最新人教版初二上册数学全册优秀课件(精心整理)200-29.8s
合集下载
人教版数学八年级上册全套ppt课件(共1200页)
![人教版数学八年级上册全套ppt课件(共1200页)](https://img.taocdn.com/s3/m/f5d5169e5a8102d277a22f64.png)
由以上讨论可知,可以围成底边长是4cm的等腰三角形.
例4 如图,D是△ABC 的边AC上一点,AD=BD, 试判断AC 与BC 的大小.
三角形的分类 问题1:观察下列三角形,说一说,按照三角形内角 的大小,三角形可以分为哪几类?
锐角三角形、 直角三角形、 钝角三角形.
问题2:你能找出下列三角形各自的特点吗?
三边均 不相等
有两条 边相等
腰
顶角 底角
三条边 均相等
不等边三角形
等腰三角形
等边三角形
底边
总结归纳
➢三条边各不相等的三角形叫做不等边三角形 ; ➢有两条边相等的三角形叫做等腰三角形; ➢三条边都相等的三角形叫做等边三角形.
物到微小的分子结构,都有什么样的形象? (2)在我们的生活中有没有这样的形象呢?试举例.
讲授新课
三角形的概念
问题1:观察下面三角形的形成过程,说一说什么叫三角形? A
定义:由不在同一条直线上的三条线段
首尾顺次相接所组成的图形叫作三角形.
B
C
问题2:三角形中有几条线段?有几个角?
有三条线段,三个角 边:线段AB,BC,CA是三角形的边. 顶点:点A,B,C是三角形的顶点, 角:∠A,∠B,∠C叫作三角形的内角,简称三角
例3 用一条长为18cm的细绳围成一个等腰三角形. (1)如果腰长是底边长的2倍,那么各边的长是多少? (2)能围成有一边的长是4cm的等腰三角形吗?为什么 ?
解:(1)设底边长为xcm,则腰长为2xcm, x+2x+2x=18. 解得 x=3.6. 所以三边长分别为3.6cm、7.2cm、7.2cm.
三角形的三边关系
在A点的小狗,为了尽快吃到B点的香肠,它 选择A B 路线,而不选择A C B
新人教版八年级上册数学全册课件
![新人教版八年级上册数学全册课件](https://img.taocdn.com/s3/m/23d1b28e26fff705cd170a57.png)
2020/10/21
注意:
A
知1-讲
c
b
1.三角形的三边用字母表示时,字
母没有顺序限制.
B
aC
2.三角形的三边,有时也用一个小写字母来表示.
如:△ABC的三边中,顶点A所对的边BC也可表示为a,
顶点B所对的边AC也可表示为b,顶点C所对的边AB也可
表示为c.
3.一般情况下,我们把边BC叫做 A的对边,AC,AB叫
2020/10/21
知2-讲
按 角 分
按 边 分
2020/10/21
三角形的分类
锐角三角形
直角三角形 钝角三角形
三边都不相等的三角形 底边和腰不相等
等腰三
三边都 角形
不相等
的三角 等边三
形
角形
等腰三角形 的等腰三角形
三角形
等边三角形
知2-练
1 下列说法:①等边三角形是等腰三角形;②等腰 三角形也可能是直角三角形;③三角形按边分类 可分为等腰三角形、等边三角形和三边都不相等 的三角形;④三角形按角分类应分为锐角三角形、 直角三角形和钝角三角形.其中正确的有( C ) A.1个 B.2个 C.3个 D.4个
同理有
AC+BC>AB,
②
AB+BC>AC.
③
一般地,我们有
三角形两边的和大于第三边. 由不等式②③移项可得BC>AB-AC,BC>AC-AB. 这就是说,三角形两边的差小于第三边.
2020/10/21
知3-导
例1 用一条长为18 cm的细绳围成一个等腰三角形. (1) 如果腰长是底边长的2倍,那么各边的长是多少? (2) 能围成有一边的长是4 cm的等腰三角形吗?为什么?
人教版数学八年级上册全册优质课件【全套】
![人教版数学八年级上册全册优质课件【全套】](https://img.taocdn.com/s3/m/155b9a07ccbff121dc368325.png)
E AB边上的高是 CE
BC边上的高是 AD
CA边上的高是 BF
;
;
小结:三角形的高
从三角形中的一个顶点向它的对边所在直线作垂线, 顶点和垂足之间的线段 叫做三角形的高。 三角形的三条高的特性:
•锐角三角形 •直角三角形 •钝角三角形
•高在三角形内部的数量 •高之间是否相交 •高所在的直线是否相交
练一练
已知等腰三角形的一边等于7,一边等于8,求它的周长。
通过本节课的学习, 你有哪些收获?
1.三角形的边、角、顶点;
2.会用符号表示三角形; 3.角的分类;
4.三角形三边关系及运用.
作业:能力培养与测试
11.1.1 三角形的边
三角形的高、 中线与角平分线
回 顾 思 考
你还记得 “过一点画已知直线的垂线” 吗?
锐角三角形的三条高相交于同一点.
锐角三角形的三条高都在三角形的内部。
做一做
直角三角形的三条高
A
画出直角三角形的三条高线, 它们有怎样的位置关系呢?
直角三角形的三条 高线相交于直角顶点.
D B C
口答:
如图的直角三角形ABC中, 直角边BC边上的高是 AB ;
直角边AB边上的高是 CB 斜边AC边上的高是 BD ; ;
1.下列长度的三条线段能否组 成三角形?为什么?
( ( ( ( ( ( ( ( 1
2
)
)
不能 3 ) 能 2 ) 能
,
,
4
5
,
,
8
6
3
4
)
)
5 不能 ) )
3
,
,
6
5
,
,
10
【推荐】新人教版八年级数学上(全书)课件PPT(共556张)(2020年最新)
![【推荐】新人教版八年级数学上(全书)课件PPT(共556张)(2020年最新)](https://img.taocdn.com/s3/m/ab882071bb68a98271fefaf5.png)
A
B
C
D
【练习】 用同样的方法,你能画出
△ABC的另两条边上的中线吗?
根据你的观察,
三角形的三条中线交于几个点呢?
A
三角形的三条中线交于一点. F
E
B
D
C
【巩固练习】 你能分别画出直角三角形和钝角三角
形的三条中线吗?
A
A
F
E
F
E
B
D
B
C
D
C
任意三角形的三条中线都在三角形的内部.
你能根据自己的观察,画 出三角形的一条角平分线吗?
图中∠1与∠2有什么关系?为什么?
A
E
F 12
B
D
C
盖房子时,在窗框未安装 好之前,木工师傅常常现在窗 框上斜钉一根木条.为什么要 这样做?
三角形 具有稳定性,
四边形 不具有稳定性.
思考: 如图(1),将三根木条用钉子钉成一个三角形 木架,然后扭动它,它的形状会改变吗? 如图(2),将四根木条用钉子钉成一个四边形 木架,然后扭动它,它的形状会改变吗? 如图(3),在四边形木架上再钉一根木条,将 它的一对顶点连接起来,然后再扭动它,这时 木架的形状还会改变吗?为什么?
C
∠A, ∠B, ∠C, 是相邻两边组成 的角,
叫做三角形的内角,简称三角形的 角.
1. 图中有几个三角形?用符号表示这些三 角形.
5个 △ABE, △DCE, △ABC, △BCD, △BCE
A E
B
D C
A
D
B
C
如图,按要求完成下列填空.
(1)用符号表示图中的三角△A形BD,△BCD,△ABC
角平分线,则∠1= ∠2 , ∠3 =1/2 ∠AB,C
B
C
D
【练习】 用同样的方法,你能画出
△ABC的另两条边上的中线吗?
根据你的观察,
三角形的三条中线交于几个点呢?
A
三角形的三条中线交于一点. F
E
B
D
C
【巩固练习】 你能分别画出直角三角形和钝角三角
形的三条中线吗?
A
A
F
E
F
E
B
D
B
C
D
C
任意三角形的三条中线都在三角形的内部.
你能根据自己的观察,画 出三角形的一条角平分线吗?
图中∠1与∠2有什么关系?为什么?
A
E
F 12
B
D
C
盖房子时,在窗框未安装 好之前,木工师傅常常现在窗 框上斜钉一根木条.为什么要 这样做?
三角形 具有稳定性,
四边形 不具有稳定性.
思考: 如图(1),将三根木条用钉子钉成一个三角形 木架,然后扭动它,它的形状会改变吗? 如图(2),将四根木条用钉子钉成一个四边形 木架,然后扭动它,它的形状会改变吗? 如图(3),在四边形木架上再钉一根木条,将 它的一对顶点连接起来,然后再扭动它,这时 木架的形状还会改变吗?为什么?
C
∠A, ∠B, ∠C, 是相邻两边组成 的角,
叫做三角形的内角,简称三角形的 角.
1. 图中有几个三角形?用符号表示这些三 角形.
5个 △ABE, △DCE, △ABC, △BCD, △BCE
A E
B
D C
A
D
B
C
如图,按要求完成下列填空.
(1)用符号表示图中的三角△A形BD,△BCD,△ABC
角平分线,则∠1= ∠2 , ∠3 =1/2 ∠AB,C
人教版八年级数学上册全套PPT课件汇总 共计705张PPT
![人教版八年级数学上册全套PPT课件汇总 共计705张PPT](https://img.taocdn.com/s3/m/ed406653960590c69fc37659.png)
3、在△ABC中,AC=5cm,AD是△ABC的中线,若△ABD的周长比
△ADC的周长大2cm,则AB=__7_c_m____.
A
B
DC
知识点拨:三角形一边上的中线把原三角形分成两个底相等的三角形,这两个 三角形的周长差等于原三角形其余两边的差。
课堂练习 难点巩固 4、如图所示,在△ABC中,AB=AC=5,BC=6,AD⊥BC于点D,且
人教版八年级数学上册全套课件汇总
共计705张PPT
人教版八年级数学上册全套课件汇总
第十一章 三角形
第十一章 三角形
(1)
(2)
(3)
(4)
说一说:
你认为哪些图形是三角形? 其它图
形和这个三角形有什么区别?
判断依据: (1)三条线段 (2)不在同一直线上 (3)首尾顺次相接
三角形的定义 由不在同一条直线上的三条线段 首尾顺次相接所组成的图形,叫 做三角形。
知识讲解 2、三角形的中线
难点突破
三角形的中线的定义:
你能用同样方法,
画出△ABC的另外两
条边上的中线吗? A
在三角形中,连接一个顶点
与它对边中点的线段,叫作这个
三角形的中线。 如图:AE是BC边上的中线。
B
C
E
BE=EC
符号语言: ∵AE是△ABC的中线 ∴BE = CE = 1 BC
2
知识讲解 2、三角形的中线
1 2
间的线段,叫三角形的角平分线。 如图:AD是三角形的一条角平分线。
符号语言: ∵AD是△ABC的角平分线
1
∴∠1=∠2= 2 ∠BAC
B
D
C
∠1=∠2
注意:“三角形的角平分线” 是一条线段。
人教版八年级上(初二上)数学精品课件:全套课件
![人教版八年级上(初二上)数学精品课件:全套课件](https://img.taocdn.com/s3/m/b2dde7600b4c2e3f5627631d.png)
AC=8cm,BC=10cm, ∠CAB=90 °,试求:
A
(1)△ABE的面积;
(2)△ACE和△ABE的周长的差.
解:(1)
SABC
1 2
AB
AC 1 BC 2
AD,
B
DE
C
68 10 AD, 即AD=4.8.
SABC
1 2
AB
AC
1 BC 2
AD,
SABE
1 BE 2
解:(1)设底边长为xcm,则腰长为2xcm, x+2x+2x=18. 解得 x=3.6. 所以三边长分别为3.6cm、7.2cm、7.2cm.
(2)因为长为4cm的边可能是腰,也可能是底边,所以需要分情 况讨论. ①若底边长为4cm,设腰长为xcm,则有 4+2x=18. 解得x=7. ②若腰长为4cm,设底边长为xcm,则有 2×4+x=18. 解得x=10. 因为4+4<10,不符合三角形两边的和大于第三边,所以不能 围成腰长是4cm的等腰三角形. 由以上讨论可知,可以围成底边长是4cm的等腰三角形.
第十一章 三角形
11.1.1三角形的边
导入新课
讲授新课
当堂练习
课堂小结
学习目标
情境引入
1.认识三角形并会用几何语言表示三角形,了解三角形分类。
2.掌握三角形的三边关系。(难点)
3.运用三角形三边关系解决有关的问题。(重点)
导入新课
埃及金字塔
水 分 子 结 构 示 意 图
飞机机翼
问题:
(1)从古埃及的金字塔到现代的飞机,从宏伟的建筑物到微小 的分子结构,都有什么样的形象? (2)在我们的生活中有没有这样的形象呢?试举例。
初中数学人教版八年级上全册课件ppt(全等三角形等40个) 人教版29
![初中数学人教版八年级上全册课件ppt(全等三角形等40个) 人教版29](https://img.taocdn.com/s3/m/dd7120662e3f5727a5e96274.png)
{
积的乘方运算法则:
积的乘方=
(ab)n=anbn
. 每个因式分别乘方后的积
反向使用am · an =am+n、(am)n =amn 可使某些计算简捷。
再见
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
1、聪明的人有长的耳朵和短的舌头。 ——弗莱格 2、重复是学习之母。 ——狄慈根 3、当你还不能对自己说今天学到了什么东西时,你就不要去睡觉。 ——利希顿堡 4、人天天都学到一点东西,而往往所学到的是发现昨日学到的是错的。 ——B.V 5、学到很多东西的诀窍,就是一下子不要学很多。 ——洛 克 6、学问是异常珍贵的东西,从任何源泉吸收都不可耻。 ——阿卜· 日· 法拉兹 7、学习是劳动,是充满思想的劳动。 ——乌申斯基 8、聪明出于勤奋,天才在于积累 --华罗庚 9、好学而不勤问非真好学者。 10、书山有路勤为径,学海无涯苦作舟。 11、人的大脑和肢体一样,多用则灵,不用则废 -茅以升 12、你想成为幸福的人吗?但愿你首先学会吃得起苦 --屠格涅夫 13、成功=艰苦劳动+正确方法+少说空话 --爱因斯坦 14、不经历风雨,怎能见彩虹 -《真心英雄》 15、只有登上山顶,才能看到那边的风光。 16只会幻想而不行动的人,永远也体会不到收获果实时的喜悦。 17、勤奋是你生命的密码,能译出你一部壮丽的史诗。 1 8.成功,往往住在失败的隔壁! 1 9 生命不是要超越别人,而是要超越自己. 2 0.命运是那些懦弱和认命的人发明的! 21.人生最大的喜悦是每个人都说你做不到,你却完成它了! 22.世界上大部分的事情,都是觉得不太舒服的人做出来的. 23.昨天是失效的支票,明天是未兑现的支票,今天才是现金. 24.一直割舍不下一件事,永远成不了! 25.扫地,要连心地一起扫! 26.不为模糊不清的未来担忧,只为清清楚楚的现在努力. 27.当你停止尝试时,就是失败的时候. 28.心灵激情不在,就可能被打败. 29.凡事不要说"我不会"或"不可能",因为你根本还没有去做! 30.成功不是靠梦想和希望,而是靠努力和实践. 31.只有在天空最暗的时候,才可以看到天上的星星. 32.上帝说:你要什么便取什么,但是要付出相当的代价. 33.现在站在什么地方不重要,重要的是你往什么方向移动。 34.宁可辛苦一阵子,不要苦一辈子. 35.为成功找方法,不为失败找借口. 36.不断反思自己的弱点,是让自己获得更好成功的优良习惯。 37.垃圾桶哲学:别人不要做的事,我拣来做! 38.不一定要做最大的,但要做最好的. 39.死的方式由上帝决定,活的方式由自己决定! 40.成功是动词,不是名词! 20、不要只会吃奶,要学会吃干粮,尤其是粗茶淡饭。
新人教版初二上册(八上)数学全册课件PPT
![新人教版初二上册(八上)数学全册课件PPT](https://img.taocdn.com/s3/m/0ae9a4a5a0116c175f0e485e.png)
新人教版八年级上册数学
全册教学课件
11.1
与三角形有关的线段
11.1.1 三角形的边
导入新知
观察与思考
1. 你能从中找出4个不同的三角形吗?与同学交流
各自找出的三角形。
A
2. 这些三角形有什么共同
特点?
EE
F
B
D
G
C
探究新知
知识点 1
探究
三角形的有关概念
三角形是我们熟悉的图形,观察下列图片,你能
D.2,3,5
课堂检测
基 础 巩 固 题
3.下列说法:①等边三角形是等腰三角形;②三
角形按边分类可分为等腰三角形、等边三角形、不等边
三角形;③三角形的两边之差大于第三边;④三角形按
角分类应分为锐角三角形、直角三角形、钝角三角形.
其中正确的有( B )
A.1个
B.2个
C.3个
D.4个
课堂检测
能力提升题
1. (2018•长沙)下列长度的三条线段,能组成三角形的
是( B )
A.4cm,5cm,9cm
B.8cm,8cm,15c
C.5cm,5cm,10cm
D.6cm,7cm,14cm
2. (2018•常德)已知三角形两边的长分别是3和7,则此三角形
第三边的长可能是( C )
A.1 B.2 C.8 D.11
厘米.
11.1 与三角形有关的线段
11.1.2 三角形的高、中线与角
平分线
导入新知
定义
复
垂线
当两条直线相交所成的四个角中,有一个
角是直角时,就说这两条直线互相垂直,
其中一条直线叫做另一条直线的垂线
习
线段
全册教学课件
11.1
与三角形有关的线段
11.1.1 三角形的边
导入新知
观察与思考
1. 你能从中找出4个不同的三角形吗?与同学交流
各自找出的三角形。
A
2. 这些三角形有什么共同
特点?
EE
F
B
D
G
C
探究新知
知识点 1
探究
三角形的有关概念
三角形是我们熟悉的图形,观察下列图片,你能
D.2,3,5
课堂检测
基 础 巩 固 题
3.下列说法:①等边三角形是等腰三角形;②三
角形按边分类可分为等腰三角形、等边三角形、不等边
三角形;③三角形的两边之差大于第三边;④三角形按
角分类应分为锐角三角形、直角三角形、钝角三角形.
其中正确的有( B )
A.1个
B.2个
C.3个
D.4个
课堂检测
能力提升题
1. (2018•长沙)下列长度的三条线段,能组成三角形的
是( B )
A.4cm,5cm,9cm
B.8cm,8cm,15c
C.5cm,5cm,10cm
D.6cm,7cm,14cm
2. (2018•常德)已知三角形两边的长分别是3和7,则此三角形
第三边的长可能是( C )
A.1 B.2 C.8 D.11
厘米.
11.1 与三角形有关的线段
11.1.2 三角形的高、中线与角
平分线
导入新知
定义
复
垂线
当两条直线相交所成的四个角中,有一个
角是直角时,就说这两条直线互相垂直,
其中一条直线叫做另一条直线的垂线
习
线段
最新部编版人教《初中数学八年级上册全册教学课件》精品获奖优秀完美实用观摩课整册每课PPT
![最新部编版人教《初中数学八年级上册全册教学课件》精品获奖优秀完美实用观摩课整册每课PPT](https://img.taocdn.com/s3/m/afe78df7a8956bec0975e3d1.png)
线
图例
几何语言 推理语言
作∠A的平 ∵AD是
分线,交 △ABC中
BC边于点 ∠A的平
D,则AD 分线,
是△ABC ∴∠BAD=
的角平分 线
∠CAD=
1 2
∠BAC
(1)三角形的高、中线与角平分线都是线段,特
知识解读
别是三角形角的平分线与角的平分线是不同的, 一条是线段,一条是射线;(2)三角形的中线与 角平分线一定在三角形的内部,而三角形的高则
概念
三角
形的
顶点与其对
中
三条
边中点连接
线
重要
所得的线段
线段
图例
几何语言 推理语言
取BC边的 ∵AD是
中点D,连 △ABC的
接AD,则 边BC上
AD是
的中线,
△ABC的 ∴BD=
边BC上的 中线
CD=
1 2
BC
概念
三角形的一 个角的平分 三角 角 线和对边相 形的 平 交,顶点和 三条 分 交点间的线 重要 线 段叫作三角 线段 形的角平分
A. 1,2,3.5
B. 4,5,9
C. 5,8,15
D. 6,8,9
解析:选择较短的两条线段,计算它们的和是否 大于最长的线段,若大于,则能组成三角形,否则不 能组成三角形,只有6+8=14>9,所以长度为6,8,9的 三条线段能组成三角形.故选D.
例4 已知三角形三边长分别为2,x,13,则x的取值 范围是___1_1_<_x_<_1_5____.
(2)三角形的三个重要的点:三角形的三条高,三 条中线,三条角平分线分别相交于一点,其中三角形三 条高的交点叫作三角形的垂心;三条中线的交点叫作三 角形的重心;三条角平分线的交点叫作三角形的内心.
图例
几何语言 推理语言
作∠A的平 ∵AD是
分线,交 △ABC中
BC边于点 ∠A的平
D,则AD 分线,
是△ABC ∴∠BAD=
的角平分 线
∠CAD=
1 2
∠BAC
(1)三角形的高、中线与角平分线都是线段,特
知识解读
别是三角形角的平分线与角的平分线是不同的, 一条是线段,一条是射线;(2)三角形的中线与 角平分线一定在三角形的内部,而三角形的高则
概念
三角
形的
顶点与其对
中
三条
边中点连接
线
重要
所得的线段
线段
图例
几何语言 推理语言
取BC边的 ∵AD是
中点D,连 △ABC的
接AD,则 边BC上
AD是
的中线,
△ABC的 ∴BD=
边BC上的 中线
CD=
1 2
BC
概念
三角形的一 个角的平分 三角 角 线和对边相 形的 平 交,顶点和 三条 分 交点间的线 重要 线 段叫作三角 线段 形的角平分
A. 1,2,3.5
B. 4,5,9
C. 5,8,15
D. 6,8,9
解析:选择较短的两条线段,计算它们的和是否 大于最长的线段,若大于,则能组成三角形,否则不 能组成三角形,只有6+8=14>9,所以长度为6,8,9的 三条线段能组成三角形.故选D.
例4 已知三角形三边长分别为2,x,13,则x的取值 范围是___1_1_<_x_<_1_5____.
(2)三角形的三个重要的点:三角形的三条高,三 条中线,三条角平分线分别相交于一点,其中三角形三 条高的交点叫作三角形的垂心;三条中线的交点叫作三 角形的重心;三条角平分线的交点叫作三角形的内心.
人教版八年级数学上册全册课件
![人教版八年级数学上册全册课件](https://img.taocdn.com/s3/m/2b506b8d6137ee06eff918af.png)
人教版八年级数学上册全册课件
11.2 与三角形有关的角
人教版八年级数学上册全册课件
阅读与思考 为什么要证明
人教版八年级数学上册全册课件
11.3 多边形及其内角和
第十一章 三角形
人教版八年级数学上册全册课件
11.1 与三角形有关的线段
人教版八年级数学上册全册课件
信息技术应用 画图找规律
人教版八年级数学上册全册课件
数学活动
人教版八年级数学上册全册课件
小结
人教版八年级数学上册全册课件 目录
0002页 0103页 0168页 0243页 0348页 0381页 0434页 0466页 0493页 0641页 0760页 0798页 0828页 0891页 0953页 1043页 1073页
第十一章 三角形 信息技术应用 画图找规律 阅读与思考 为什么要证明 数学活动 复习题11 12.1 全等三角形 信息技术应用 探究三角形全等的条件 数学活动 复习题12 13.1 轴对称 信息技术应用 用轴对称进行图案设计 实验与探究 三角形中边与角之间的不等关系 数学活动 复习题13 14.1 整式的乘法 阅读与思考 杨辉三角 数学活动
人教版八年级数学上册全册课件
信息技术应用 探究三角形全等 的条件
人教版八年级数学上册全册课件
12.3 角的平分线的性质
人教版八年级数学上册全册课件
数学活动
人教版八年级数学上册全册课件
人教版八年级数学上册全册课件
复习题11
人教版八年级数学上册全册课件
第十二章 全等三角形
人教版八年级数学上册全册课件
1பைடு நூலகம்.1 全等三角形
人教版八年级数学上册全册课件
12.2 三角形全等的判定
11.2 与三角形有关的角
人教版八年级数学上册全册课件
阅读与思考 为什么要证明
人教版八年级数学上册全册课件
11.3 多边形及其内角和
第十一章 三角形
人教版八年级数学上册全册课件
11.1 与三角形有关的线段
人教版八年级数学上册全册课件
信息技术应用 画图找规律
人教版八年级数学上册全册课件
数学活动
人教版八年级数学上册全册课件
小结
人教版八年级数学上册全册课件 目录
0002页 0103页 0168页 0243页 0348页 0381页 0434页 0466页 0493页 0641页 0760页 0798页 0828页 0891页 0953页 1043页 1073页
第十一章 三角形 信息技术应用 画图找规律 阅读与思考 为什么要证明 数学活动 复习题11 12.1 全等三角形 信息技术应用 探究三角形全等的条件 数学活动 复习题12 13.1 轴对称 信息技术应用 用轴对称进行图案设计 实验与探究 三角形中边与角之间的不等关系 数学活动 复习题13 14.1 整式的乘法 阅读与思考 杨辉三角 数学活动
人教版八年级数学上册全册课件
信息技术应用 探究三角形全等 的条件
人教版八年级数学上册全册课件
12.3 角的平分线的性质
人教版八年级数学上册全册课件
数学活动
人教版八年级数学上册全册课件
人教版八年级数学上册全册课件
复习题11
人教版八年级数学上册全册课件
第十二章 全等三角形
人教版八年级数学上册全册课件
1பைடு நூலகம்.1 全等三角形
人教版八年级数学上册全册课件
12.2 三角形全等的判定
初中数学 人教课标版八年级上全册课件-29
![初中数学 人教课标版八年级上全册课件-29](https://img.taocdn.com/s3/m/d396834248d7c1c709a14513.png)
需要更完整的资源请到 返 回 新世纪教 育网 -
继 续
结 束
宝 库 金 钥
★各项系数都是整数时,公因式 的系数应取各项系数的最大 公约数;字母取各项的相同的 字母,而且各字母的指数取次 数最低的。 ★1作为项的系数,在因式分解 时不要漏掉。 ★首项负,提负号,要变号。
需要更完整的资源请到 新世纪教 育网 -
返 回
继 续
结 束
注意:多项式中,第三项是x,它的系数是1;1
作为项的系数通常可以省略,但如果单独成一 项时,它在因式分解时不能漏掉。
返
回
继 续Βιβλιοθήκη 结 束注意:如果多项式的第一项的系数是负的,
一般要提出“-”号,使括号内的第 一项的系数是正的,在提出“-”号时,多项 式的各项都要变号。
一般地,如多项式的各项有公因式,可以把这个公因式提到括 号外面,将多项式写成因式乘积的形式,这就是提公因式法 下面我们用提公因式法把一些多项式分解因式,
需要更完整的资源请到 新世纪教 返 回 育网 -
继 续
结 束
例1、 分析:应先找出 与 的公因式, 再提公因式进行分解★各项系数都是整 数时,公因式的系数应取各项系数的最大 公约数;字母取各项的相同的字母,而且 各字母的指数取次数最低的★.
需要更完整的资源请到 新世纪教 育网 -
一、提公因式法(一)
我们先看一个问题: 如图,一块场地由三个矩形组成,这些 矩形的长分别是a、b、c,宽都是m,如何 计算这块场地的面积呢?
根据矩形面积公式,我们很容易得出所求面积为: ma+mb+mc 计算这个式子要做三次乘法和两次加法, 能不能简化一下呢? 在整式乘法中,我们知道: m(a+b+c)=ma+mb+mc 而用m(a+b+c)这个式子计算,只需做两次加法和一次乘法,于是我们可利用 ma+mb+mc=m(a+b+c) 来计算,使运算简化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)因为长为4cm的边可能是腰,也可能是底边,所以需要分情 况讨论. ①若底边长为4cm,设腰长为xcm,则有4+2x=18. 解得x=7. ②若腰长为4cm,设底边长为xcm,则有2×4+x=18. 解得x=10. 因为4+4<10,不符合三角形两边的和大于第三边,所以不能 围成腰长是4cm的等腰三角形. 由以上讨论可知,可以围成底边长是4cm的等腰三角形.
在A点的小狗,为了尽快吃到B点的香肠,它 选择A B 路线,而不选择A C B
路线,难道小狗也懂数学?
C
A
B
AC+CB>AB(两点之间线段最短)
议一议 1.在同一个三角形中,任意两边之和与第三边有什么大小关系?
2.在同一个三角形中,任意两边之差与第三边有什么大小关系?
3.三角形三边有怎样的不等关系?
表示方法: 三角形用符号“△”表示;记作“△ABC”,读作“三角形 ABC”,除此△ABC还可记作△BCA, △ CAB, △ ACB等.
找一找:(1)图中有几个三角形?用符号表示出这些三角形?
5个,它们分别是△ABE,△ABC, △BEC,△BCD,△ECD.
(2)以AB为边的三角形有哪些?
△ABC、△ABE.
导入新课
埃及金字塔
水 分 子 结 构 示 意 图
飞机机翼
问题: (1)从古埃及的金字塔到现代的飞机,从宏伟的建筑
物到微小的分子结构,都有什么样的形象? (2)在我们的生活中有没有这样的形象呢?试举例.
讲授新课
一 三角形的概念
问题1:观察下面三角形的形成过程,说一说什么叫三角形?
定义:由不在同一条直线上的三条线段首尾顺次相接
D
(3)以E为顶点的三角形有哪些? A
△ ABE 、△BCE、 △CDE.
(4)以∠D为角的三角形有哪些?
E
△ BCD、 △DEC.
B
C
(5)说出△BCD的三个角和三个顶点所对的边.
△BCD的三个角是∠BCD、∠BDC、∠CBD.顶点B所对应的 边为DC,顶点C所对应的边为BD,顶点D所对应的边为BC.
归纳 设x为三角形第三条边的长,则有两边之差<x<两边之和.
例2 用一条长为18cm的细绳围成一个等腰三角形. (1)如果腰长是底边长的2倍,那么各边的长是多少? (2)能围成有一边的长是4cm的等腰三角形吗?为什么 ?
解:(1)设底边长为xcm,则腰长为2xcm, x+2x+2x=18. 解得 x=3.6. 所以三边长分别为3.6cm、7.2cm、7.2cm.
通过动手实验同学们可以得到哪些结论?理由是什么?
归纳总结
三角形两边的和大于第三边. 三角形两边的差小于第三边.
典例精析
例1:判断下列长度的三条线段能否拼成三角形?为什么? (1)3cm、8cm、4cm; (2)5cm、6cm、11cm; (3)5cm、6cm、10cm.
解:(1)不能,因为3cm+4cm<8cm; (2)不能,因为5cm+6cm=11cm; (3)能,因为5cm+6cm>10cm.
归纳 判断三条线段是否可以组成三角形,只需说明两条较短 线段之和大于第三条线段即可.
针对训练 一根木棒长为7,另一根木棒长为2,那么用长度为4的木棒能 和它们拼成三角形吗?长度为11的木棒呢?若不能拼成,则第 三条边应在什么范围呢? 解:设第三边长为x,则应有
7-2<x<7+2, 即5<x<9. 则用长度为4的木棒不能和它们拼成三角形,长度为11的 木棒也不能和它们拼成三角形.第三边长的范围为5<x<9.
二 三角形的分类
问题1:观察下列三角形,说一说,按照三角形内角的大 小,三角形可以分为哪几类?
锐角三角形、直角三角形、钝角三角形.
问题2:如果以三角形边的元素的不同,三角形该如何分类呢? 观察图形回答下面各小题.
(1)等腰三角形和等边三角形的区别是什么? 等腰三角形两边相等,等边三角形三边相等.
最新人教版八年科书]( R J ) 八 上 数 学 课 件
第十一章 三角形
11.1.1三角形的边
导入新课
讲授新课
当堂练习
课堂小结
学习目标
情境引入
1.认识三角形并会用几何语言表示三角形,了解三角
形分类.
2.掌握三角形的三边关系.(难点)
3.运用三角形三边关系解决有关的问题.(重点)
当堂练习
1.图中锐角三角形的个数有
A.3个
B.4个
(C ) C.5个
D.6个
2.用木棒钉成一个三角架,两根小棒分别是7cm和
10cm,第三根小棒可取
(C )
A.20cm B.3cm C.11cm D.2cm
3.如图,在△ACE中,∠CEA的对边是 AC
.
A
B C D EF
4.已知等腰三角形的两边长分别为8cm,3cm,则这个三角形的 周长为 ___1_9_c_m____.
示为_c_,__a_,__b_.
顶点A
角
边c
边b
角 顶点B
角
边a
顶点C
三角形的对边与对角:
A
B
C
在△ABC中,
AB边所对的角是: ∠C
∠A所对的边是: B C 再说几个对边与对角的关系试试.
辨一辨:下列图形符合三角形的定义吗?
不符合
不符合
不符合
要点提醒
三角形应满足以下两个条件: ①位置关系:不在同一直线上;②联接方式:首尾顺次.
所组成的图形叫作做三角形.
A
B
C
问题2:三角形中有几条线段?有几个角?
有三条线段,三个角
边:线段AB,BC,CA是三角形的边. 顶点:点A,B,C是三角形的顶点, 角:∠A,∠B,∠C叫做三角形的内角,简称三角形的角.
记法:三角形ABC用符号表示_△__A_B__C__.
边的表示:三角形ABC的边AB、AC和BC可用小写字母分别表
锐角三角形 三角形 直角三角形
钝角三角形
判断:
(1)一个钝角三角形一定不是等腰三角形.( × ) (2)等边三角形是特殊的等腰三角形.( √ ) (3)等腰三角形的腰和底一定不相等.( × ) (4)等边三角形是锐角三角形.( √ ) (5)直角三角形一定不是等腰三角形.( × )
三 三角形的三边关系
(2)从边上来说,除了等腰三角形和等边三角形还有什么样 的三角形?
三边都不相等的三角形. (3)根据上面的内容思考:怎样对三角形进行分类?
腰 底角 底边
(
顶角 底角
等边三角形
等腰三角形
按是否有边相等分
三角形
不等边 三角形
等腰 三角形
底和腰不相等 的等腰三角形
等边三角形
不等边三角形 按内角大小分