高考数学解答题解题策略及步骤分析
高考数学解答题答题技巧及题型特点
高考数学解答题答题技巧及题型特点解答题与填空题比较,同居提供型的试题,但也有本质的区别,小编为大伙儿预备了高考数学解答题答题技巧,供大伙儿参考,期望能对大伙儿有所关心!题型特点第一,解答题应答时,考生不仅要提供出最后的结论,还得写出或说出解答过程的要紧步骤,提供合理、合法的说明,填空题则无此要求,只要填写结果,省略过程,而且所填结果应力求简练、概括的准确;其次,试题内涵解答题比起填空题要丰富得多,解答题的考点相对较多,综合性强,难度较高,解答题成绩的评定不仅看最后的结论,还要看其推演和论证过程,分情形判定分数,用以反映其差别,因而解答题命题的自由度较之填空题大得多。
评分方法数学高考阅卷评分实行明白多少知识给多少分的评分方法,叫做“分段评分”。
而考生“分段得分”的差不多策略是:会做的题目力求不失分,部分明白得的题目力争多得分。
会做的题目若不注意准确表达和规范书写,常常会被“分段扣分”,有阅卷体会的老师告诉我们,解答立体几何题时,用向量方法处理的往往扣分少。
解答题阅卷的评分原则一样是:第一问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。
解题策略(1)常见失分因素:①对题意缺乏正确的明白得,应做到慢审题快做题;②公式经历不牢,考前一定要熟悉公式、定理、性质等;③思维不严谨,不要忽视易错点;④解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,幸免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会阻碍阅卷老师的“感情分”;⑤运算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;⑥轻易舍弃试题,难题可不能做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。
也许随着这些小步骤的排列,还能悟出解题的灵感。
高考数学解答题答题技巧
2019年高考数学解答题答题技巧平时做解答题就要多总结方法,可是书面的也总结了许多,在这儿我主要讲考试。
我们做这些解答题的时候必须严格按照演绎推理的方式科学逻辑地进行解答和表述,可以说这里已经没有“投机取巧”的机会,但仍然有一些让我们“多拿几分”,“夺取高分”的策略哦。
1. 缺步解答如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败.特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”,你可以在实战中运用分析一下。
2. 跳步答题解题过程卡在某一过渡环节上是常见的.这时,我们可以先承认中间结论,往后推,看能否得到结论.如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。
由于考试时间的限制,“卡壳处”的攻克来不及了,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答.也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,“事实上,某步可证明或演算如下”,以保持卷面的工整.若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答的方法。
3.退步解答“以退求进”是一个重要的解题策略.对于一个较一般的问题,如果你一时不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从参变量退到常量,从较强的结论退到较弱的结论.总之,退到一个你能够解决的问题,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决.为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。
4.逆向解答对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展.顺向推有困难就逆推,直接证有困难就反证.如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。
高考数学答题策略与技巧
高考数学答题策略与技巧一、历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。
假如前问是证明,即使可不能证明结论,该结论在后问中也能够使用。
因此,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键;二、答题策略选择1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。
一样来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。
因此,关于不同的学生来说,有的简单题目也可能是自己的难题,因此题目的难易只能由自己确定。
一样来说,小题摸索1分钟还没有建立解答方案,则应采取“临时性舍弃”,把自己可做的题目做完再回头解答;2.选择题有其专门的解答方法,第一重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。
切记不要“小题大做”。
注意解答题按步骤给分,依照题目的已知条件与问题的联系写出可能用到的公式、方法、或是判定。
尽管不能完全解答,然而也要把自己的方法与做法写到答卷上。
多写可不能扣分,写了就可能得分。
三、答题思想方法1.函数或方程或不等式的题目,先直截了当摸索后建立三者的联系。
第一考虑定义域,其次使用“三合一定理”。
2.假如在方程或是不等式中显现超越式,优先选择数形结合的思想方法;3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有阻碍到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4.选择与填空中显现不等式的题目,优选专门值法;5.求参数的取值范畴,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题或是它的反面,能够转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.求曲线方程的题目,假如明白曲线的形状,则可选择待定系数法,假如不明白曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的专门点);9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范畴;11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种专门数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何第一问假如是为建系服务的,一定用传统做法完成,假如不是,能够从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练把握它们之间的三角函数值的转化;锥体体积的运算注意系数1/3,而三角形面积的运算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”制造直角三角形解题;13.导数的题目常规的一样不难,但要注意解题的层次与步骤,假如要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该舍弃;重视几何意义的应用,注意点是否在曲线上;14.概率的题目假如出解答题,应该先设事件,然后写出使用公式的理由,因此要注意步骤的多少决定解答的详略;假如有分布列,则概率和为1是检验正确与否的重要途径;15.三选二的三题中,极坐标与参数方程注意转化的方法,不等式题目注意柯西与绝对值的几何意义,平面几何重视与圆有关的知积,必要时能够测量;16.遇到复杂的式子能够用换元法,使用换元法必须注意新元的取值范畴,有勾股定理型的已知,可使用三角换元来完成;17.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;18.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;19.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;20.关于中心对称问题,只需使用中点坐标公式就能够,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
高考数学大题的答题方法
高考数学大题的答题方法高考数学大题的答题方法(1)缺步解答:如果高考数学遇到一个很困难的问题,可以将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,考生能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。
特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分。
(2)跳步答题:高考数学的解题过程卡在某一过渡环节上是常见的,这时考生可以先承认中间结论,往后推,看能否得到结论。
如果不能说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一"卡壳处"。
由于考试时间的限制,"卡壳处"的攻克如果来不及了,就可以把前面的写下来,再写出"证实某步之后,继续有……"一直做到底。
也许后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。
若题目有两问,第一问想不出来,可把第一问作"已知","先做第二问",这也是跳步解答。
(3)退步解答:"以退求进"是高考数学一个重要的解题策略。
如果考生不能解决所提出的问题,那么考生可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。
总之退到一个你能够解决的问题.为了不产生"以偏概全"的误解,应开门见山写上"本题分几种情况"。
这样还会为寻找正确的、一般性的解法提供有意义的启发.(4)辅助解答:高考数学一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。
实质性的步骤未找到之前,找辅助性的步骤是明智之举。
如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。
答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率。
试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,所写字母与题中图形上的是否一致,格式是否规范,尤其是要审查字母、符号是否抄错,在确信万无一失后方可交卷。
高考数学题分步解答技巧
高考数学题分步解答技巧
高考数学问题的分步解决技巧
想要获得优异的数学成绩,不仅需要扎实的基础知识和较高的解题能力,还需要临场的考试技巧,这些都是学生实现梦想所必须的。
那我该怎么办?
1、合理安排,保持清醒。
数学考试在下午。
建议中午休息半小时左右。
如果睡不着,闭上眼睛,试着放松。
然后带上装备,提前半小时到达考场。
2.通读全卷,理解题目。
刚拿到试卷,平时比较紧张,急着回答也不合适。
你应该从头到尾通读整篇论文,尽量从论文表面获取更多的信息,对问题有一个透彻的了解。
这样我可以先提醒自己容易后难,也可以防止问题被遗漏。
3.问题回答规范有序。
一般来说,容易题和中间题占整个试卷的80%以上,是考生成绩的主要来源。
对于回答题中的易题和中间题,要注意解题的规范性,关键步骤不能丢。
比如三种语言(书面语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注重数学算法,应用题的建模和还原过程要清晰,答题中的疑难题目通过合理安排试卷结构很难得到满分,所以可以采用分段打分的策略,因为高考阅卷就是比如一个难题可以分成一个子问题或者一系列步骤,先解决一部分问题,问题能解决到什么程度,就能得到一定的分数。
有些问题有几个问题。
你不能回答前一个问题,但如果你能根据前一个结论回答后一个问题,你不妨引用前一个结论先回答后一个问题,这样你也可以给跳过的答案打分。
1。
高考数学解答题求解策略分析
挖 掘题 目中的 隐含条件 又 能起 到事半 功倍 的作 用.
■ ',
题 中 , 种联 系往 往是 间接 的或 比较 隐 蔽 的 , 这 因此 在
求解 时 , 要善 于根据题 目的 条件 、 论 和 图形 , 结 对所 涉
例 2 按 5局 3胜 制进 行 排球 比赛 , 如果 A、 B2
( )因为 函数 - ) 区间 [ , ] 单 调 递 增 , 2 厂 在 ( 一2 0 上
3 执 果索 因 。 写规 范 书
所 以导 函数 ,( = 一3 。 x )= x 一b +6在 区 间[ , ] = 一2 O 上
的值恒 大 于或等 于零. 则
立体 几何 在高 考 中 占有 重 要 的地 位 , 主要 考 查学 生 的空 间想像 能力 、 运算 能 力 、 辑推 理 能 力 等 , 且 逻 并 以推理证 明为 核 心. 求 解 此 类 问 题 时 , 把 握 好 概 在 要
◇ 北 京 张 留杰 童 嘉 森 ( 级 教 师 ) 特
- ( ) 0在 ( , ) 恒 成 立 , , z≤ 口6上 并且 所 得 结果 不 受 区 间
( ,) 开 闭形 式 的 影 响 . n6 的 2 把 握 关 键 , 意 隐 含 注
高 考 数 学 懈 答 题 包 括 计 算 题 、 明题 及 综 合 题 证
念 之 间的转 化 、 理 之 间 的转 化 、 间 与平 面 之 间 的 定 空
fO’一 +66O 得≥. 【_ 0. 2 ≥’ 一 64 ‘ )6≥ + 解 厂2 : ( …
象上 点 P( , ( ) 处 的切 线方 程为 :一3 1L 1) 厂 +I .
获 胜须在 后 3局 的 比赛 中都 获胜 , 故
高考数学各题型答题技巧及解题思路
高考数学各题型答题技巧及解题思路高考数学是高考三科中重要的一科,而其中数学各题型更是着重考查学生的数学基础和逻辑思维能力。
如何应对高考数学各题型,答题技巧及解题思路是重中之重,下文将对此进行详细阐述。
一、选择题型选择题型是高考数学中的必考题型,考查学生对于数学知识点的掌握以及运算技能的理解和应用。
在做选择题时,我们首先需要掌握以下答题技巧:1、理清题意,分析选项,进行排除。
首先要认真阅读题目中的条件和限制,充分理解题目意思。
接着,结合选项进行逐一排除,将不符合题目要求的选项进行剔除,尽可能缩小正确选项的范围。
2、关注题目中的关键点,确定答案。
有一些题目中会存在一些难以计算的数值,但是这些数值可能不是答案,只是一些附加信息。
因此,我们需要关注题目中的关键点,如某个几何图形的形状、数量、运算符号等,有时候答案就隐藏在其中。
3、复核答案,避免扣分。
做完选择题后,一定要检查答案的合理性和准确性,避免因为抄错、计算错误等原因导致分数的扣除。
二、填空题型填空题型是高考数学中常见的一种题型,也考查学生对于数学知识点的理解和运用,同时也是考查学生的计算技巧及对于一些表述的差别的理解。
具体答题技巧如下:1、仔细阅读题目,确定无关量并化简。
在做填空题时,首先要仔细阅读题目,将无关量进行化简,避免因为计算量过大而导致错误。
2、对于公式进行熟记熟练的运用。
对于常见的数学公式和定理,我们需要进行熟知和熟记,再进行熟练的运用。
例如对于等差数列,我们应该熟记其首项 a 和公差 d 的计算方法,并尽可能减少计算出错的可能性。
3、注意单位和精度要求。
填空题中,有时候会要求保留小数位数,或者使用特定单位。
我们需要注意这些细节,尽量减少算术粗劣的错误。
三、解答题型解答题型是高考数学中最常见的题型,也是最考验学生数学综合能力的题型之一。
其答题思路较为复杂,需要在做题时注意以下技巧:1、理解题目,寻求解题思路。
在解答题时,我们需要先仔细阅读题目,理解题目的条件、运算符号等,并寻求解题的思路。
高考数学基础题型答题技巧及解题步骤
高考数学基础题型答题技巧及解题步骤高考数学三大基础题型答题技巧一、选择题:高考数学题选择题占40%的比重,把握好选择题是考取高分的基础。
选择题中一些特殊方法,如排除法、特殊值法、特殊图形法、极限思想等的合理运用会使结果更准确,速度更快,尤其是遇到较难的题目,首先应考虑是否可以用这些方法来解。
有些题目其实就是考查学生灵活应对能力的,常规思维很难解决。
而哪些题目可以用此法,关键是看题中所给的条件和所求结论是否在一定范围内具有一般性。
这里提一下特殊值法,特殊值法最适合的是选择题,尤其适合的是选项里都是一个答案的题目,可以直接用特殊值代入验证。
不过,用特殊值要熟练,思路要清晰,基础知识要完全考虑到,而且不能脱离题干,不然很容易得出错误的结论。
另外,特殊值法并不是只是代入一个特殊值就好了,可以尽量把能想到的两三个特殊值代进去,比如在三角形中,特殊值可以代入30、60、90,但同时也应该注意三角形边角比例的关系,不然很容易得出错误的答案,这样就得不偿失了。
二、填空题:概念要清,方法要对,计算要准。
填空题对思维的严密和计算的准确性要求都很严格。
符号、小数点的错误都会造成劳而无获,因此要特别注意运算的规范,要一丝不苟,不可贪快不细,做无用功。
三、解答题:这一类型的题目的要求除了与填空题相同外,还应注意:1、注意分步解答题目的形式,若各个小问题由一个大前提统领,则很可能上面的结论是下面问题的条件,要注意这一点,同时若小问题单独添加了限制条件,则其结论不可应用于下一个小问题的解答,所以应仔细审题,不可疏忽。
2、在运算过程中要求一次性运算准确,否则若出现运算失误,考生往往受思维定式的影响,很难检查出来。
只要细心了,对自己就要有信心,不要一道题做了再反复去检查是否准确,那样会浪费大量宝贵的时间,在此问题上应把握宁慢勿粗。
3、对于解答题,要注重通性通法,不要过于追求技巧,把高考神秘化。
因为高考越来越注重基础与通性通法的考查。
高考数学的解题思路技巧
高考数学的解题思路技巧高考数学的解题思路指导(一)选择题对选择题的审题,主要应清楚:是单选还是多选,是选择正确还是选择错误?答案写在什么地方,等等。
做选择题有四种基本方法:1 回忆法。
直接从记忆中取要选择的内容。
2 直接解答法。
多用在数理科的试题中,根据已知条件,通过计算、作图或代入选择依次进行验证等途径,得出正确答案。
3 淘汰法。
把选项中错误中答案排除,余下的便是正确答案。
4 猜测法。
(二) 应用性问题的审题和解题技巧解答应用性试题,要重视两个环节,一是阅读、理解问题中陈述的材料;二是通过抽象,转换成为数学问题,建立数学模型。
函数模型、数列模型、不等式模型、几何模型、计数模型是几种最常见的数学模型,要注意归纳整理,用好这几种数学模型。
(三) 最值和定值问题的审题和解题技巧最值和定值是变量在变化过程中的两个特定状态,最值着眼于变量的最大/小值以及取得最大/小值的条件;定值着眼于变量在变化过程中的某个不变量。
近几年的数学高考试题中,出现过各种各样的最值问题和定值问题,选用的知识载体多种多样,代数、三角、立体几何、解析几何都曾出现过有关最值或定值的试题,有些应用问题也常以最大/小值作为设问的方式。
分析和解决最值问题和定值问题的思路和方法也是多种多样的。
命制最值问题和定值问题能较好体现数学高考试题的命题原则。
应对最值问题和定值问题,最重要的是认真分析题目的情景,合理选用解题的方法。
(四) 计算证明题解答这种题目时,审题显得极其重要。
只有了解题目提供的条件和隐含的信息,确定具体解题步骤,问题才能解决。
在做这种题时,有一些共同问题需要注意:1 注意完成题目的全部要求,不要遗漏了应该解答的内容。
2 在平时练习中要养成规范答题的习惯。
3 不要忽略或遗漏重要的关键步骤和中间结果,因为这常常是题答案的采分点。
4 注意在试卷上清晰记录细小的步骤和有关的公式,即使没能获得最终结果,写出这些也有助于提高你的分数。
5 保证计算的准确性,注意物理单位的变换。
高考数学解答题套路和技巧
高考数学解答题套路和技巧高考数学是很难的,要想考一个好成果,不仅需要多做练习题把握做题的方法,还要把握肯定的答题技巧才能事半功倍,下面我为大家整理了相关内容,以供参考,一起来看看!高考数学解答题套路和技巧1、三角变换与三角函数的性质问题解题方法:①不同角化同角;②降幂扩角;③化f(x)=Asin(ωx+φ)+h ;④结合性质求解。
答题步骤:①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x 的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
2、解三角形问题解题方法:(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
答题步骤:①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即依据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
3、数列的通项、求和问题解题方法:①先求某一项,或者找到数列的关系式;②求通项公式;③求数列和通式。
答题步骤:①找递推:依据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:依据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:依据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
4、离散型随机变量的均值与方差解题思路:(1)①标记大事;②对大事分解;③计算概率。
(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。
答题步骤:①定元:依据已知条件确定离散型随机变量的取值。
②定性:明确每个随机变量取值所对应的大事。
③定型:确定大事的概率模型和计算公式。
④计算:计算随机变量取每一个值的概率。
高考数学解答题命题规律及答题策略
高考数学解答题命题规律及答题策略
■ 北京市第十二中学 高慧明
一、 三角函数与解三角形问题 三角函数和解三角形问题重在 “变” —— —变角、 变式与 变名. 小题主要考查三角函数的图像与性质 (单调性、 奇偶性、 周期性、 对称性)、 图像变换 (平移与伸缩)、 简单的三角公 式渗透在化简、 求值中, 落脚点在函数, 也不忘了利用导数 处理解决问题. 大题主要以多个三角形中的边角关系, 建立等式、 方程 思想结合正弦、 余弦定理. 特别提醒: 三角恒等变换降低要求! 重视三角的工具性 及应用性, 以自我组建关系的解三角形问题仍是主流! 三角函数类解答题是高考的热点, 其起点低、 位置前, 但由于其公式多, 性质繁, 使不少考生对其有种畏惧感.突破 此类问题的关键在于 “变” —— —变角、 变式与变名. (1) 变角: 已知角与特殊角的变换、 已知角与目标角的 变换、 角与其倍角的变换、 两角与其和差角的变换以及三角 形内角和定理的变换运用. 如 α=(α+β)-β=(α-β)+β, 2α=(α+β) +(α-β), 2α=(β+α)-(β-α). (2) 变式: 根据式子的结构特征进行变形, 使其更贴近 某个公式, 方法通常有: “常值代换” “逆用、 变形用公式” “通分约分” “分解与组合” “配方与平方” 等. (3) 变名: 通过变换函数名称达到减少函数种类的目的, 方法通常有 “切化弦” “升次与降次” 等.
.
在△ABC
中,
b+c=2,
cosA=
1 2
.Hale Waihona Puke 由余弦定理得 a2=b2+c2-2bccosA=b2+c2+bc=(b+c)2-bc, 又
高考数学答题时间分配及解题策略
高考数学答题时间分配及解题策略1、充分利用考前5分钟很多学生或家长不知道,按照大型的考试的要求,考前五分钟是发卷时间,考生填写准考证。
这五分钟是不准做题的,但是可以看题。
发现很多考生拿到试卷之后,就从第一个题开始看,给大家的建议是,拿过这套卷子来,这五分钟是用来制定整个战略的关键时刻。
之前没看到题目,你只是空想,当你看到题目以后,你得利用这五分钟迅速制定出整个考试的战略来。
2、进入考试先审题考试开始后,很多学生喜欢奋笔疾书;但切记:审题一定要仔细,一定要慢。
数学题经常在一个字、一个数据里边暗藏着解题的关键,这个字、这个数据没读懂,要么找不着解题的关键,要么你误读了这个题目。
你在误读的基础上来做的话,你可能感觉做得很轻松,但这个题一分不得。
所以审题一定要仔细,你只有把题意弄明白了,这个题目才有可能做对。
会做的题目是不耽误时间的,真正耽误时间的是在审题的过程中,在找思路的过程中,只要找到思路了,单纯地写那些步骤并不占用时间。
3、节约时间的关键是一次做对有些学生,好不容易遇到一个简单的题目,就一味地求快,争取时间去做不会做的题目。
殊不知,前面的选择题和后边的大题,难易差距是很大的,但是分值的含金量是一样的,有些学生看不上前边小题的分数,觉得后边大题的分数才“值钱”,这是严重的误区。
希望学生在考试的时候,一定要培养一次就做对的习惯,不要指望通过最后的检查力挽狂澜。
越是重要的考试,往往越没有时间回来检查,因为题目越往后越难,可能你陷在里面出不来,抬起头来的时候已经开始收卷了。
1注意审题。
把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。
2答题顺序不一定按题号进行。
可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的激情和欲望,再解答陌生或不太熟悉的题目。
若有时间,再去拼那些把握不大或无从下手的题。
这样也许能超水平发挥。
3数学选择题大约有70%的题目都是直接法,要注意对符号、概念、公式、定理及性质等的理解和使用,例如函数的性质、数列的性质就是常见题目。
高考数学核心考点解题方法与策略
一、历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。
如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。
当然,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键。
二、解题策略选择1.先易后难是所有科目应该遵循的原则,而表现在数学试卷上显得更为重要。
一般来说,选择题的后两题,填空题的后一题,旧高考解答题的20和21题是难题,22和23是二选一的题目,相对比较容易,新高考解答题的后两题是难题(一般是入口容易,拿高分难,所以也不能完全放弃,应该是争取多拿分)。
当然,对于不同的学生来说,有的简单题目也可能是自己的难题,有的难题却可能是自己的容易题。
所以题目的难易只能由自己确定。
一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答。
2.选择题有其独特的解答方法,首先重点把握选择项也是已知条件,利用选择项之间的关系可能使你的答案更准确。
切记不要“小题大做”。
注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。
虽然不能完全解答,但是也要把自己的想法与做法写到答题卷上。
多写不会扣分,写了就可能得分。
(1)直接法直接法在选择题中的具体应用就是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,从而直接得出正确结论,然后对照题目所给出的选项“对号入座”,从而确定正确的选择支.这类选择题往往是由计算题、应用题或证明题改编而来,其基本求解策略是由因导果,直接求解.由于填空题和选择题相比,缺少选择项的信息,所以常用到直接法进行求解.直接法是解决选择、填空题最基本的方法,适用范围广,只要运算正确必能得到正确答案,解题时要多角度思考问题,善于简化运算过程,快速准确得到结果.直接法具体操作起来就是要熟悉试题所要考查的知识点,从而能快速找到相应的定理、性质、公式等进行求解,比如,数列试题,很明显能看到是等差数列还是等比数列或是两者的综合,如果是等差数列或等比数列,那就快速将等差数列或等比数列的定义(或)、性质(若,则或)、通项公式(或)、前n 项和公式(等差数列、,等比数列)等搬出来看是否适用;如果不能直接看出,只能看出是数列试题,那就说明,需要对条件进行化简或转化了,也可快速进入状态.(2)排除法排除法是一种间接解法,也就是我们常说的筛选法、代入验证法,其实质就是舍弃不符合题目要求的选项,找到符合题意的正确结论.也即通过观察、分析或推理运算各项提供的信息,对于错误的选项,逐一剔除,从而获得正确的结论。
高中数学高考解答题的解题策略与考前复习建议讲座PPT多媒体课件
2
2
(2)模式识别: 特殊数列求和 、S n与an关系, 生成新数列
(2008 年)已知数列an , an 0, a1 0, an 1 a n 1 1 an (n N *).记 : S n a1 a2 an , 1 1 1 Tn 1 a1 (1 a1 )(1 a2 ) (1 a1 )(1 a2 ) (1 an ) 求证 : 当n N *时, (1)an an 1 ; (2) S n n 2; (3)Tn 3
解法1 : (原标准解答)由ak 1 ak 1 1 ak , k 1,2, n 1 (n 2)得an (a1 a2 an ) (n 1) a1 , 因为a1 0, 所以sn n 1 an . 由an an 1及an 1 1 an an 1 1得an 1, 所以S n n 2.
2 2 2 2 2 2 2 2 2
(2008 年)已知数列an , an 0, a1 0, an 1 a n 1 1 an (n N *).记 : S n a1 a2 an , 1 1 1 Tn 1 a1 (1 a1 )(1 a2 ) (1 a1 )(1 a2 ) (1 an ) 求证 : 当n N *时, (1)an an 1 ; (2) S n n 2; (3)Tn 3
a b 3 (a b 1) 2 8 a b 3 (a b 1) 2 8 x1 , x2 2 2
(4)四个数为x1 , x4 , a, x2, 此时2( x2 a ) a x1 , 3(a b 3) (a b 1) 2 8 3a 2 x2 x1 2 9 13 (a b 1) 8 3(a b 3) a b 1 2
2024高考数学答题技巧及方法
2024高考数学答题技巧及方法2024高考数学:答题技巧及方法一、熟悉试卷在开始答题前,应该花几分钟时间浏览一下试卷的内容,这可以让你对每个题型、题目难度以及分布有一个基本的了解。
这样,你就能更好地规划答题策略,合理分配时间,避免在某个难题上过度纠结。
二、仔细审题在开始解答每道题目之前,请务必认真阅读题目,理解清楚问题的要求和条件。
数学题目中常常包含一些隐藏的信息,需要你仔细挖掘。
在理解题意的基础上,再寻找合适的解题方法。
三、答题策略1、由易到难:按照题目的难易程度,优先解答那些你能快速解答的题目。
这样,你可以为解答较难的题目留出更多的时间和精力。
2、稳定心态:面对难题,不要感到恐慌和焦虑。
要保持冷静,相信自己的能力,尝试从不同角度去思考问题。
有时候,难题只是需要你理解其中的一个关键点,一旦突破,整个问题就迎刃而解了。
3、草稿纸的使用:在答题过程中,充分利用草稿纸。
将题目中的关键信息、数据和思考过程记录下来,这有助于你保持思路清晰,避免出错。
同时,草稿纸还可以帮助你在解答复杂问题时,回头检查和核对解题步骤。
4、不留空白:即使遇到不会的题目,也不要空着不做。
你可以将自己能想到的任何信息或思路都写下来,这有可能为你的解答提供一些启示。
四、检查和复查在完成答题后,预留一些时间用于检查和复查。
检查可以从以下几个方面入手:计算是否准确、解题步骤是否严谨、公式使用是否正确等。
通过仔细的检查和复查,可以避免因粗心大意或计算错误而失分。
总之,高考数学答题技巧及方法需要平时的积累和练习。
通过熟悉试卷、仔细审题、合理的答题策略以及检查和复查,大家将能够在高考中更加从容和自信地应对数学考试。
希望以上建议能对大家的备考有所帮助,祝大家考试顺利,取得优异的成绩!。
2023全国新高考II卷高考数学试题及答案
2023全国新高考II卷高考数学试题及答案2023全国新高考II卷高考数学试题2023全国新高考II卷高考数学答案高考数学答题策略一、巧解选择、填空题解选择、填空题的基本原则是“小题不可大做”。
思路:第一、直接从题干出发考虑,探求结果;第二、从题干和选择联合考虑;第三、从选择出发探求满足题干的条件。
解填空题基本方法有:直接求解法、图像法、构造法和特殊化法(如特殊值、特殊函数、特殊角、特殊数列、图形的特殊位置、特殊点、特殊方程、特殊模型等)。
二、细答解答题1、规范答题很重要,找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,高考评分是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。
答题时,尽量使用数学符号,这比文字叙述要节省时间且严谨。
即使过程比较简单,也要简要地写出基本步骤,否则会被扣分。
经常看到考生的卷面出现“会而不对”、“对而不全”的情况,造成考生自己的估分与实际得分相差很多。
尤其是平面几何初步中的“跳步”书写,使考生丢分,所以考生要尽可能把过程写得详尽、准确。
2、分步列式,尽量避免用综合或连等式。
高考评分是分步给分,写出每一个过程对应的式子,只要表达正确都可以得到相应的分数。
有些考生喜欢写出一个综合或连等式,这种方式就不好,因为只要发现综合式中有一处错误,就可能丢过程分。
对于没有得出最后结果的试题,分步列式也可以得到相应的过程分,由此增加得分机会。
3、尽量保证证明过程及计算方法大众化。
解题时,使用通用符号,不易吃亏。
有些考生为图简便使用一些特殊方法,可一旦结果有错,就会影响得分。
高三数学学习方法首先,我觉得上课一定不能开小差啊,然后把握住基础,然后在这个基础上做题,然后慢慢提高,做点错题集,然后每次考试前看一看啊,抓住自己易错的和粗心的地方。
多做题是最关键,不能偷懒,做了要进行归类,总结,就是也不能盲目的做题,老师一般会总结的,就要好好记住。
课前预习,课后总结,自己在老师之前就总结。
【高中数学】高考数学解答题解题策略及步骤分析
【高中数学】高考数学解答题解题策略及步骤分析在高考数学试题的三种题型中,解答题的题量虽比不上选择题的题量,但它所占分数比例较大,在试卷中占有非常重要的位置。
以下是解答题解题策略及步骤分析,请参考。
审清题意。
这是做好解答题最关键的一步,一定要全面、认真地审清关键词语、图形和符号,清题目中所给条件(包括隐性条件)及其各种等价变形,恰当理解条件与目标间的关系,合理设计好解题程序。
因此,审题要慢,书写过程时可以适当提高速度。
谋求最佳解题思路。
在跑不好第一步的同时,根据答疑题的特点,探究相同的思路就是搞好答疑题的又一关键步骤。
由于高考试题中的答疑题设计比较有效率,因此,搞答疑题时应当特别注意多方位、多角度地看看问题,无法机械地套用模式。
谋求解题思路时,必须遵从以下四项基本原则:熟识化原则;抽象化原则;形式化原则;人与自然化原则。
应特别注意的就是,上述四项原则运用的基础就是分析与综合,运用分析法与综合法求解综合题就是不断地转变与化归,并使问题大事化小,小事化了。
处理解答题的常用思维策略。
具体说来就是:①语言转换策略理解题意的基础;②进退并举的策略学会找思维的起点;③数形结合策略学会从形的角度提出猜想或找到解题方向,再从数量关系加以科学证;④分类讨论策略化整为零的方式;⑤辨证思维策略从特殊性或反面看问题;⑥类比与归纳策略从特殊向一般转化的桥梁。
确认解题步骤,特别注意书写规范。
在找出比较不好的答疑题解题策略及步骤分析后,就可以深入细致地书写解题过程了。
在书写时必须事先努力做到心中有数,不要盲目下笔,语言必须简洁、细致,切勿不要跳步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019高考数学解答题解题策略及步骤分析在高考数学试题的三种题型中,解答题的题量虽比不上选择题的题量,但它所占分数比例较大,在试卷中占有非常重要的位置。
以下是解答题解题策略及步骤分析,请参考。
死记硬背是一种传统的教学方式,在我国有悠久的历史。
但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。
其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。
相反,它恰是提高学生语文水平的重要前提和基础。
审清题意。
这是做好解答题最关键的一步,一定要全面、认真地审清语、图形和符号,清题目中所给条件(包括隐性条件)及其各种等价变形,恰当理解条件与目标间的关系,合理设计好解题程序。
因此,审题要慢,书写过程时可以适当提高速度。
寻求最佳解题思路。
在走好第一步的同时,根据解答题的特点,探求不同的思路是做好解答题的又一关键步骤。
由于高考试题中的解答题设计比较灵活,因此,做解答题时应注意多方位、多角度地看问题,不能机械地套用模式。
寻求解题思路时,必须遵循以下四项基本原则:熟悉化原则;具体化原则;简单化原则;和谐化原则。
应当注意的是,上述四项原则运用的基础是分析与综合,运用分析法与综合法解综合
题就是不断地转化与化归,使问题大事化小,小事化了。
语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。
如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。
现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。
结果教师费劲,学生头疼。
分析完之后,学生收效甚微,没过几天便忘的一干二净。
造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。
常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。
久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。
要练说,得练听。
听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。
我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。
当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。
平时我还通过各种趣味活动,培养幼儿边听边记,
边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。
处理解答题的常用思维策略。
具体说来就是:①语言转换策略理解题意的基础;
②进退并举的策略学会找思维的起点;③数形结合策略学会从形的角度提出猜想或找到解题方向,再从数量关系加以科学证;④分类讨论策略化整为零的方式;⑤辨证思维策略从特殊性或反面看问题;⑥类比与归纳策略从特殊向一般转化的桥梁。
确定解题步骤,注意书写规范。
在找到比较好的解答题解题策略及步骤分析后,就可以认真地书写解题过程了。
在书写时要事先做到心中有数,不要盲目落笔,语言要简练、严谨,切记不要跳步。