各行各业。影像数据处理、分析、理解和决策应用等构 成了遥感应用的技术链,而信息提取与目标识别更是遥感从数据转 换为信息进而开展应用服务的核心技术。由于高空间分辨率遥感影 像的特点,高精度、高效率目标自动识别问题一直是极大的技术难 点,已经是大规模应用的瓶颈。
高分辨率遥感影像处理
• 图像辐射校正 • 影像几何纠正、 配准、影像拼接 • 影像增强 • 影像融合 • ….
几何校正
• 图像的几何校正(geometric correction) 是指从具有几何畸变的图像中消除畸变 的过程,从而建立图像上的像元坐标与 目标物的地理坐标间的对应关系,并使 其符合地图投影系统的过程。
基于特征的配准算法
• 基于特征的算法(feature-based matching)先提取图像
显著特征,再进行特征匹配,大大压缩了图像信息的数据 量,同时保持了图像的位移、旋转、比例方面的特征,故 在配准时计算量小,速度较快、鲁棒性好。当两幅图像之 间的线性位置关系不明确时,应使用基于特征的匹配。
控制点的选取
• 几何校正的第一步便是位置计算,首先是对所选 取的二元多项式求系数。这时必须已知一组控制 点坐标。
–控制点数目的确定
• 其最低限是按未知系数的多少来确定的。一次多项式有6 个系数,就需要有6个方程来求解,需3个控制点的3对坐 标值,即6个坐标数。 2次多项式有 12个系数,需要 12 个方程(6个控制点)。依次类推,n次多项式,控制点的 最少数目为(n+1)(n+2)/2。
相似性测度
• 用以下测度来衡量T和Si,j的相似程度:
MM
Si, j (m,n)T(m,n)
P
m1n1
MM
MM
[Si,j(m,n)]2
[T(m,n)]2
m1n1
m1n1
S i,j (m, n)
• 根据施瓦兹不等式,0P1,并且在 T (m , n )
比值为常数时取极大值为1。但实际上两幅不同图像的P值
– 特征变化大的地区应多选些。 – 图像边缘部分一定要选取控制点,以避免外推。 – 此外,尽可能满幅均匀选取,特征实在不明显的
大面积区域(如沙漠),可用求延长线交点的办 法来弥补,但应尽可能避免这样做,以避免造成 人为的误差。
二次多项式校正数学模型
• 基本数学模型形式
n ni
X
a ij u i v j
0
L
n
n j
aijulivlj
ulsvlt
L
Xlulsvlt
l1 i0 j0
l 1
L
n
n j bijulivlj ulsvlt
L
Ylulsvlt
l1 i0 j0
l 1
重采样方法一
对输入图像的各个像元在变换后的输出图 像坐标系上的相应位置进行计算,把各 个像元的数据投影到该位置上
重采样方法二
• 一般来说特征匹配算法可分为四步: – 1.特征提取; – 2.特征描述; – 3.特征匹配; – 4.非特征像素之间的匹配。
基于特征的配准步骤
• 在特征匹配前,首先要从两幅图像中提取灰度变化明 显的点、线等特征形成特征集。
• 在两幅图像对应的特征集中利用特征匹配算法尽可能 的将存在匹配关系的特征对选择出来。
• 按照配准算法所利用的图像信息,可以分 为基于区域的方法和基于特征的方法 。基 于区域的匹配主要是模板匹配和基于相位 (频率)的匹配方法;基于特征的匹配包 括基于特征点集的匹配和基于线特征(图 像中边缘信息)的匹配算法。
• 按自动化程度可以分为人工、半自动和全 自动三种类型 。
模板匹配
• 模板匹配法是在一幅影像中选取一个的影像 窗口作模板,大小通常为5×5或7×7,然后 通过相关函数的计算来找到它在搜索图中的 坐标位置。
• 一般两幅图像之间用“配准(register, registration)”;寻找同名特征(点) 的过 程叫“匹配(match, matching)”; 根据主 辅图像之间的几何变换关系,对辅图像进行逐 像素处理变为配准图像的过程叫做“几何校正 (geometric correction)”。
配准方法分类
• 通过特征建立两幅图像之间的多项式变换关系,达到 以点代面的效果。
• 对于非特征像素点,利用上述多项式变换关系来进行 几何校正,从而实现两幅图像之间逐像素的配准。
基于SIFT特征的图像配准
SIFT 特征匹配算法是目前国内外特征点匹配研究领域的热点 与难点,其匹配能力较强,可以处两幅图像之间发生平移、旋 转、仿射变换情况下的匹配问题,甚至在某种程度上对任意角 度拍摄图像也具备较为稳定的特征匹配能力。
由遥感器引起的图像几何畸变
几何畸变校正
• 几何校正的方法
–系统性校正:当知道了消除图像几何畸变的 理论校正公式时,可把该式中所含的与遥感 器构造有关的校准数据(焦距等)及遥感器 的位置、姿态等的测量值代入到理论校正式 中进行几何校正。该方法对遥感器的内部畸 变大多是有效的。可是在很多情况下,遥感 器的位置及姿态的测量值精度不高,所以外 部畸变的校正精度也不高。
各种融合方法(ERDAS)
• HIS变换 • PCA变换 • Brovey变换 • 乘法复合 • 小波 • 高通滤波 •…
融合实际例子
特征提取
(外部资料)
遥感图像分类
遥感图像分类原理与过程
遥感图像计算机分类的依据是遥感图像像素的相似度。在遥感 图像分类过程中,常使用距离和相关系数来衡量相似度。
• 对输出图像的各个像元在输入图像坐标系的相 应位置进行逆运算,求出该位置上的像元数据 ,保持图像行列数不变。此系目前多数软件中 通常采用的方法。
图像内插法一:最近邻法(NN
,Nearest Neighborhood)
• 最近邻法:以距
内插点最近的观测 点的像元值为所求 的像元值。该方法 最大可产生1/2像 元的位置误差,但 优点是不破坏原来 的像元值,处理速 度快。
图像内插法二:双线性内插法 (BL,Bi-Linear)
• 使用内插点周围的4个观测点的像元值, 对所求的像元值进行线性内插。该方法 的缺点是破坏了原来的数据,但具有平 均化的滤波效果。
图像内插法三: 3次卷积内插法( CC,cubic convolution)
• 使用内插点周围的16个观测点的像元值,用3次卷积函 数对所求像元值进行内插。该方法的缺点是破坏了原 来的数据,但具有图像的均衡化和清晰化的效果,可 得到较高的图像质量。
• 再对第二层用同样方法进行一次采 样率为1/n的重采样,又得到第三 层(顶层)。
• 原始影像作为金字塔影像的底层。
金字塔影像匹配的步骤
• 第一步:顶层的匹配,得到一个平移初始值 。 • 第二步:根据平移初始值乘以n得到第二层平
移量初始值,在它m×m个像元的邻域内进行 模板匹配。 • 第三步:根据第二层匹配值乘以n得到第三层 平移量初始值,再进行一次模板匹配。 • 如果影像尺寸不是特别大,可以只用两层金字 塔。
几何畸变校正
• 几何校正的方法
–非系统性校正:利用控制点的图像坐标和地 图坐标的对应关系,近似地确定所给的图像 坐标系和应输出的地图坐标系之间的坐标变 换式。坐标变换式经常采用1次、2次等角变 换式,2次、3次投影变换式或高次多项式。 坐标变换式的系数可从控制点的图像坐标值 和地图坐标值中根据最小2乘法求出。
目标 分割、模 识别 式识别
大气、海 洋、生态 环境动态 监测
土地覆盖 与土地利 用、农林
城市、军 事、设施
数据源
MODIS、 AVHRR
TM、SPOT4、 CBERS
SPOT5、 IKONOS、 QuickBird
空间 分辨率



光谱 分辨率
相关文档
最新文档