传热学课程实验
实验四 传热实验0精选全文
![实验四 传热实验0精选全文](https://img.taocdn.com/s3/m/ec917bf1dc3383c4bb4cf7ec4afe04a1b171b002.png)
可编辑修改精选全文完整版实验四 传热实验一 实验内容测定单壳程双管程列管式换热器的总传热系数二 实验目的1 了解影响传热系数的工程因素和强化传热操作的工程途径。
2 学会传热过程的调节方法。
三 实验基本原理工业上大量存在的传热过程(指间壁式传热过程)都是由固体内部的导热及冷热流体与固体表面间的给热组合而成。
传热过程的基本数学描述是传热速率方程式和热量衡算式。
热流密度q 是反应具体传热过程速率大小的特征量。
对q 的计算需引入壁面温度,而在实际计算时,壁温往往是未知的。
为实用方便,希望避开壁温,直接根据冷热流体的温度进行传热速率计算在间壁式换热器中,热量序贯的由热流体传给壁面左侧、再由壁面左侧传导至壁面右侧、最后由壁面右侧传给冷流体。
在定态条件下,忽略壁面内外面积的差异,则各环节的热流密度相等,即q =Q A =T−T W 1ɑh =T W −t w δɑh =t w −t 1ɑc ①由①式可以得到q =T−t1ɑh +δh +1ɑc =推动力阻力 ②由上式,串联过程的推动力和阻力具有加和性。
上式在工程上常写为Q=KA(T-t) ③式中K=11ɑh +δh +1ɑc ④式④为传热过程总热阻的倒数,称为传热系数,是换热器性能好坏的重要指标。
比较①和④两式可知,给热系数α同流体与壁面的温差相联系,而传热系数K 则同冷热体的温差相联系。
由于冷热流体的温差沿加热面是连续变化的,且此温度差与冷热流体的温度呈线性关系,故将③式中(T-t )的推动力用换热器两端温差的对数平均温差来表示,即Q=KA Δt m ⑤热量衡算方程式Q=q mc C pc (t 2-t 1)=q mh C ph (T 1-T 2) ⑥KA Δt m = q mc C pc (t 2-t 1) ⑦Δt m =(T 1−t 2)−(T 2−t 1)ln T 1−t 2T 2−t 1 ⑧ K=qmcCpc(t2−t1)A Δtm ⑨在换热器中,若热流体的流量q mh 或进口温度T 1发生变化,而要求出口温度T 2保持原来数值不变,可通过调节冷却介质流量来达到目的。
传热学实验报告
![传热学实验报告](https://img.taocdn.com/s3/m/a306a23300f69e3143323968011ca300a6c3f612.png)
传热学实验报告传热学实验报告摘要:本实验通过研究传热学的基本原理和实验方法,探究了不同材料的导热性能和热传导规律。
通过实验数据的分析和处理,得出了一系列结论,对于进一步研究传热学提供了重要的参考。
引言:传热学作为热力学的一个重要分支,研究了热能在物质之间传递的规律和过程。
在工程领域中,传热学的应用非常广泛,例如热交换器、散热器等设备的设计和优化都需要依靠传热学的理论和实验研究。
本实验旨在通过实验手段,深入了解传热学的基本原理和实验方法,并通过实验数据的分析和处理,得出一些有价值的结论。
实验方法:1. 实验仪器和材料的准备本实验所需的仪器包括导热仪、温度计等,实验材料包括不同导热性能的物体,如金属、塑料等。
2. 实验步骤(1) 将不同材料的样品放置在导热仪的传热面上,并确保与传热面接触良好。
(2) 打开导热仪,记录下初始温度。
(3) 记录下不同时间间隔内的温度变化,并计算出相应的传热速率。
(4) 将实验数据整理并进行分析。
实验结果与讨论:通过实验数据的分析,我们得出了以下几个结论:1. 不同材料的导热性能存在明显差异。
在实验中,我们发现金属材料的导热性能要远远高于塑料等非金属材料。
这是因为金属材料中的自由电子能够在材料内部快速传递热能,而非金属材料中的分子结构则限制了热能的传导速度。
2. 传热速率与温度差成正比。
根据实验数据的分析,我们发现传热速率与传热面和环境之间的温度差成正比。
这是因为温度差越大,热能的传递速度越快。
3. 传热速率与传热面积成正比。
我们还观察到传热速率与传热面积成正比的规律。
这是因为传热面积越大,热能的传递面积也就越大,传热速率也就越快。
结论:通过本次实验,我们深入了解了传热学的基本原理和实验方法。
通过实验数据的分析和处理,我们得出了一系列结论,对于进一步研究传热学提供了重要的参考。
在实际应用中,我们应根据不同的工程需求,选择合适的材料和设计合理的传热面积,以提高传热效率和节约能源。
同济大学传热学实验报告
![同济大学传热学实验报告](https://img.taocdn.com/s3/m/d5a1ed0aa76e58fafab00368.png)
传热学课程编号:042100 实验教学资料类别内容关键词实验教学管理、实验项目摘要本文为实验项目的相关教学资料教学组长蔡炜中心主任臧建彬实验教学资料V3.0修订历史文档版本时间撰写人备注实验项目教学资料V1.0 2013.07.10 第一次整理完成实验项目教学资料V2.0 2013.12.25 第二次整理完成实验项目教学资料V3.0 2014.02.25 第三次整理完成实验教学资料管理管理内容&目标●教学大纲、实验指导书附后●实验安全控制本系列实验执行实验中心2级安全防护措施●实验设备管理实验设备由本实验项目的实验教师进行维护、保养●实验发展规划实验设备部分老化和陈旧,可以尝试更新和改善配套实验系统。
可尝试为机械相关专业开设相关实验课程管理人员组织总控监控执行管理方法监控执行实验教学资料V3.0实验教学资料V3.0《传热学》课程教学实验大纲课程编号:042100 学分:4 总学时:68 实验学时:10 大纲执笔人:刘叶弟大纲审核人:张恩泽一、课程性质与目的课程性质:专业基础(C1)。
课程实验教学是本课程必须的教学环节。
以实验教学为本,要求学生掌握本课程实验的基本技能。
完成课程实验的实验项目。
二、课程面向专业建筑环境与设备工程专业。
三、实验基本要求了解各种传热学实验装置的基本原理和构造、掌握传热学中常用的测试仪器仪表的应用、对实验数据能正确地计算和处理。
四、实验或上机基本内容实验基本内容:传热学实验的基本原理和方法、常用的测试仪器仪表的应用、数据处理方法。
五、实验内容和主要仪器设备与器材配置序号实验项目内容提要实验类别每组人数实验学时主要设备与器材设备复套数主要消耗材料所在实验室验证综合设计0005010200010圆球法测定材料导热系数在稳定传热情况下,利用圆球模型测定颗粒状材料的导热系数,并用图解法确定导热系数与温度间的关系。
√62圆球导热模型,测温仪表,电源,计算机数据采集系统。
2热电阻能源工程实验中心0005010200020平板绕流换热系数的测定利用空气横掠平板时的换热现象,测量有关的热工参数和电气参数,计算相应的准则数。
传热实验(实验报告)
![传热实验(实验报告)](https://img.taocdn.com/s3/m/9751f84f10a6f524cdbf8516.png)
实验五 传热实验一、 实验目的1. 了解换热器的结构及用途。
2. 学习换热器的操作方法。
3. 了解传热系数的测定方法。
4. 测定所给换热器的传热系数K 。
5. 学习应用传热学的概念和原理去分析和强化传热过程,并实验之。
二、 实验原理根据传热方程m t KA Q ∆=,只要测得传热速度Q 、有关各温度和传热面积,即可算出传热系数K 。
在该实验中,利用加热空气和自来水通过列管式换热器来测定K ,只要测出空气的进出口温度、自来水的进出口温度以及水和空气的流量即可。
在工作过程中,如不考虑热量损失,则加热空气放出的热量Q 1与自来水得到热量Q 2应相等,但实际上因热量损失的存在,此两热量不等,实验中以Q 2为准。
三、 实验流程及设备四、 实验步骤及操作要领1.开启冷水进口阀、气源开关,并将空气流量调至合适位置,然后开启空气加热电源开关2.当空气进口温度达到某值(加120℃)并稳定后,改变空气流量,测定不同换热条件下的传热系数;3.试验结束后,先关闭电加热器开关。
待空气进口温度接近室温后,关闭空气和冷水的流量阀,最后关闭气源开关;五、 实验数据1.有关常数换热面积:0.4m 22.实验数据记录表以序号1为例:查相关数据可知:18.8℃水的密度348.998m kg=ρ20℃水的比热容()C kg kJ C p 。
⋅=185.4空气流量:s m Q 3004.0360016==气 水流量:s kg Q W 022.03600/48.99810803-=⨯⨯=⋅=ρ水水 水的算数平均温度:C t t t 。
出入平均3.212246.182=+=+=传热速率:s J Q t t W C p 437.5016.18-24022.0418512=⨯⨯=-⋅=)()(水()()()()℃查图得:对数平均温度:逆△△。
△022.3699.0386.3699.09.146.18245.291.110-06.06.181.1106.1824386.366.185.29241.110ln 6.185.29241.110ln 122111122121=⨯====--=-==--=--==-----=∆∆∆-∆=∆∆t t t t T T tT t t t t t t m t m t m R P C t ϕϕ 传热系数:K m W t S Q K m 2801.34022.364.0437.501=⨯=∆⋅=六、 实验结果及讨论1.求出换热器在不同操作条件下的传热系数。
传热实验报告范文
![传热实验报告范文](https://img.taocdn.com/s3/m/f109477fbdd126fff705cc1755270722192e59b2.png)
一、实验目的1. 了解传热的基本原理和传热过程。
2. 熟悉传热实验装置的结构和操作方法。
3. 通过实验,测定传热系数,分析影响传热效果的因素。
4. 培养实验操作技能和数据分析能力。
二、实验原理传热是指热量从高温物体传递到低温物体的过程。
传热方式主要有三种:导热、对流和辐射。
本实验主要研究导热和对流传热。
1. 导热:热量通过固体物质从高温部分传递到低温部分的过程。
其基本原理为热传导定律,即热量在单位时间内通过单位面积,沿着温度梯度方向传递的速率与温度梯度的乘积成正比。
2. 对流:热量通过流体(气体或液体)的流动而传递的过程。
其基本原理为牛顿冷却定律,即流体与固体表面之间的热交换速率与流体与固体表面的温度差成正比。
三、实验装置与仪器1. 实验装置:传热实验装置包括加热器、温度计、流量计、实验管等。
2. 实验仪器:温度计、流量计、秒表、游标卡尺、电子天平等。
四、实验步骤1. 准备工作:检查实验装置是否完好,调节加热器功率,预热实验管。
2. 实验数据记录:1. 测量实验管的长度、直径和厚度。
2. 测量实验管两端的温度,计算温度差。
3. 调节流量计,控制流体流量。
4. 记录实验数据,包括时间、温度、流量等。
3. 实验结束:关闭加热器,停止实验。
五、实验结果与分析1. 实验数据:| 时间(min) | 流体温度(℃) | 温度差(℃) | 流量(L/min) || :----------: | :------------: | :----------: | :------------: || 0 | 20.0 | 10.0 | 1.0 || 5 | 30.0 | 20.0 | 1.0 || 10 | 40.0 | 30.0 | 1.0 || 15 | 50.0 | 40.0 | 1.0 |2. 结果分析:根据实验数据,绘制温度-时间曲线。
可以看出,随着时间推移,流体温度逐渐升高,温度差也逐渐增大。
1. 影响传热效果的因素:1. 流体流量:流体流量越大,传热效果越好。
传热实验实验报告
![传热实验实验报告](https://img.taocdn.com/s3/m/fd121a9a7e192279168884868762caaedd33ba1c.png)
传热实验实验报告一、实验目的通过本实验,掌握传热实验的基本原理、方法和技能,了解不同材质导热性能的差异,并能够计算不同材料的传热速率。
二、实验仪器和材料1.实验仪器:传热实验装置、温度计、定时器等。
2.实验材料:铁、铝、铜、纸、木材等不同材质的样品。
三、实验原理传热是热能从一个物体传递到另一个物体的过程。
主要有三种传热方式:热传导、热对流和热辐射。
本实验主要研究热传导方式。
热传导是物质中微观颗粒间能量传递的方式。
传导的速率与导热系数、温度差和导热面积有关,其数学表达式为:Q=K*A*(T1-T2)/l其中,Q为传热速率,K为导热系数,A为传热面积,T1和T2为物体的温度,l为传热距离。
四、实验步骤1.准备不同材质的样本,如铁、铝、铜、纸、木材等。
2.将样品按照一定的厚度和形状放置在传热实验装置上,并确保各个样品与装置接触良好。
3.启动传热实验装置,设定初始温度和结束温度,并开始计时。
4.在设定的时间间隔内,记录每个样品的温度变化。
5.根据记录的温度数据,计算不同材料的传热速率,并作出相应的图表和分析。
五、实验结果和分析根据实验测得的温度数据,根据热传导公式计算不同材料的传热速率,并绘制传热速率和时间的关系图表。
通过分析图表,可以看出不同材料的传热速率的差异。
铜的导热性能最好,导热速率最快,其次是铝,然后是铁。
纸和木材的导热性能较差,传热速率较慢。
六、实验误差和改进方法在实际实验中,可能存在的误差包括温度测量误差、传热面积测量误差等。
1.高精度的温度计和测量仪器,确保温度测量的准确性;2.使用适当的仪器和方法测量传热面积,减小测量误差;3.多次重复实验,取平均值,提高结果的可靠性;4.即时记录实验过程中的变化,减小人为因素对结果的影响。
七、实验结论通过本实验,我们掌握了传热实验的基本原理、方法和技能,了解和比较了不同材料的导热性能差异。
铜具有较好的导热性能,传热速率最快,纸和木材的导热性能较差,传热速率较慢。
传热学实验
![传热学实验](https://img.taocdn.com/s3/m/5452e4dcd15abe23482f4dd3.png)
传热学实验指导书上海应用技术学院2009年6月前言 (1)实验一物体(耐火材料)导热系数测定 (2)实验二自然对流放热系数的测定 (5)实验三法向热辐射率测试 (12)传热学课程的课内实践共开设三个项目,实验一:物体(耐火材料)导热系数测定;稳定状态时,通过样品上表面的热流量与散热盘向周围散热的速率相等计算样品的导热量,从而测出样品的导热系数。
实验二:为自然对流放热系数的测定,通过本试验观察高温的物体在容器内引起的自然对流的现象建立起由于温差产生流体自由流动的知识,测定水自然对流时的放热系数,整理;实验三:为法向热辐射率测试,其目的培养学生三性的能力,掌握热辐射率的测试方法,了解各种物体的热辐射率(黑度)。
实验一 物体(耐火材料)导热系数测定一、 实验目的掌握物体导热系数的测定方法,了解耐火材料导热系数大小的基本情况。
二、 实验原理依据物理学家——傅里叶导热方程,在物体内部,取二个垂直于热传导方向。
彼此相距为h ,温度分别为θ1、θ2的平行面(设θ1>θ2),如果平面的面积均为S ,在δt 时间内通过面积S 的热量δQ 满足下述表达式。
2212121)()(:2R htm C S h t Q hS t Q⋅⋅-⨯∆∆⋅⋅=⋅-=-⋅⋅==πθθθθθδδλθθλδδθθ则三、 仪器名称导热系数测定 称重天平游标尺、千分卡尺 冰水混合物图1 导热系数测定仪四、 安装步骤1.将样品放在加热盘和散热盘中间,然后固定;调节底部的三个微调螺母,使样品与加热盘、散热盘接触良好。
2.将热电偶的两个插头插在表盘的测2上把冷端放在装有冰水混合物的杜瓦瓶内的细玻璃管中,热端插在散热盘的小插孔上;将热电偶的两个插头插在表盘的测1上把冷端放在装有冰水混合物的杜瓦瓶内的细玻璃管中,热端插在加热盘的小插孔上。
3.插好加热板的电源插头;再将Q9线的一端与数字电压表相连,另一端插在表盘的中间位置。
4.最后,分别接好导热系数测定仪、数字电压表的电源。
综合传热实验报告
![综合传热实验报告](https://img.taocdn.com/s3/m/645b3defa48da0116c175f0e7cd184254b351bf8.png)
综合传热实验报告传热学实验报告一、实验目的1、通过实验熟悉热传导实验;2、实验运用载入形式的均匀热流,考察传热过程中的热传导系数的数值;3、掌握恒定温度差的传热过程,并分析热传导系数的影响。
二、实验原理当一块物体介质之间存在温度差的时候,它们之间会发生热传递,应用热传形式的方式研究它们之间的热传导系数。
热传导的形式有很多种,但是本实验中采用的是载入形式的均匀热流。
在此形式的热传方式中,介质之间的温度差也是恒定的,传热过程中的物体质量和热容量也被忽略,只考虑物体介质之间的热流,这样就可以简化传热过程的模型,从而得出它们之间的热传导系数。
三、实验设备实验中使用的设备主要是:加热片、铜片、温度计、加热源、电阻表等。
四、实验步骤1、将加热片和铜片装入实验装置中,并将它们的温度设置为相同的温度。
2、将加热源的电流调到一个基本值,并从电阻表中测量出来的电阻值。
3、记录下实验装置中两片间的温度差,然后增加加热源的电流,再次记录下实验装置中两片间的温度差,如此循环,直到记录下所有的温度差数据。
4、根据数据计算出两片间的热传导系数,并将计算结果与理论值进行比较,分析出热传导系数的变化过程。
五、实验数据加热电流:0.1A~3A温差(℃):0.15~3.45六、实验结果根据所得的实验数据计算,两片之间的热传导系数为:K=0.064 W/(m·K)七、实验讨论比较理论计算出来的热传导系数(K=0.066 W/(m·K)),可以看到实验得出的热传导系数与理论值有一定的差异,这可能因为实验时的不确定性所致。
八、结论根据本次实验,可以得出两片之间的热传导系数为K=0.064W/(m·K),与理论值有一定的差异,可能是实验不确定性所致,可以通过进一步的实验,对热传导系数进行准确的测定。
传热学实验指导书---实验一(本部)
![传热学实验指导书---实验一(本部)](https://img.taocdn.com/s3/m/bafc22b7c9d376eeaeaad1f34693daef5ff71345.png)
实验一 非稳态法测量材料的导热性能实验一、实验目的1. 快速测量绝热材料的导热系数和比热。
2. 掌握使用热电偶测量温差的方法。
二、实验原理X图1 第二类边界条件无限大平板导热的物理模型本实验是根据第二类边界条件,无限大平板的导热问题来设计的。
设平板厚度为2δ。
初始温度为t 0,平板两面受恒定的热流密度q c 均匀加热(见图1)。
求任何瞬间沿平板厚度方向的温度分布t(x,τ)。
导热微分方程式、初始条件和第二类边界条件如下:22),(),(x x t a x t ∂∂=∂∂τττ初始条件 0)0,(t x t =边界条件x=0,0),0(=∂∂xt τX=δ,0),(=+∂∂λτδcq x t 方程的解为:⎥⎦⎤⎢⎣⎡--+--=-∑∞=+1221220)exp(cos(2)1(63),(n o n n n n c F x x a q t x t μδμμδδδδλττq c式中: t —温度; τ—时间; t 0 — 初始温度;ɑ — 平板的导温系数; μn — n π n=1,2,3,……2δτa Fo =— 傅立叶准则; q c— 沿方向从端面向平板加热的恒热流密度;随着时间t 的延长,Fo 数变大,上式中级数和项愈小。
当Fo>0.5时,级数和项变得很小,可以忽略,上式变成:)612(),(220-+-=-δτδτλδτa a q t x t c 由此可见,当Fo>0.5后,平板各处温度和时间成线性关系,温度随时间变化的速率是常数,并且到处相同。
这种状态称为准稳态。
在准稳态时,平板中心面x=0处的温度为:)61(),0(20-=-δτλδτa q t t c 平板加热面X=δ处为:)31(),(20+-=-δτλδτδa q t t c 此两面的温差为:λδττδcq t t t 21),0(),(=-=∆如已知q c 和δ,再测出t ∆,就可以由上式求出导热系数:tq c∆=2δλ式中,λ—平板的导热系数,oW /(m C)⋅ cq —沿x 方向给平板加热的恒定热流密度,2W /mδ—平板的厚度,mt ∆—平板中心面x=0处和平板加热面x=δ处两面的温差,o C又,根据热平衡原理,在准稳态有下列关系:式中,F —平板的横截面积ρ—试件材料的密度C —试件材料的比热—准稳态时的温升速率由上式可求得比热为:实验时, 以试件中心处为准。
传热学实习报告
![传热学实习报告](https://img.taocdn.com/s3/m/42724adfbdeb19e8b8f67c1cfad6195f312be8af.png)
一、实习目的通过本次传热学实习,我深入了解了传热学的基本原理和方法,掌握了传热学实验的基本技能,提高了自己的动手能力和实验操作能力。
同时,通过实际操作,我对传热学理论有了更深刻的认识,为今后的学习和工作打下了坚实的基础。
二、实习内容1. 实验一:对流传热实验(1)实验目的掌握对流传热的实验方法,了解对流传热的基本规律。
(2)实验原理对流传热是指流体在流动过程中,由于流体与固体壁面之间的温度差,导致热量从高温区域传递到低温区域。
本实验采用水作为工作流体,通过测量流体在不同温度下的对流传热系数,来研究对流传热规律。
(3)实验步骤①搭建实验装置,包括水箱、管道、温度传感器等。
②设置实验参数,如水流量、温度差等。
③启动实验装置,记录温度传感器数据。
④计算对流传热系数。
(4)实验结果与分析通过实验,得到不同温度差下的对流传热系数,并与理论值进行比较。
分析实验结果,发现实验值与理论值基本吻合,验证了对流传热规律。
2. 热传导实验(1)实验目的掌握热传导实验方法,了解热传导的基本规律。
(2)实验原理热传导是指热量在固体、液体或气体中通过分子、原子的碰撞和振动传递的过程。
本实验采用铜棒作为热传导材料,通过测量铜棒两端的温度差,来研究热传导规律。
(3)实验步骤①搭建实验装置,包括加热器、温度传感器、数据采集器等。
②设置实验参数,如加热器功率、温度差等。
③启动实验装置,记录温度传感器数据。
④计算热传导系数。
(4)实验结果与分析通过实验,得到不同温度差下的热传导系数,并与理论值进行比较。
分析实验结果,发现实验值与理论值基本吻合,验证了热传导规律。
3. 热辐射实验(1)实验目的掌握热辐射实验方法,了解热辐射的基本规律。
(2)实验原理热辐射是指物体通过电磁波的形式将热量传递到另一物体的过程。
本实验采用黑体辐射计和红外热像仪,通过测量物体表面的温度分布,来研究热辐射规律。
(3)实验步骤①搭建实验装置,包括黑体辐射计、红外热像仪、加热器等。
有关传热学实验
![有关传热学实验](https://img.taocdn.com/s3/m/516bc625ccbff121dd3683cb.png)
第三章 传热学的基本实验第一节 用平板法测定保温材料的导热系数一、实验目的(1)用平板法测定保温材料的导热系数; (2)确定导热系数随温度变化的关系。
二、实验原理平板法测定保温材料的导热系数是以一维稳态导热原理为基础,这时通过平板的热流量为c h t t F Q -=(δλ于是)(c h t t F Q -=δλ在实验中需测得:试材的厚度δ;试材的面积F ;通过该面积的热流量Q ;试材的表面温度t h 及t c 。
于是试材的导热系数可由式(3-1-1)求出。
三、实验装置实验本体如图3-1-1所示,加热器1产生的热量通过试材2被冷却水带走,当加热器上下的热传递条件基本一致时,产生的热量将是上下各一半,即通过任一侧试材的热流量IU Q 21=。
在整理实验数据时,基中),(21),(21),(21214132δδδ+=+=+=t t t t t t c h 。
δ1、δ2为上下两块试材的厚度,要求两块试材的材质一样,且21δδ≈。
在加热器水平方向填有保温性能较好的材料4,当试材厚度方向尺寸比宽度方向尺寸小很多时,可以忽略水平方向的热损失。
因此可以近似地认为该导热是一维的。
四、实验步骤1. 将试材烘干。
图3-1-1 平板导热装置图1—电加热器2—试材;3—冷却水套;4—保温层;5—热电偶多点转换开关;6—冰点;7—电位差计2. 记录试材尺寸,当试材的厚度为20~30mm 时,两块试材平均厚度之差应小于1mm ,两块试材的容重应接近相等,并仔细地将试材装入实验装置内,将热电偶热接点紧贴在试材的两表面上。
3. 按图接线,接通冷却水,合上电源加热,经一段时间后测量t 1、t 2、t 3、t 4,以后每隔10分钟测数据一次,直至系统达到热稳定状态为止。
4. 改变电加热器的电流、电压,待系统达到热稳定后再次记录所需数据。
5. 实验数据经教师审阅后,整理现场方可离开。
五、实验结果整理对于大多数保温材料其导热系数随温度的变化有以下线性关系:λ=λ0(1+bt ) (3-1-2) λm =λ0(1+bt m )(3-1-3)式中,b ——比例常数;t m ——试材的平均温度值,)(21c h m t t t +=。
《传热学》实验 自然对流横管管外传热系数测试
![《传热学》实验 自然对流横管管外传热系数测试](https://img.taocdn.com/s3/m/fbe7f536a1c7aa00b42acb97.png)
实验 自然对流横管管外传热系数测试一、实验目的和要求1.了解空气沿管表面自然对流传热的实验方法,巩固课堂上学习的知识;2.测定单管的自然对流传热传热系数h ;3.根据对自然对流传热的相似分析,整理出准则方程式。
二、实验原理对铜管进行电加热,热量应是以对流和辐射两种方式来散发的,所以对换热量为总热量与辐射热换热量之差,即:r c Φ+Φ=Φ)(f c t t hF -=Φω⎥⎦⎤⎢⎣⎡----=44)100(100()()(f f f T T t t Co t t A IV h ωωεωΦr ——辐射换热量Φc —对流换热量ε—试管表面黑度C o —黑体的辐射系数t ω—管壁平均温度t f —室内平均温度h —自由运动系数根据相似理论,对于自由对流放热,努谢尔特数Nu 是葛拉晓夫数Gr ,普朗特数Pr 的函数即:)(r r u P G f N =可表示为nr r u P G c N )(=其中c 、n 是通过这个实验所确定的常数。
为了确定上述关系式的具体形式,根据所测定的数据计算结果求得准则数:λhdNu =33v d t g Gr v α∆=Pr 、αv 、λ、v 物性参数由定性温度从教科书中查出。
改边加热量,可求得一组准则数,把几组数据标在对数坐标纸上得到以Nu 为纵坐标、以Gr 、Pr 为横坐标的一系列点,一条直线,使大多数点落在这条直线上或周围,根据:这条直线的斜率即为n,截距为c 。
Pr)lg(lg lg ⋅+=Gr n c Nu三、实验装置以及测量仪表实验装置有试验管(四种类型),测量仪表有电位差计、TDGC型接触式调压器、稳压器、电流表、电压表。
实验管上有热电偶嵌入管壁,可反应出管壁的热电势;电位差计用于测量室内和管壁的电热势;稳压管可稳定输入电压,使加热管的热量保持一定;电压、电流表测定电加热器的电压和电流。
如图7-1所示。
图7-1四、实验步骤1.按电路图接好电线,经指导老师检查后接通电源;2.调整稳压器,对试验管加热;3.稳定六小时后,开始测管壁温度,计下数据;4.间隔半小时再计一次,直到两组数据一致为止;5.选两组接近的数据取平均值,作为计算数据;6.计下半导体温度计指示的空气温度或用玻璃温度计;7.经过指导老师同意,将调压器调整回零位,切断电源。
山东大学传热学实验一-球体法测量导热系数---2025-1
![山东大学传热学实验一-球体法测量导热系数---2025-1](https://img.taocdn.com/s3/m/0285a86f366baf1ffc4ffe4733687e21af45fff0.png)
传热学实验一用球体法测量导热系数一、实验目的1. 加深对稳态导热过程基本理论的理解。
2.掌握用球壁导热仪测定粉状、颗粒状及纤维状隔热材料导热系数的方法和技能。
3.确定材料的导热系数和温度的关系。
4.学会根据材料的导热系数判断其导热能力并进行导热计算。
二、实验原理1.导热的定义:物体内具有温差的各部分之间不发生相对位移,依靠分子、原子及自由电子等微观粒子的热运动而产生的热能传递。
2.傅里叶导热定律:Φ=−λAðtðx(1-1)3.球体法测量隔热材料的导热系数是以同心球壁稳定导热规律作为基础的。
在球坐标中,考虑到温度仅随半径r而变,故是一维稳定温度场导热。
实验时,在直径为d1和d2的两个同心圆球的圆壳之间均匀地充填被测材料(可为粉状、粒状或纤维状),内球中则装有电加热元件。
从而在稳定导热条件下,只要测定被测试材料两边,即内外球壁上的温度以及通过的热流,就可由下式(1-4)计算被测材料的导热系数λ。
4.球体导热系数的推导过程:如图1所示,内外直径分别为d1和d2的两个同心圆球的圆壳(半径为r1,r2),内外表面温度分别维持t1、t2,并稳定不变,将傅里叶导热定律应用于此球壁的导热过程,得导热微分方程:Φ=−λA dtdx =−λ4πr2dtdx(1-2)边界条件:r=r1,t=t1r=r2,t=t2由于在不太大的温度范围内,大多数工程材料的导热系数随温度的变化可直接按直线关系处理,即λ=λ0(a +bt),对式 (1-2) 积分并带入边界条件得Φ=2πλ(t 1−t 2)1d 1−1d 2=2πλd 1d 2(t 1−t 2)d 2−d 1(1-3)即:λ=Φ(d 2−d 1)2πd1d 2(t 1−t 2)(1-4)(1-4)式中, Φ为球形电炉提供的热量(W )。
事实上,由于给出的λ是隔热材料在平均温度t m =(t 1−t 2)2时的导热系数,故在实验中只要维持温度场稳定,测出球径d 1=60 mm ,d 2=150 mm ,热量Φ及内外球面温度t 1、t 2,即可求出温度t m 下隔热材料的导热系数,而改变t 1和t 2即可获得λ−t 关系曲线。
物体的传热实验报告(3篇)
![物体的传热实验报告(3篇)](https://img.taocdn.com/s3/m/116087927d1cfad6195f312b3169a4517723e5bd.png)
第1篇一、实验目的1. 理解和掌握热传导、对流和辐射三种传热方式的基本原理。
2. 通过实验验证不同材料、不同条件下物体的传热效率。
3. 分析影响物体传热效率的因素,如材料的热导率、物体的形状、环境温度等。
二、实验原理物体的传热主要有三种方式:热传导、对流和辐射。
1. 热传导:热量通过物体内部的微观粒子(如原子、分子)的振动和碰撞传递。
其传热速率与物体的热导率、温度梯度、物体的截面积和传热距离有关。
2. 对流:热量通过流体(如液体、气体)的流动传递。
其传热速率与流体的流速、温度差、流体的热导率、物体的形状和截面积有关。
3. 辐射:热量通过电磁波的形式传递。
其传热速率与物体的温度、表面积、辐射系数、物体表面的发射率、周围环境的辐射强度和距离的平方有关。
三、实验材料与仪器1. 实验材料:金属棒、铜棒、铝棒、塑料棒、水、酒精、盐、温度计、计时器、支架、加热器等。
2. 实验仪器:电热板、热电偶、数字温度计、数据采集器、计算机等。
四、实验步骤1. 热传导实验:- 将金属棒、铜棒、铝棒和塑料棒分别置于支架上。
- 在一端加热金属棒,另一端用温度计测量温度。
- 记录不同材料的温度变化,计算热传导速率。
2. 对流实验:- 将水加热至一定温度,倒入烧杯中。
- 在水中放入金属棒,用温度计测量棒上不同位置的温度。
- 记录温度变化,计算对流速率。
3. 辐射实验:- 将电热板置于支架上,调整温度。
- 在一定距离处放置温度计,测量温度。
- 记录不同温度下的温度变化,计算辐射速率。
五、实验结果与分析1. 热传导实验:- 金属棒的热传导速率高于塑料棒,说明金属的热导率较高。
- 铜棒的热传导速率高于铝棒,说明铜的热导率较高。
2. 对流实验:- 水的对流速率较快,说明水的流动性较好。
- 金属棒在不同位置的温度变化较大,说明对流在金属棒上起主要作用。
3. 辐射实验:- 电热板温度越高,辐射速率越快。
- 辐射速率与距离的平方成反比。
六、实验结论1. 物体的传热方式主要有热传导、对流和辐射三种。
《传热学》课程实验指导书
![《传热学》课程实验指导书](https://img.taocdn.com/s3/m/a1dc82e0102de2bd960588f3.png)
《传热学》课程实验指导书袁守利编汽车工程学院2013年10月前言1.实验总体目标、任务与要求培养本科生对涉及到热传播现象的工程问题进行实验研究的兴趣,并能对实验技术、数据采集系统、基本数据处理方法有所了解。
学习实验研究和整理实验数据的理论基础及其应用于传热实验的基本技能;初步掌握测温、测热、测流量的基本方法。
2.适用专业热能与动力工程3.先修课程《传热学》相关章节。
4.实验项目与学时分配5. 实验改革与特色根据实验内容和现有实验条件,在实验过程中,采取学生自己动手和教师演示相结合的方法,力求达到较好的实验效果。
实验一 稳态球体法测粒状材料的导热系数球体法测材料的导热系数是基于等厚度球状壁的一维稳态导热过程,它特别适用于粒状松散材料。
球体导热仪的构造依球体冷却的不同可分为空气自由流动冷却和恒温液体强制冷却两种。
本实验属后一种恒温水冷却液套球体方式。
一、实验原理图1所示球壁的内径直径分别为d 1和d 2(半径为r 1和r 2)。
设球壁的内外表面温度分别维持为t 1和t 2,并稳定不变。
将傅里叶导热定律应用于此球壁的导热过程,得dr dtF Q λ-=drdt r 24πλ∙-= W (1)边界条件为r=r 1 t=t 1r=r 2 t=t 2 图 1原理图由于在不太大的温度范围内,大多数工程材料的导热系数随温度的变化可按直线关系处理,对式(1)积分并代入边界条件,得)(2121t t d d Q m -=δλπ W (2)或 )(2121t t d d Q m -=πδλ W/m ·℃ (3)式中 δ——球壁之间材料厚度,δ=(d 2-d 1)/2,m ;λm ——t m =(t 1+t 2)/2时球壁之间材料的导热系数。
因此,实验时应测出内外球壁的温度t 1和t 2,然后可由式(3)得出t m 时材料的导热系数λm 。
测定不同t m 下的λm 值,就可获得导热系数随温度变化的关系式。
二、实验设备导热仪本体结构及量测系统示意图如图2所示。
[传热学]传热实验
![[传热学]传热实验](https://img.taocdn.com/s3/m/64ff2457f4335a8102d276a20029bd64793e6250.png)
[传热学]传热实验一、实验目的:1、掌握测量实验中的不确定度分析方法;2、了解传热现象发生的物理原理;3、掌握传热实验中的传热方式及其特点;4、掌握传热系数的测量方法及相关热工量的计算方法。
二、实验仪器和设备:1、热传导仪;2、接触式热流计;3、辐射测温仪;4、蒸发器;5、热电偶;6、数显万能表。
三、实验原理:1、热传导。
物体内部由于温度不同而产生热流,这种热流的传递方式称为热传导。
实验中通过热传导仪测量物体的热传导系数。
3、对流传热。
物体表面和周围介质的热交换是通过对流传热实现的。
实验中通过蒸发器来模拟对流传热的实验。
四、实验步骤:1、热传导实验:(1)将热传导仪置于被测物体的一端,将加热板置于另一端;(2)将加热板接通电源,保持电流恒定;(3)记录加热时间t和热传导仪两侧的温度差Δt;(4)通过计算得到物体的热传导系数k。
2、热辐射实验:(1)将被测物体放置在室温下;(2)将辐射测温仪对准被测物体表面,记录物体表面的温度;(3)调整物体表面的温度,观察辐射测温仪反应的情况。
3、对流传热实验:(1)将被测物体放置在蒸发器内,打开电源;(2)观察水龙头中的水流变化,记录物体表面的温度,根据摄氏温度计和热电偶两种温度传感器的测量结果进行比较。
五、实验注意事项:1、实验中要保持仪器设备的干净和精密,防止灰尘、水汽、油脂等污染;2、实验中要记录详细的数据,尽量避免因疏漏而导致实验结果不准确;3、实验前要仔细阅读仪器的使用说明书,了解使用方法和操作要点;4、实验后要及时检查仪器设备,清理垃圾和污垢,防止故障和损坏。
六、实验结果与分析:通过以上实验我们可以得到被测物体的热传导系数、表面温度和对流传热的效果,并结合有关热力学知识计算出相关的热量和功率、接触热阻等参数,从而深入理解热力学中传热的基本规律和机理,为工程实践提供参考依据和技术支持。
同时,实验中要注意不确定度的评定和分析,保证实验数据的可靠性和准确性。
传热学实验报告.docx
![传热学实验报告.docx](https://img.taocdn.com/s3/m/65683bfe33687e21af45a9e4.png)
传热学实验报告班级:安全工程(单) 0901班姓名:***学号: 01第一节稳态平板法测定绝热材料导热系数实验一、实验目的1.巩固和深化稳定导热过程的基本理论,学习用平板法测定绝热材料导热系数的试验方法和技能。
2.测定试验材料的导热系数。
3.确定试验材料导热系数与温度的关系。
二、实验原理导热系数是表征材料导热能力的物理量。
对于不同的材料,导热系数是各不相同的,对同一材料,导热系数还会随着温度、压力、湿度、物质的结构和重度等因素而变异。
各种材料的导热系数都用试验方法来测定,如果要分别考虑不同因素的影响,就需要针对各种因素加以试验,往往不能只在一种实验设备上进行。
稳态平板法是一种应用一维稳态导热过程的基本原理来测定材料导热系数的方法,可以用来进行导热系数的测定试验,测定材料的导热系数及其和温度的关系。
实验设备是根据在一维稳态情况下通过平板的到热量Q 和平板两面的温差t 成正比,和平板的厚度h 成反比,以及和导热系数成反比的关系来设计的。
我们知道,通过薄壁平板(壁厚小于十分之一壁长和壁宽)的稳定导热量为:Q t S(1)h其中: Q 为传到平板的热量,w ;为导热系数, w/m ℃;h 为平板厚度, m;t 为平板两面温差,℃;S 为平板表面积;m2;测试时,如果将平板两面温差t 、平板厚度h 、垂直热流力向的导热面积S 和通过平板的热流量Q 测定后,就可以根据下式得出导热系数:Q h( 2)t S其中:t T u - T d,T u为平板上测温度,T d为平板下侧温度,℃;这里,公式 2 所得出的导热系数是在当时的平均温度下材料的导热系数值,此平均温度为:t 1T d( 3)T u2在不同的温度和温差条件下测出相应的值,然后按值标在- t坐标图内,就可以得出 f t 的关系曲线。
三、实验装置及测试仪器稳态平板法测定绝热材料的导热系数的电器连接图和实验装置如图1和图 2所示。
被试验材料做成两块方形薄壁平板试件,面积为300*300[mm2],实际导热计算面积 S为 200*200[mm 2] ,平板厚度 h[mm] 。
传热实验实验报告
![传热实验实验报告](https://img.taocdn.com/s3/m/ed8ce00fc950ad02de80d4d8d15abe23482f0322.png)
传热实验实验报告一、实验目的。
本实验旨在通过传热实验,探究不同材料的传热特性,了解传热规律,并通过实验数据的分析,掌握传热实验的基本方法和技巧。
二、实验原理。
传热是物体内部或不同物体之间由于温度差而进行的热量传递过程。
传热方式包括传导、对流和辐射三种方式。
传导是指热量通过物质内部的分子热运动传递,对流是指热量通过流体的流动传递,而辐射是指热量通过电磁波传递。
本实验主要通过传导和对流的方式进行传热实验。
三、实验材料和仪器。
1. 实验材料,铝块、铜块、木块。
2. 实验仪器,温度计、热水槽、计时器。
四、实验步骤。
1. 将铝块、铜块和木块分别置于相同温度的热水中,浸泡一段时间使其温度均匀。
2. 将热水槽中的热水倒掉,用干净的水重新加热至相同温度。
3. 将温度计插入铝块、铜块和木块中,记录下它们的初始温度。
4. 将铝块、铜块和木块分别放入热水中,启动计时器计时。
5. 每隔一段时间记录一次铝块、铜块和木块的温度,并绘制温度-时间曲线。
五、实验数据处理与分析。
根据实验数据绘制出铝块、铜块和木块的温度-时间曲线,通过曲线的斜率和趋势分析不同材料的传热速率和传热规律。
六、实验结果与结论。
通过实验数据处理与分析,得出不同材料的传热速率和传热规律。
根据实验结果得出结论,铜块的传热速率最快,传热规律最符合理论预期;铝块次之;木块传热速率最慢,传热规律不如铜块和铝块明显。
七、实验总结。
通过本次传热实验,我们深入了解了不同材料的传热特性和传热规律,掌握了传热实验的基本方法和技巧。
同时,也加深了对传热原理的理解,为今后的实验和学习打下了坚实的基础。
八、实验感想。
本次实验让我对传热有了更深入的了解,通过实际操作和数据处理,加深了对传热原理和规律的理解。
同时,也意识到实验中的仪器使用和数据处理的重要性,这对我今后的实验操作和科研工作都具有重要的指导意义。
以上就是本次传热实验的实验报告,希望对大家有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传热学实验1
顺流式换热器传热系数测定
[实验目的]
1. 熟悉换热器性能的测试方法;
2. 了解套管式换热器、螺旋板式换热器和列管式换热器的结构特点及其性能特征;
3. 加深对顺流和逆流两种流动方式换热器换热能力差别的认识。
[实验原理]
换热器性能测试实验,主要对应用较广的间壁式换热器中的三种型式:套管式换热器、螺旋板式换热器和列管式换热器进行性能的测试。
图1实验装置简图
1.热水流量调节阀
2. 热水螺旋板、套管、列管启闭阀门组
3.热水流量计
4.换热器进口压力表
5.数显温度计
6.琴键转换开关
7.电压表
8.电流表
9.开关组10.冷水出口压力计11. 冷水螺旋板、套管、列管启闭阀门组12.逆顺流转换阀门组13.冷水流量调节阀
本实验装置换热形式为热水—冷水换热式,工作原理如图2所示。
热水加热采用电加热方式,冷、热流体的进出口温度采用数显温度计,通过琴键开关来切换测点。
实验台参数:
1.换热器换热面积{F}:
⑴.套管式换热器具0.45 m2
⑵.螺旋板式换热器0.65 m2
⑶.列管式换热器 1.05 m2
2.电加热器总功率:9.0 kw
3.冷、热水泵:
⑴.允许工作温度:< 80 ℃
⑵.额定流量: 3 m3/h
⑶.扬程:12 m
⑷.电机电压:220 V
⑸.电机功率:370 W
4.转子流量计:
⑴.型号:LZB-15
⑵.流量:40-400升/小时
⑶.允许温度范围:0―120 ℃
1.冷水泵
2.冷水箱
3.冷水转子流量计
4.冷水顺逆流换向阀门组
5.列管式换热器
6.电加热水箱
7.热水转子流量计
8.回水箱
9. 热水泵10. 螺旋板式换热器11. 套管式换热器
[实验操作]
1.实验前准备:
⑴. 熟悉实验装置及使用仪表的工作原理和性能;
⑵. 打开所要实验的换热器阀门,关闭其它阀门;
⑶. 按顺流方式调整冷水换向阀门的开或关;
⑷. 向冷-热水箱充水,禁止水泵无水运行(热水泵启动,加热才能供电)。
2.实验操作:
⑴. 接通电源;启动热水泵(为了提高热水温升速度,可先不启动冷水泵),并调整好合适的流量;
⑵.调整温控仪,使加热水温控制在80℃以下的某一指定温度;
⑶.分别打开加热器开关(热水泵开关与加热开关已进行连锁);
⑷.利用数显温度计和温度测点选择琴键按钮,观测和检查换热器冷-热流体的进出口温度。
待冷-热流体的温度基本稳定后,既可测读出相应测温点的温度数值,同时测读转子流量计显示的冷-热流体的流量读数;记录上述测试结果;
⑸.实验结束后,首先关闭电加热器开关,5分钟后切断全部电源。
[实验数据与处理]
1. 实验数据记录表 环境温度t0 ℃
2. 数据计算
热流体放热量:Q 1=C p 1·m 1{T 1-T 2} [W] 冷流体吸热量:Q 2=C p 2·m 2{t 1-t 2} [W] 平均换热量: 22
1Q Q Q +=
[W] 热平衡误差: %1002
1⨯-=
∆Q
Q Q 对数传热温差:Δ1={ΔT 2-ΔT 1 }/In ·ΔT 2/ΔT 1={ΔT 1-ΔT 2}/In ·ΔT 1/ΔT 2 [℃]
传热系数: K=Q/F ·Δ1 [W/{m 2
·℃}] 式中: C p1,C p2 ——热,冷流体的定压比热 [J/Kg ·℃]
m 1,m 2——热,冷流体的质量流量热 [Kg/s] T 1,T 2——热流体的进出口温度 [℃] t 1,t 2——冷流体的进出口温度 [℃] ΔT 1= T 1-t 2 [℃] ΔT 2= T 2-t 1 [℃]
F ——换热器的换热面积 [m 2
]
[注]:热、冷流体的质量流量m 1,m 2是根据修正后的流量计体积流量读数V 1 V 2再换算成的质量流量值。
3. 绘制传热性能曲线,并作比较:
(1) 以传热系数为纵座标,冷水(热水)流速(或流量)为横座标绘制传热性能曲线; (2) 对三种不同型式换热器的性能进行比较。
[注意事项]
1 热流体在热水箱中加热温度不得超过80℃;
2 实验台使用前应加接地线,以保安全。
传热学实验2
逆流式换热器传热系数测定
[实验目的]
1. 熟悉换热器性能的测试方法;
2. 了解套管式换热器、螺旋板式换热器和列管式换热器的结构特点及其性能特征;
3. 加深对顺流和逆流两种流动方式换热器换热能力差别的认识。
[实验原理]
换热器性能测试实验,主要对应用较广的间壁式换热器中的三种型式:套管式换热器、螺旋板式换热器和列管式换热器进行性能的测试。
图1实验装置简图
1.热水流量调节阀
2. 热水螺旋板、套管、列管启闭阀门组
3.热水流量计
4.换热器进口压力表
5.数显温度计
6.琴键转换开关
7.电压表
8.电流表
9.开关组10.冷水出口压力计11. 冷水螺旋板、套管、列管启闭阀门组12.逆顺流转换阀门组13.冷水流量调节阀
本实验装置换热形式为热水—冷水换热式,工作原理如图2所示。
热水加热采用电加热方式,冷、热流体的进出口温度采用数显温度计,通过琴键开关来切换测点。
实验台参数:
1.换热器换热面积{F}:
⑴.套管式换热器具0.45 m2
⑵.螺旋板式换热器0.65 m2
⑶.列管式换热器 1.05 m2
2.电加热器总功率:9.0 kw
3.冷、热水泵:
⑴.允许工作温度:< 80 ℃
⑵.额定流量: 3 m3/h
⑶.扬程:12 m
⑷.电机电压:220 V
⑸.电机功率:370 W
4.转子流量计:
⑴.型号:LZB-15
⑵.流量:40-400升/小时
⑶.允许温度范围:0―120 ℃
图2 换热器综合实验台原理图
1.冷水泵
2.冷水箱
3.冷水转子流量计
4.冷水顺逆流换向阀门组
5.列管式换热器
6.电加热水箱
7.热水转子流量计
8.回水箱
9. 热水泵10. 螺旋板式换热器11. 套管式换热器
[实验操作]
1.实验前准备:
⑴.熟悉实验装置及使用仪表的工作原理和性能;
⑵.打开所要实验的换热器阀门,关闭其它阀门;
⑶.按逆流方式调整冷水换向阀门的开或关;
⑷.向冷-热水箱充水,禁止水泵无水运行(热水泵启动,加热才能供电)。
2.实验操作:
⑴.接通电源;启动热水泵(为了提高热水温升速度,可先不启动冷水泵),并调整好合适的流量;
⑵.调整温控仪,使加热水温控制在80℃以下的某一指定温度;
⑶.分别打开加热器开关(热水泵开关与加热开关已进行连锁);
⑷.利用数显温度计和温度测点选择琴键按钮,观测和检查换热器冷-热流体的进出口温度。
待冷-热流体的温度基本稳定后,既可测读出相应测温点的温度数值,同时测读转子流量计显示的冷-热流体的流量读数;记录上述测试结果;
⑸.实验结束后,首先关闭电加热器开关,5分钟后切断全部电源。
[实验数据与处理]
1. 实验数据记录表环境温度t0 ℃
2. 数据计算
热流体放热量:Q 1=C p 1·m 1{T 1-T 2} [W] 冷流体吸热量:Q 2=C p 2·m 2{t 1-t 2} [W] 平均换热量: ()221Q Q Q += [W]
热平衡误差: ()%100
21⨯-=∆Q Q Q 对数传热温差:Δ1={ΔT 2-ΔT 1 }/In ·ΔT 2/ΔT 1={ΔT 1-ΔT 2}/In ·ΔT 1/ΔT 2 [℃]
传热系数: K=Q/F ·Δ1 [W/{m 2
·℃}] 式中: C p1,C p2 ——热,冷流体的定压比热 [J/Kg ·℃]
m 1,m 2——热,冷流体的质量流量热 [Kg/s] T 1,T 2——热流体的进出口温度 [℃] t 1,t 2——冷流体的进出口温度 [℃] ΔT 1= T 1-t 2 [℃] ΔT 2= T 2-t 1 [℃]
F ——换热器的换热面积 [m 2
]
[注]:热、冷流体的质量流量m 1,m 2是根据修正后的流量计体积流量读数V 1 V 2再换算成的质量流量值。
3. 绘制传热性能曲线,并作比较:
(1) 以传热系数为纵座标,冷水(热水)流速(或流量)为横座标绘制传热性能曲线; (2) 对三种不同型式换热器的性能进行比较。
[注意事项]
1 热流体在热水箱中加热温度不得超过80℃;
2 实验台使用前应加接地线,以保安全。
[思考题]
对顺、逆流状态下获得的实验数据进行比较,试分析其差异原因。
列管式换热器
螺旋管式换热器
套管式换热器。