量子力学曾谨言第十章第十一章习题答案
曾谨言《量子力学导论》第二版的课后答案
+a
= 2mω a 2 ⋅
得 a2 = (3)
π = mωπ a 2 = n h 2
代入(2) ,解出
E n = nℏω ,
积分公式:
n = 1, 2 , 3 , ⋯ a 2 − u 2 du = u a2 u a2 − u2 + arcsin + c 2 2 a
(4)
∫
2π
1.4 设一个平面转子的转动惯量为 I,求能量的可能取值。 提示:利用
)
[ (
) (
)
]
其 中 T 的 第 一 项 可 化 为 面 积 分 , 而 在 无 穷 远 处 归 一 化 的 波 函 数 必 然 为 0 。 因 此
ℏ2 T= d 3 r∇ψ * ⋅ ∇ψ ∫ 2m
结合式(1) 、 (2)和(3) ,可知能量密度
(3)
w=
且能量平均值
ℏ2 ∇ψ * ⋅ ∇ψ + ψ *Vψ , 2m
(1)
1 mω 2 x 2 。 2
−a
0 a x (2)
a = 2 E / mω 2 ,
x = ± a 即为粒子运动的转折点。有量子化条件
+a
∫ p ⋅ dx = 2 ∫
nh 2ℏn = mωπ mω
−a
1 2m( E − mω 2 x 2 ) dx = 2mω 2 ∫ a 2 − x 2 dx 2 −a
∫= 1, 2 , ⋯ , pϕ 是平面转子的角动量。转子的能量 E = pϕ / 2I 。
解:平面转子的转角(角位移)记为 ϕ 。
.
它的角动量 pϕ = I ϕ (广义动量) , pϕ 是运动惯量。按量子化条件
∫
∴
因而平面转子的能量
曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解-微扰论(圣才出品)
圣才电子书 十万种考研考证电子书、题库视频学习平台
其中 与 a分别表示两个谐振子的坐标,最后一项是刻画两个谐振子相互作用的耦合 项 表示耦合的强度,设 比较小,把 H 中的
看成微扰,而 取为
它表示两个彼此独立的谐振子,它的本征函数及本征能量可分别表为
令
则能量表示式可改为
圣才电子书 十万种考研考证电子书、题库视频学习平台
二、散射态微扰论 1.散射态的描述 (1)散射(微分)截面、散射总截面和散射振幅的定义
图 10.1 设一束粒子以稳定的入射流密度 (单位时间穿过单位截面的粒子数)入射.由于靶 粒子的作用,设在单位时间内有 个粒子沿 方‘向的立体角 中出射.显然,
即
3 / 30
圣才电子书 十万种考研考证电子书、题库视频学习平台
(3)必然有 个实根,记为
.这一系列值即一级修正能量,它相应的
2 / 30
圣才电子书 十万种考研考证电子书、题库视频学习平台
准确到一级微扰修正的能量为
.
(根 代人方程(36),即可求得相应的解,记为
于
是得出新的零级波函数
如 个根 无重根,则原来的 重简并能级 将完全解除简并,分裂为 条.但如 有部分重根.则能级简尚未完全解除.凡未完全解除简并的能量本征值,相 应的零级波函数仍是不确定的.
由式(6)可以看出,对于 情况,能级是简并的,简并度为(N+1).(为什么?) 以 N=1 为例,能级为二重简并,能量本征值为
相应的本征函数为 记
与
(或者它们的线性叠加).为表示方便,
并选 与 为基矢,利用谐振子的坐标的矩阵元公式,可以求得微扰 W= 元如下:
的矩阵
可得出能量的一级修正为
量子力学导论答案完整版(下)
第六章 中心力场6.1) 利用6.1.3节中式(17)、(18),证明下列关系式相对动量 ()21121p m p m M r p-==∙μ (1) 总动量 21p p R M P+==∙ (2)总轨迹角动量p r P R p r p r L L L⨯+⨯=⨯+⨯=+=221121 (3)总动能 μ222222222121M P m p m p T +=+= (4)反之,有 ,11r m R r μ+= r m R r22μ-= (5)m p +=21μ,m p -=12μ(6)以上各式中,()212121 ,m m m m m m M +=+=μ证: 212211m m r m r m R ++=, (17) 21r r -=, (18)相对动量 ()21122121211p m p m M r r m m m m r p-=⎪⎪⎭⎫ ⎝⎛-+==∙∙∙μ (1’) 总动量 ()2121221121p p m m r m r m m m R M P+=+++==∙∙∙(2’)总轨迹角动量 221121p r p r L L L⨯+⨯=+=)5(2211p m up m u ⨯⎪⎪⎭⎫⎝⎛-+⨯⎪⎪⎭⎫ ⎝⎛+= ()()2112211p m p m Mp p -⨯++⨯= )2)(1(p r P R ⨯+⨯=由(17)、(18)可解出21,r r,即(5)式;由(1’)(2’)可解出(6)。
总动能()22112262221212222m p P m m p P m m p m p T ⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=+=μμ2122222122112222122222m m u m P m m u m m u m P m m u ⋅-++⋅++=()()⎪⎪⎭⎫⎝⎛+++++=2122221222211112122m m p P m m m P m m mμ2222M P += (4’) [从(17),(18)式可解出(5)式;从(1),(2)式可解出(6)式].6.2) 同上题,求坐标表象中、和的算术表示式r i p ∇-= R i P ∇-= ,p r P R L⨯+⨯=解: ()()211221121r r m m Mi p m p m M ∇-∇-=-=(1) 其中 1111z y x r ∂∂+∂∂+∂∂=∇, 而xX M m x x x X x X x ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂1111, 同理,y Y M m y ∂∂+∂∂=∂∂11zZ M m z ∂∂+∂∂=∂∂11; (利用上题(17)(18)式。
曾谨言《量子力学教程》(第3版)配套题库【课后习题-量子跃迁】
第11章量子跃迁11.1 荷电q的离子在平衡位置附近作小振动(简谐振动),受到光照射而发生跃迁,设照射光的能量密度为ρ(w),波长较长.求:(a)跃迁选择定则;(b)设离子原来处于基态,求每秒跃迁到第一激发态的概率.解:(a)具有电荷为q的离子,在波长较长的光的照射下,从n→n'的跃迁速率为而根据谐振子波函数的递推关系(见习题2.7)可知跃迁选择定则为(b)设初态为谐振子基态(n=0),利用可求出而每秒钟跃迁到第一激发态的概率为11.2 氢原子处于基态,受到脉冲电场的作用.试用微扰论计算它跃迁到各激发态的概率以及仍然处于基态的概率(取E0沿z轴方向来计算).【解答与分析见《量子力学习题精选与剖析》[上],10.2题,l0.3题】10.2 氢原子处于基态,受到脉冲电场作用,为常数.试用微扰论计算电子跃迁到各激发态的概率以及仍停留在基态的概率.解:自由氢原子的Hamilton量记为H0,能级记为E n,能量本征态记为代表nlm 三个量子数),满足本征方程如以电场方向作为Z轴,微扰作用势可以表示成在电场作用过程中,波函数满足Schr6dinger方程初始条件为令初始条件(5)亦即以式(6)代入式(4),但微扰项(这是微扰论的实质性要点!)即得以左乘上式两端,并对全空间积分,即得再对t积分,由即得因此t>0时(即脉冲电场作用后)电子已经跃迁到态的概率为根据选择定则终态量子数必须是即电子只跃迁到各np态(z=1),而且磁量子数m=0.跃迁到各激发态的概率总和为其中a o为Bohr半径.代入式(9)即得电场作用后电子仍留在基态的概率为10.3 氢原子处于基态,受到脉冲电场作用,为常数.求作用后(t >0)发现氢原子仍处于基态的概率(精确解).解:基态是球对称的,所求概率显然和电场方向无关,也和自旋无关.以方向作z 轴,电场对原子的作用能可以表示成以H0表示自由氢原子的Hamilton量,则电场作用过程中总Hamilton量为电子的波函数满足Schr6dinger方程初始条件为为了便于用初等方法求解式(3),我们采取的下列表示形式:的图形如下图所示.注意图11-1式(5)显然也给出同样的结果.利用式(5).,可以将式(1)等价地表示成下面将在相互作用表象中求解方程(3),即令代入式(3),并用算符左乘之,得到其中一般来说,H'和H0不对易,但因H'仅在因此一H',代入式(8)即得再利用式(1'),即得初始条件(4)等价于方程(11)满足初始条件的解显然是代入式(7),即得这是方程(3)的精确解.t>0时(电场作用以后)发现电子仍处于基态的概率为计算中利用了公式利用基态波函数的具体形式容易算出a o为Bohr半径.将上式代入式(15),即得所求概率为这正是上题用微扰论求得的结果,为跃迁到各激发态的概率总和.11.3 考虑一个二能级体系,Hamilton量H0表示为(能量表象)设t=0时刻体系处于基态,后受到微扰H'作用(α,β,γ为实数)求t时刻体系跃迁到激发态的概率.【解答与分析见《量子力学习题精选与剖析》[上],10.4题】10.4 有一个二能级体系,Hamilton量记为H0,能级和能量本征态记为E1,。
量子力学课件(曾谨言)第十章
(0) k
(0) k
( x)
( x )+
q
( xk 1,k k 1(0) xk 1,k k 1(0) )
H nk (0) (0) n (0) n E k En
(1)
一级近似波函数
表示对n 求和时, n = k 项必须摒弃. 上式中 n
在一级近似下,能量本征值和本征函数分别为
Ek E
(0) k
E E
(1)
(0) k
Hkk
(0) k
(14a) (14b)
k
(0) k(0)
1.一级近似解
令一级微扰近似波函数表示为 (1) (1) (0) an n
n
(10)
将(10)式代入(6b),得
用
(0) m
ˆ E 0 H 0 k
1 (1) (0) (0) ˆ a E H n n k
n
ˆ 本征态的正交归一性,得 | 左乘,利用 H 0
此即能量的三级修正.
简并微扰论,对能量的修正,一般则计算到二级:
Ek E
(0) k
E E
(1)
(2)
E
(0) k
| | H nk (0) H kk (0) n E k En
2
对波函数的修正,通常计算到一级:
k
(0) k
(1)
(0) k
量子力学课后习题答案
Wnl (r)dr Rnl2 (r)r 2dr
例如:对于基态 n 1, l 0
W10 (r) R102 (r)r 2
4 a03
r e2 2r / a0
求最可几半径
R e 2 r / a0
10
a03 / 2
dW10 (r) 4 (2r 2 r 2 )e2r / a0
x)
k
2
2
(
x)
0
其解为 2 (x) Asin kx B cos kx
根据波函数的标准条件确定系数A、B,由连续性条件,得
2 (0) 1(0) B 0
2 (a) 3 (a) Asin ka 0
A0
sin ka 0
ka n
(n 1, 2, 3,)
[1 r
eikr
r
(1 r
eikr )
1 r
eikr
r
(1 r
eikr )]er
i1 1 11 1 1
2
[ r
(
r2
ik
) r
r
(
r2
ik
r )]er
k
r2
er
J1与er 同向。 1 表示向外传播的球面波。
习题
(2)
J2
i
2
(
2
* 2
2*
解:U (x)与t 无关,是定态问题
薛定谔方程为
2
2
d2 dx2
(x) U (x) (x)
E (x)
在各区域的具体形式为:
x0
曾谨言《量子力学教程》(第3版)配套题库【课后习题-微扰论】
第10章微扰论10.1 设非简谐振子的Hamilton量表示为为实数)用微扰论求其能量本征值(准到二级近似)和本征函数(准到一级近似).解:能量的本征值和归一化本征态(无简并)为利用Hermite多项式的递推关系得对于非简并态的微扰论,能量的一级修正为0,因为能量的二级修正值为由式(6)可知,只当m取(n-3),(n-1),(n+1),(n+3)四个值时才有贡献,即由此可得在准确到二级近似下体系能量值为在准确到一级近似下,能量本征函数为10.2 考虑耦合谐振子(λ为实常数,刻画耦合强度).(a)求出的本征值及能级简并度;(b)以第一激发态为例,用简并微扰论计算对能级的影响(一级近似);(c)严格求解H的本征值,并与微扰论计算结果比较,进行讨论,提示作坐标变换,令称为简正坐标,则H可化为两个独立的谐振子。
【详细分析和解答见《量子力学》卷Ⅰ,518~521页】答:Hamilton量为其中与a分别表示两个谐振子的坐标,最后一项是刻画两个谐振子相互作用的耦合项表示耦合的强度,设比较小,把H中的看成微扰,而取为它表示两个彼此独立的谐振子,它的本征函数及本征能量可分别表为令则能量表示式可改为由式(6)可以看出,对于情况,能级是简并的,简并度为(N+1).(为什么?)以N=1为例,能级为二重简并,能量本征值为相应的本征函数为与(或者它们的线性叠加).为表示方便,记并选与为基矢,利用谐振子的坐标的矩阵元公式,可以求得微扰W=的矩阵元如下:可得出能量的一级修正为因此,原来二重简并的能级变成两条,能量分别为能级简并被解除,类似还可以求其他能级的分裂,如下图所示.本题还可以严格求解,作坐标变换,令其逆变换为容易证明因此,Schrodinger方程化为令即于是方程(13)变为是两个彼此独立的谐振子,其解可取为相应的能量为当时,由式(14),得此时例如,N=1的情况,(n1,n2)=(1,O)与(0,1),相应的能量分别为能级分裂这与微扰论计算结果式(8)一致.10.3 一维无限深势阱(0<x<a)中的粒子,受到微扰作用求基态能量的一级修正。
《量子力学导论》习题答案(曾谨言版,北京大学)(2)
第六章 中心力场6.1) 利用6.1.3节中式(17)、(18),证明下列关系式相对动量 ()21121p m p m M r p-==∙μ (1) 总动量 21p p R M P+==∙ (2)总轨迹角动量p r P R p r p r L L L⨯+⨯=⨯+⨯=+=221121 (3)总动能 μ222222222121M P m p m p T +=+= (4)反之,有 ,11r m R rμ+= r m R r22μ-= (5) p P m p +=21μ,p P m p -=12μ(6)以上各式中,()212121 ,m m m m m m M +=+=μ证: 212211m m r m r m ++=, (17) 21r r r -=, (18)相对动量 ()21122121211p m p m M r r m m m m r p-=⎪⎪⎭⎫ ⎝⎛-+==∙∙∙μ (1’) 总动量 ()2121221121p p m m r m r m m m R M P+=+++==∙∙∙ (2’)总轨迹角动量 221121p r p r L L L⨯+⨯=+=)5(2211p r m uR p r m u R ⨯⎪⎪⎭⎫⎝⎛-+⨯⎪⎪⎭⎫ ⎝⎛+= ()()2112211p m p m Mr p p R -⨯++⨯= )2)(1(⨯+⨯=由(17)、(18)可解出21,r r,即(5)式;由(1’)(2’)可解出(6)。
总动能()22112262221212222m p P m m p P m m p m p T ⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=+=μμ2122222122112222122222m m pP u m p m m u m m p P u m p m m u⋅-++⋅++=()()⎪⎪⎭⎫⎝⎛+++++=2122221222211112122m m p P m m m P m m m μ2222M P += (4’) [从(17),(18)式可解出(5)式;从(1),(2)式可解出(6)式].6.2) 同上题,求坐标表象中p 、和的算术表示式r i ∇-= R i ∇-= ,p r P R L⨯+⨯=解: ()()211221121r r m m Mi p m p m M p ∇-∇-=-=(1) 其中 1111z y x r ∂∂+∂∂+∂∂=∇, 而x X M m x x x X x X x ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂1111, 同理,y Y M m y ∂∂+∂∂=∂∂11zZ M m z ∂∂+∂∂=∂∂11; (利用上题(17)(18)式。
量子力学_答案_曾谨言
E nx n y nz
π2 2 1 2 2 = + py + p z2 ) = ( px 2m 2m
n x , n y , n z = 1, 2 , 3 ,
2 2 ⎞ ⎛ nx n2 ⎜ + y + nz ⎟ ⎜ a2 b2 c2 ⎟ ⎝ ⎠
1.3 设质量为 m 的粒子在谐振子势 V ( x) = 提示:利用
(1)
V = ∫ d 3 rψ *Vψ
2 ⎞ ⎛ ⎜ T = ∫ d rψ ⎜ − ∇2 ⎟ ⎟ψ ⎠ ⎝ 2m 3 *
(势能平均值)
(2)
(动能平均值)
=−
2m ∫
2
d 3r ∇ ⋅ ( ψ *∇ψ ) − (∇ψ * ) ⋅ (∇ψ )
[
]
其 中 T 的 第 一 项 可 化 为 面 积 分 , 而 在 无 穷 远 处 归 一 化 的 波 函 数 必 然 为 0 。 因 此
1 mω 2 x 2 中运动,用量子化条件求粒子能量 E 的可能取值。 2 p = 2m[ E − V ( x)]
∫ p ⋅ d x = nh,
n = 1, 2 ,
,
V ( x)
1
解:能量为 E 的粒子在谐振子势中的活动范围为
x ≤a
其中 a 由下式决定: E = V ( x) x = a = 由此得
(2)
ψ * × (1)-ψ × (2),得
i
2 ∂ * ( ( ψ ψ )= − ψ *∇ 2ψ − ψ∇ 2ψ * ) + 2iψ *V2ψ ∂t 2m
=−
2
2m
∇⋅( ψ *∇ψ − ψ∇ψ * ) + 2iV2ψ *ψ
∴
曾量子力学练习题答案
曾量子力学练习题答案量子力学是描述微观世界中物质和辐射相互作用的理论体系,涉及到微观粒子的波粒二象性、不确定性原理以及波函数等概念。
在学习量子力学的过程中,解题是检验理解和掌握程度的重要方式之一。
本文将针对曾量子力学练习题进行详细解答,帮助读者更好地理解和应用量子力学知识。
题目一:电子束通过双缝干涉装置的出射屏上,出现了周期位移相等的等倾干涉条纹,问入射电子束的波长是多少?解答一:双缝干涉实验可以用来研究波动性的粒子。
根据双缝干涉的干涉条件,等倾干涉条纹间距d满足d = λD/d,其中λ是电子束的波长,D是缝到屏的距离,d是双缝间距。
在本题中,由于等倾干涉条纹的周期位移相等,即相邻两个条纹之间的距离相等,可以推断出缝到屏的距离D是一个常量,即D = const。
因此,等倾干涉条纹间距d与电子束的波长λ成正比。
解答二:设入射电子束的波长为λ,缝到屏的距离为D,双缝间距为d,等倾干涉条纹的间距为x。
根据题意,可以列出干涉条件:x = λD/d由于等倾干涉条纹的周期位移相等,即相邻两个条纹之间的距离相等,可得:x = λD/d = λD/(2d) = λD/2d = c onst因此,入射电子束的波长λ是一个常量,与等倾干涉条纹间距d成反比。
综上所述,入射电子束的波长与等倾干涉条纹间距成正比,具体数值需要根据实际情况进行计算。
题目二:一束入射的电子波函数Ψ(x) = Aexp(ikx)通过势障U(x) =U_0exp(-x^2/a^2),计算穿过势障的概率。
解答三:根据量子力学的定态薛定谔方程,电子穿过势障的概率可以通过计算透射系数T来得到。
设入射电子的波函数为Ψ_1(x),经过势障后的波函数为Ψ_2(x)。
根据定态薛定谔方程:-((hbar^2)/(2m))*∂^2Ψ_1(x)/∂x^2 + U(x)Ψ_1(x) = EΨ_1(x)其中hbar是约化普朗克常量,m是电子的质量,U(x)是势障的势能。
量子力学答案第十一章
第十章 全同粒子10.1 两个自旋为23的全同粒子组成一个体系,问体系对称的自旋波函数有几个?反对称的自旋波函数有几个?解 231=S ,232=S ,体系的可能S 值为21S S S +=,121-+S S ,221-+S S ,…,21S S -于是⎪⎪⎩⎪⎪⎨⎧=-=-+=-+=-+=+=+031221323232121212121S S S S S S S S S S 当S 给定时,z S 可取12+S 个值,故3=S 时,z S 取7个值⎪⎪⎩⎪⎪⎨⎧±±±01232=S 时,z S 取5个值⎪⎩⎪⎨⎧±±0121=S 时,z S 取3个值⎩⎨⎧±010=S 时,z S 取1个值 0 于是,总共应有16个状态。
对每个粒子而言,因232,1=S ,其在z 方向投影可取4123212=+⨯=+l 个值,即z S 1,21,232±±=zS,故每个粒子可能有4个态,即对第一个粒子有)1(21χ,)1(21-χ,)1(23χ,)1(23-χ对第二个粒子亦有)2(21χ,)2(21-χ,)2(23χ,)2(23-χ由它们可组成16个彼此独立的可能组合:)1(Sχ=)1(21χ)2(21χ, )2(Sχ=)1(21-χ)2(21-χ )3(Sχ=)1(23χ)2(23χ, )4(Sχ=)1(23-χ)2(23-χ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧+=+=+=+=+=+=------------)2()1()2()1()2()1()2()1()2()1()2()1()2()1()2()1()2()1()2()1()2()1()2()1(232121232323232321232321212121212123232121232321)10()9()8()7()6()5(χχχχχχχχχχχχχχχχχχχχχχχχχχχχχχSSSS SS⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧-=-=-=-=-=-=------------)2()1()2()1()2()1()2()1()2()1()2()1()2()1()2()1()2()1()2()1()2()1()2()1(232121232323232321232321212121212123232121232321)6()5()4()3()2()1(χχχχχχχχχχχχχχχχχχχχχχχχχχχχχχAA A A A A第一、二组是对称态共10个,第三组是反对称态共6个,在这些态中,z S ˆ的本征值列表如下:10.2一个体系由三个全同的玻色子组成,玻色子间无相互作用,玻色子只有两个可能的单粒子态,问体系的可能状态有几个?它们的波函数怎样用单粒子波函数构成?解 设两个单粒子态为αϕ,βϕ4)!12(!3)!133()!1(!)!1(=--+=--+=单态数粒子数单态数粒子数态数列表如下波函数为)3()2()1(αααϕϕϕ=I Ψ)}1()3()2()2()3()1()3()2()1({31IIβααβααβααϕϕϕϕϕϕϕϕϕ++=Ψ)}2()1()3()1()3()2()3()2()1({31IIIββαββαββαϕϕϕϕϕϕϕϕϕ++=Ψ)3()2()1(βββϕϕϕ=IVΨ10.3 两个质量为m 的粒子以频率πω2分别作一维谐振动,二粒子间以引力)(y x C -相互作用,其中C 为一常数,求粒子的能级和波函数。
曾谨言 量子力学第一卷 习题答案解析11第十一章
根据谐振子的无微扰能量本征函数来计算这矩阵元
xk/k =
∫
∞
−∞
) ψ k( 0 ' dx
(3)
( 0) 式中ψ k ( x) =
a π k!2
k
H k (ax ) , a =
µω ℏ
~446~
要展开(3)式,可以利用谐振子定态波函数的递推公式:
xψ k( 0 ) =
1 k ( 0) { ψ + α 2 k −1
~448~
−
a2 ( k ' + k )πx a cos }0 (k ' − k ) 2 π 2 a
'
4k 'ka ( −1) k + k − 1 = ⋅ π 2 (k ' 2 − k 2 ) 2
(3)
从最后一式知道,要使矩阵元 x k ' k ≠ 0 , k ' + k 必需要是奇数。但这个规律也可以用别种 方式叙述,当 k ' + k 是奇数时
∫ dϕ
ϕ =0
=
e
32πa 4 27 *5 ae 35
⋅ห้องสมุดไป่ตู้4!⋅(
π − 2a 5 1 ) ⋅ ( − cos 3 θ ) 2π 3 3 0
(11)
=
将三种值分别代入(7) ,得 C211,100 = 0, C21−1,100 = 0
C210 ,100 =
2 7⋅ 5 ⋅a i 35 ℏ[(ω k ' − ω k ) + ] τ
Wk 'k =
2 4π 2 q 2 x ρ (ω k ' k ) ' kk 3ℏ 2 2
' 64a 2 q 2 k' k 2 = ⋅ ⋅ [( −1) k + k − 1] 2 ⋅ ρ (ω k ' k ) 2 2 2 3π ℏ ( k ' − k 2 ) 4
《原子物理与量子力学》第十,十一章部分习题解答
HUST
APPLIED PHYSICS
1
Lx的久期方程为
的本征值方程, Lx 的本征值方程,如下
HUST
APPLIED PHYSICS
2
HUST
APPLIED PHYSICS
3
STLz→Lx
对角化过程就是L 表象向L 对角化过程就是Lx 由Lz表象向Lx表象的变换过程 Lz表象中 z 对应本征值 表象中L
7
(1) ) 的本征态中分析L (1)在Lz的本征态中分析Lx的取值情况 Lx在Lx表象中的本征态为: 表象中的本征态为: 由表象变换公式L 由表象变换公式 z 的本征态 表象下为: 在Lx表象下为:
HUST
APPLIED PHYSICS
8
由以上展开式系数可得L 由以上展开式系数可得 x的取值及取值几率
11
5.3非简并定态微扰公式的运用(P172) 非简并定态微扰公式的运用(S
12
第十、 第十、十一章 表象和微扰
P130 4.5 的共同表象中求L 的本征值和本征函数, 在 L2, Lz的共同表象中求Lx, Ly的本征值和本征函数, 并将L 对角化且: 并将Lx,Ly对角化且: 的本征态中分析L 的取值情况; (1)在Lz的本征态中分析Lx的取值情况; 的本征态中分析L 的取值情况; (2)在Lx的本征态中分析Lz的取值情况; (3)在Lx表象中表示Lz及其本征态。 表象中表示L 及其本征态。 在L2,Lz的共同表象中
HUST
APPLIED PHYSICS
5
同理 L y 的久期方程为
Lz表象中对应本征值
的本征态为: h,0,−h 的本征态为:
HUST
APPLIED PHYSICS
6
量子力学习题答案(曾谨言版)
和任意,所以
ˆ ˆ ) BA ˆ ˆ ( AB
P74 习题3.3
解答:利用
[ p, x ] i mx
m
m1
[ x, pn ] i npn1
[ p, F ]
mn 0 m n C [ p , x ] p mn
i
mn 0
C
mn
mx
m 1
p i F x
Rnl ( r ) N nl l e 2F ( n l 1, 2l 2, )
园轨道(l = n-1)下的径向概率分布函数
n,n1 ( r ) Cr e
2 d n,n1 ( r ) 0 dr
2
2 n 2 Zr na
最概然半径 rn 由下列极值条件决定:
(b) 对两个全同的Femi子,体系波函数必须满足交换 反对称要求。
对Femi子不允许两个粒子处于相同的单态,因 此它们只能处于不同的单态,此时反对称化的体系 波函数: 1 (1, 2) [i (1) j (2) i (2) j (1)], i j 2 2 可能态数目 C3 3 所以,两个全同Femi子总的可能态数目3 (b) 对两个经典的粒子(可区分),其体系波函数无对称 性要求,即 (1, 2) i (1) j (2), i, j 1, 2, 3 可能态数目3 3 9
dp
( x, t ) (2 )
利用
1
e
t m 2 mx 2 [( p x) ] 2t 2m 2t i
dp
e d e
m 2 t e
i 2
i
4
所以
( x, t )
量子力学导论习题答案(曾谨言)
第十章 定态问题的常用近似方法10-1) 设非简谐振子的Hamilton 量表为'0H H H +=222220212x u dx d u H ω+-= 3'x H β=(β为实常数)用微扰论求其能量本征值(准到二级近似)和本征函数(准到一级近似)。
解:已知)0()0(0n n n E H ψψ=,()x H e N n x n n αψα2)0(22-=,()ω 21)0(+=n E n ,ωαu =()[]11121+-++=n n n n n x x ψψαψ ()()()()()[]22222112121+-++++++=n n n n n n n n n x x ψψψαψ()()()()()()()[]311333321113321221++--++++++++--=n n n n n n n n n n n n n n n x x ψψψψαψ计算一级微扰:n n n H E ψψ')1(=03==n n x ψψβ。
(也可由()⎰+∞∞-⋅==dx x x H En nn n32')1(βψ0=(奇)直接得出)计算二级微扰,只有下列四个矩阵元不为0:()()',33332122n n n n H n n n x --=--=αβψβψ',1331322n n n n H n n x --=⋅=αβψβψ ()',133111322n n n n H n n x ++=++⋅=αβψβψ ()()()',333332122n n n n H n n n x ++=+++⋅=αβψβψ计算2'knH:()()622',3821αβ--=-n n n Hnn6232',19αβn H n n =- 6232',189αβn H nn =+()()()622',38321αβ+++=+n n n Hnn又ω 3)0(3)0(=--n n E E ,ω =--)0(1)0(n n E E , ω -=-+)0(1)0(n n E E ,ω 3)0(3)0(-=-+n n E E ,∑-++=++=∴kk n knnnnnnnn E E HHEEEEE )0()0(2''')0()2()1()0(43222811303021ωβωu n n n ⋅++-⎪⎭⎫ ⎝⎛+=)0()0()0('')0()1()0(k kkn knnnnn E E H ψψψψψ∑-+=+=()()()()()()⎥⎦⎤⎢⎣⎡+++-+--+---=++--)0(3)0(1)0(1)0(33)0(321311133213122n n n n n n n n n n n n n n n ψψψψωαβψ10-2) 考虑耦合振子,'0H H H += 参 书.下册§9.2()2221222221220212x x u x x u H ++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-=ω 21'x x H λ-=(λ为实常数,刻画耦合强度) (a )求出0H 的本征值及能级简并度。
量子力学导论习题答案(曾谨言)
第八章 自旋8.1) 在z σ表象中,求x σ的本征态。
解:在z σ表象中,x σ的矩阵表示为:x σ⎪⎪⎭⎫⎝⎛=0110 设x σ的本征矢(在z σ表象中)为⎪⎪⎭⎫⎝⎛b a ,则有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛b a b a λ0110 可得a b λ=及b a λ= 1,12±==∴λλ 。
,1=λ 则;b a = ,1-=λ 则b a -=利用归一化条件,可求出x σ的两个本征态为,1=λ;1121⎪⎪⎭⎫ ⎝⎛ ,1-=λ ⎪⎪⎭⎫ ⎝⎛-1121 。
8.2) 在z σ表象中,求⋅的本征态,()ϕϕθϕθcos ,sin sin ,cos sin n是()ϕθ,方向的单位矢. 解:在z δ表象中,δ的矩阵表示为x σ⎪⎪⎭⎫⎝⎛=0110, y σ⎪⎪⎭⎫ ⎝⎛-=00i i , z σ⎪⎪⎭⎫⎝⎛-=1001 (1) 因此, z z y y x x n n n n n σσσσ++=⋅=⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-+-=-θθθθϕϕcos sin sin cos i i z y x y x ze e n inn in n n (2)设n σ的本征函数表示为Φ⎪⎪⎭⎫⎝⎛=b a ,本征值为λ,则本征方程为()0=-φλσn ,即 0cos sin sin cos =⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----b a e e i i λθθθλθϕϕ (3) 由(3)式的系数行列式0=,可解得1±=λ。
对于1=λ,代回(3)式,可得x y x y x x i i n in n in n n e e b a --=++==-=--112sin 2cos cos 1sin ϕϕθθθθ 归一化本征函数用()ϕθ,表示,通常取为()⎪⎪⎭⎫ ⎝⎛=ϕθθϕθφi e 2sin 2cos ,1或⎪⎪⎪⎭⎫⎝⎛-222sin 2cos ϕϕθθi i ee (4)后者形式上更加对称,它和前者相差因子2ϕi e-,并无实质差别。
量子力学曾谨言习题答案第一章
量子力学常用积分公式 (1)dx e x an e x a dx e x axn ax n ax n ⎰⎰--=11 )0(>n (2) )cos sin (sin 22bx b bx a ba e bxdx e axax-+=⎰ (3) =⎰axdx e axcos )sin cos (22bx b bx a ba e ax++ (4)ax x a ax aaxdx x cos 1sin 1sin 2-=⎰ (5) =⎰axdx x sin 2ax a xaax a x cos )2(sin 2222-+(6)ax a xax aaxdx x sin cos 1cos 2+=⎰ (7ax a a x ax ax axdx x sin )2(cos 2cos 3222-+=⎰))ln(2222c ax x a ac c ax x ++++ (0>a ) (8)⎰=+dx c ax 2)arcsin(222x c a ac c ax x --++ (a<0) ⎰20sin πxdx n2!!!)!1(πn n - (=n 正偶数)(9) =⎰20cos πxdx n!!!)!1(n n - (=n 正奇数) 2π(0>a ) (10)⎰∞=0sin dx xax2π- (0<a )(11))1!+∞-=⎰n n ax a n dx x e (0,>=a n 正整数) (12)adx e ax π2102=⎰∞-(13) 121022!)!12(2++∞--=⎰n n ax n an dx e x π(14)1122!2+∞-+=⎰n ax n an dx e x (15)2sin 022adx xax π⎰∞= (16)⎰∞-+=222)(2sin b a abbxdx xe ax (0>a )⎰∞-+-=022222)(c o s b a b a b x d x xeax(0>a )第二章:函数与波动方程[1] 试用量子化条件,求谐振子的能量[谐振子势能2221)(x m x V ω=] (解)(甲法)可以用Wilson-Sommerfeld 的量子化条件式:⎰=nh pdq在量子化条件中,令⋅=x m p 为振子动量,x q = 为振子坐标,设总能量E则 22222x m m P E ω+= )2(222x m E m p ω-=代入公式得:nh dx x m E m =-⎰)2(222ω量子化条件的积分指一个周期内的位移,可看作振幅OA 的四倍,要决定振幅a ,注意在A 或B 点动能为0,2221a m E ω=,(1)改写为:nh dx x a m aa=-⎰-222ω (2)积分得:nh a m =πω2遍乘πω21得 ωπω n h E ==2[乙法]也是利用量子化条件,大积分变量用时间t 而不用位移x ,按题意振动角频率为ω,直接写出位移x ,用t 的项表示:t a x q ωsin ==求微分:tdt a dx dq ωωcos == (4) 求积分:t ma x m p ωωcos ==⋅(5) 将(4)(5)代量子化条件:nh tdt ma pdq T==⎰⎰0222cos ωω T 是振动周期,T=ωπ2,求出积分,得 nh a m =πω2 ωπωn n h E ==2 3,2,1=n 正整数#[2]用量子化条件,求限制在箱内运动的粒子的能量,箱的长宽高分别为.,,c b a(解)三维问题,有三个独立量子化条件,可设想粒子有三个分运动,每一分运动是自由运动.设粒子与器壁作弹性碰撞,则每碰一次时,与此壁正交方向的分动量变号(如ppxx-→),其余分动量不变,设想粒子从某一分运动完成一个周期,此周期中动量与位移同时变号,量子化条件:p p n q p xax xxxadx h d 220===⎰⎰ (1)ppn q p yby y yyb dy h d 220===⎰⎰ (2)p pn q p zcz z zzc dz hd 220===⎰⎰(3)p p p zyx,,都是常数,总动量平方222z y x p p p p ++=总能量是:)(2122222z y x p p p mm p E ++===])2()2()2[(21222ch b h a h m n n n z y x ++ =])()()[(82222cb a m h n n n z y x ++ 但3,2,1,,=n n n z y x 正整数.#[3] 平面转子的转动惯量为I ,求能量允许值.(解)解释题意:平面转子是个转动体,它的位置由一坐标(例如转角ϕ)决定,它的运动是一种刚体的平面平行运动.例如双原子分子的旋转.按刚体力学,转子的角动量I ω,但⋅=ϕω是角速度,能量是221ωI =E 利用量子化条件,将p 理解成为角动量,q 理解成转角ϕ,一个周期内的运动理解成旋转一周,则有nh d pdq =I =I =⎰⎰ωπϕωπ220(1)(1) 说明ω是量子化的(2) I=I =n nh πω2 (3,2,1=n ……..) (2) (3) 代入能量公式,得能量量子化公式:I=I I =I =2)(2212222 n n E ω (3)#[4]有一带电荷e 质量m 的粒子在平面内运动,垂直于平面方向磁场是B,求粒子能量允许值.(解)带电粒子在匀强磁场中作匀速圆周运动,设圆半径是r ,线速度是v ,用高斯制单位,洛伦兹与向心力平衡条件是:rm v c Bev 2= (1) 又利用量子化条件,令=p 电荷角动量 =q 转角ϕnh mrv mrvd pdq ===⎰⎰πϕπ220(2)即 nh mrv = (3) 由(1)(2)求得电荷动能=mcnBe mv 2212 = 再求运动电荷在磁场中的磁势能,按电磁学通电导体在磁场中的势能=cBr ev c c *****2π==场强线圈面积电流场强磁矩,v 是电荷的旋转频率, r v v π2=,代入前式得运动电荷的磁势能=mcnBe 2 (符号是正的) 点电荷的总能量=动能+磁势能=E=mcnBe 2 ( 3,2,1=n )#[5]对高速运动的粒子(静质量m )的能量和动量由下式给出:2221c v mc E -=(1)2221c v mv p -=(2)试根据哈密顿量 2242p c c m E H +== (3)及正则方程式来检验以上二式.由此得出粒子速度和德布罗意的群速度相等的关系.计算速度并证明它大于光速.(解)根据(3)式来组成哈氏正则方程式组:pqiiH ∂∂=⋅,本题中v qi=⋅,p p i=,因而224222242pc c m p c p c c m pv +=+∂∂= (4)从前式解出p (用v 表示)即得到(2).又若将(2)代入(3),就可得到(1)式. 其次求粒子速度v 和它的物质波的群速度vG间的关系.运用德氏的假设: k p =于(3)式右方, 又用ω =E 于(3)式左方,遍除h :)(22242k k c c m ωω=+=按照波包理论,波包群速度vG是角频率丢波数的一阶导数:22242k c c m kv G +∂∂==22422222422pc c m p c k c c m k c +=+最后一式按照(4)式等于粒子速度v ,因而v vG=。
量子力学导论习题答案(曾谨言)
第十一章 量子跃迁11—1)荷电q 的离子在平衡位置附近作小振动(简谐振动)。
受到光照射而发生跃迁。
设照射光的能量密度为()ωρ,波长较长。
求:(a )跃迁选择定则;(b )设离子原来处于基态,求每秒跃迁到第一激发态的几率。
11—2)氢原子处于基态。
收到脉冲电场的作用()()t t δεε0=。
使用微扰论计算它跃迁到各激发态的几率以及仍然处于基态的几率(取0ε沿z 轴方向来计算)。
解:令()()()∑-=nt iE nn n er t C t rψψ, (6)初始条件(5)亦即 ()10n n C δ=- (5) 用式(6)代入式(4),但微扰项ψ'H 中ψ取初值1ψ(这是微扰论的实质性要点!)即得()t z e H e dtdC i nt iE n nn δψεψψ101'==∑-以*n ψ左乘上式两端并全空间积分,得()tiE n nn e t z e dtdC i -=δε10再对τ积分,由00>→=-t t ,即得()10n n z i e t Cε=()1≠n (7) 因此0>t 时(即脉冲电场作用后)电子已跃迁到n ψ态的几率为[可直接代入 P291式(23)、P321式(15)而得下式]()21202n n n z e t C P ⎪⎭⎫⎝⎛== ε (8) 根据选择定则()0,1=∆=∆m l ,终态量子数必须是()()10n nlm =即电子只能跃迁到各np 态()1=l ,而且磁量子数0=m 。
跃迁到各激发态的几率总和为⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=∑∑∑n n nn nnz z e z e P 211212021'20'εε (9) 其中 01111==ψψz z (z 为奇宇称)∑∑=nn n n n z z z 1121ψψψψ212112131a r z ===ψψψψ (10)a 为Bohr 半径,代入式(9)即得20'⎪⎭⎫ ⎝⎛=∑ a e P nnε (11) 电场作用后电子仍留在基态的几率为20'11⎪⎭⎫⎝⎛-=-∑ a e P nn ε (12)11—3)考虑一个二能级体系,Hamilton 量0H 表为(能量表象)⎪⎪⎭⎫⎝⎛=21000E E H , 21E E < , 设0=t 时刻体系处于基态,后受微扰'H 作用,⎪⎪⎭⎫ ⎝⎛=βγγα'H , 求t 时刻体系处于激发态的几率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章:散射问题[1]用玻恩近似法,求在下列势场中的散射微分截面:(1) ar a r V r V ><⎩⎨⎧-=0)(0(2) 20)(ar e V r V -= )0(>a (3) rer V ar-=β)( )0(>a(4) ar e V r V -=0)( )0(>a (5) 2)(ra r V =(解) (1)先列出玻恩近似法的基本公式。
根据理论,如果散射粒子所在的势场是)(r V 。
粒子质量是μ,粒子的波数是k (因是弹性散射,在散射前后都用此文字表示,它与能量E 的关系是222E kμ=)散射角度是θ,而)(θq 表示以下参数:2sin2)(θθk q = (1)则与散射方向θ对应的散射振幅用下述一维定积分计算⎰∞⋅⋅-=2sin )(2)(dr r qr r V qf μθ (2)是为玻恩的散射振幅公式一般适用于高能量散射,若)()(0a r V r V <-=代入(2):⎰⋅⋅=adr r qr qV f 020sin 2)( μθ利用积分公式qx qx qx qqxdx x cos sin 1sin 2-=⎰于前一式,注意上下限为a 和0。
)c o s s i n (2)(220q qaa qqa q V f --= μθ (3) 微分截面:22242022)c o s s i n (4)()(qqaa qqa qV f -== μθθσ~400~第十一章:量子跃迁[1] 具有电荷q 的离子,在其平衡位置附近作一维简谐振动,在光的照射下发生跃迁,入射光能量密为)(ωρ,波长较长,求:(1)跃迁选择定则。
(2)设离子处于基态,求每秒跃迁到第一激发态的几率。
(解)本题是一维运动,可以假设电磁场力的方向与振动方向一致。
(1)跃迁选择定则:为确定谐振子在光照射下的跃迁选择定则,先计算跃迁速率,因为是随时间作交变的微扰,可以用专门的公式(12)(§11.4,P396))(34//'2222k k k k k k r q W ωρπ→=(1)式中2'→k k r 应理解为谐振子的矢径的矩阵元的平方和,但在一维谐振子情形,→kkr /仅有一项2/kk x )(34//'2222k k k k k k x q W ωρπ= (2)根据谐振子的无微扰能量本征函数来计算这矩阵元 dx x k k k ⎰∞∞-=)0('/ψ (3)式中)(2)(!)0(ax H k ax k kkπψ=,μω=a~446~ 要展开(3)式,可以利用谐振子定态波函数的递推公式: }212{1)0(1)0(1)0(+-++=k k kk k x ψψαψ(4)代入(3),利用波函数的正交归一化关系:mn nxndx δψψ=⎰)0(*)0(dxk k x k k kk k ⎰∞∞-+-++⋅=}212{1)0(1)0(1*)0(''ψψαψ1,1,''21121+-++=k kk kk k δαδα(5)由此知道,对指定的初态k 来说,要使矢径矩阵元(即偶极矩阵元)不为零,末态'k 和初态k 的关系必需是:,1'-=k k 这时21,1'k k x x k k k α==- (6),1'+=k k 这时211,1'+==+k k x x k k k α因得结论:一维谐振子跃迁的选择定则是:初态末态的量子数差数是1。
(2)每秒钟从基态0=k 跃迁到第一激发态的几率可以从(2)式和(7)式得到: )()211(3410222210ωραπq W =)(321010222ωρμωπ q=~447~[2]设有一带电q 的粒子,质量为μ,在宽度为a 的一维无限深势阱中运动,它在入射光照射下发生跃迁,波长a >>λ。
(1)求跃迁的选择定则。
(2)设粒子原来处于基态,求跃迁速率公式。
(解)本题亦是一维运动,并且亦是周期性微扰,故可用前题类似方法。
(1)跃迁选择定则: 按第三章§3.1一维无限深势阱定态波函数是:(原点取在势阱左端)ax k ax k πψsin2)(=(1)根据此式计算矩阵元: dx ax k x ax k ax ax k k ππsinsin2''⋅⋅=⎰=dx axk k axk k x aax ⎰=+--=''])(cos)([cos1ππ利用不定积分公式:2cos sin cos ppx x ppx pxdx x x+⋅=⎰(2)axk k k k ax axk k k k aaxk k k k ax a x k k ππππππ)(sin)()(cos)()(sin )({1'''22'2'''++---+--=~448~aaxk k k k a0'22'2})(cos)(ππ+--222'2')(1)1(4'k kkak kk ---⋅=+π(3)从最后一式知道,要使矩阵元0'≠k k x ,k k +'必需要是奇数。
但这个规律也可以用别种方式叙述,当k k +'是奇数时k k k k k -=-+''2必然也是奇数,因此一维无限深势阱受光照的选择定则是:表示初态和末态的量子数之和(或差)应是个奇数),2,1,0()12('=-=±n n k k因此',k k 二者之中,一个是奇另一个是偶。
(2)跃迁速率:依前题公式(1) )(34'''2222k k kk k k x q W ωρπ=)(]1)1[()(364''2422'22'2222k k kk k kkk q a ωρπ⋅--⋅-⋅=+(4)=±k k '偶数时0'=k k W ,=±k k '奇数时)()(3256''422'22'2222k k k k k kkk hq W ωρππ-⋅=(5)粒子从基态1=k ,跃迁到任何一个偶数态n k 2'=的速率:)()14()(310241,242221,2n n n nqaW ωρπ-=~449~[3]设把处于基态的氢原子放在平行板电容器中,取平行板法线方向为z 轴方向、电场沿z 轴方向可视作均匀,设电容器突然充电然后放电,电场随时间变化规律是: ⎪⎩⎪⎨⎧><=-)()0()0(0)(10为常数τεετt et t求时间充分长后,氢原子跃迁到2s ,或2p 态的几率。
(解)按照习惯表示法,氢原子的初态(k 态)的波函数是:100ψ,末态('k 态)的波函数是200ψ或m21ψ,它们的显式是如下:1s 态 ar e a -=31001πψ (1)2s 态 ar ear a 23200)2(321--=πψ(2)2p 态 ϕθπψi ar e e a ra ⋅=-s i n )(8123211(3a )ϕθπψi ar ee a ra ---⋅=s i n )(81231,21 (3b )θπψcos )(32123210ar eara-=(3c )~450~这些公式后面都要用来计算几率。
从题意看来,原子所受的微扰是个随时间变化的函数,而且,电场的方向是固定的,与光照射情形不同(光的电磁场是看作各向同性的),因此只能用一般的随时间变化的跃迁振幅公式§ 11-1公式(24)dt eH t C k k i tk k ik k )(0''''1)(ωω-⎰=(4)微扰是指氢原子在此均匀电场中的偶极矩势能:微扰算符Λ'H 在初态k ψ(即100ψ)以及末态(即200ψ或m21ψ)'kψ之间的矩阵元是:将(6)代入(4)先对时间进行积分;并认为充分长时间可以用∞→t 表达:~451~(7)(前式中利用了1)('=-tikkeωω)其次计算偶极矩阵元与无关部分kkez')(,按题意,要求两种跃迁几率,下面分别进行:)21(ss→跃迁,即从态200100ψψ跃迁到的几率:ϕθθπθπϕθddrdreaeraaraezararrsin]1][cos[])2(321[)(2323100,200⋅-=--⎰⎰⎰sincos)2(3212323=⋅-=⎰⎰⎰--∞=ππϕθθθπddrdrearaararr(8)代入(4)中知道ssWC21,0100,200100,200向即自==的跃迁不存在。
再考察)21(ps→的跃迁,由于2p有三种不同态,自1s跃迁到每一态都有一定几率,因而要分别计算再求总和。
ϕθθπθθπϕϕθddrdreaereearaezariarrsin]1][cos[]sin)(81[)(2323100,211⋅=--⎰⎰⎰⎰⎰⎰==-⋅⋅=πθπϕϕϕθθθπ222344cossin8deddreraeiarr(9)~452~ 同理可求 ϕθθπθθπϕϕθd drd r e aer ee ara ez ar i ar rsin ]1][cos []sin )(81[)(2323100,211⋅=---⎰⎰⎰⎰⎰⎰=--⋅⋅=ππϕϕϕθθθπ02022344cos sin 8d ed dre r aei ar (10)ϕθθπθθπd drd r ea er aara ez ar ar sin ]1][cos []cos )(321[)(2323100,200⋅=--⎰⎰⎰⎰⎰⎰∞====-⋅⋅=r r ar d d dr er ae 02022344sin cos 32πθπϕϕθθθπππθπ20)cos 31()32(!432354-⋅-⋅⋅=a aeae 55*732=(11)将三种值分别代入(7),得0,0100,121100,211==-C C相应的跃迁几率(态——态自210100ψψ)因aeE ae E k k 282122'-==-==ωω~453~ 量子力学题解(P454—P473)⋅⋅+=⋅-+=⋅+-==32)83(222222152113215]2)'(21[2220223215]21)'(2[22022|100210|2100210ωωτωωτE ωτωωE τEτa e a e k k a ek a e,C W ,#[4]计算氢原子的第一激发态的自发辐射系数。
(解)按照爱因斯坦辐射理论,这系数是:|34'|2232''r ce A kk kk kk ω=(1) 第一激发态是指E 2的态(四度简并的),从第一激发态只能跃迁到基态E 1。