雷达信号分析(第1章)
雷达信号分析
2 0
2B T
§3.3 雷达测速精度
一、分析条件和方法 二、分析结果
1 2E
N0
2 2 t 2 t 2 dt
2
t 2 dt
三、单载频矩形脉冲信号: 2 2 T 2
3
§3.4 信号的非线性相位特性
对测量精度的影响
(t) 0 ,具有非线性相位。
时间相位常数: 2 t ' (t)a2 (t)dt 2 t ' (t) u(t) 2 dt
§4.1 模糊函数的推导 §4.2 模糊函数与分辨力的关系 §4.3 模糊函数与匹配滤波器输出响应的关系 §4.4 模糊函数的主要性质 §4.5 模糊图的切割 §4.6 模糊函数与精度的关系 §4.7 利用模糊函数对单载频矩形脉冲雷达
③径向速度为正。 一、静止点目标
s(t) (t)e j 2f0t sr (t) (t )e j2f0 (t )
二、运动点目标
sr (t) [t (t)]e j2f0[t (t)]
R(t) R0 VT
经过推导有:
Sr (t)
[t
2v t
]e
j
2f0 [t
2vt C
]
C
[t ]e j 2f0 e j 2 ( f0 fd )t
2
T /2
t(2kt)dt
T / 2
2kT2
2
[a(t)] dt
T /2
dt T / 2
3
例2: u(t) rect ( t )e jkt
T
t T
(t ) k t ' (t ) k
2
t ' (t)a 2 (t)dt
2
t/2
t (k )dt
ALENIA雷达讲义
第一章SSR原理1.1航路二次雷达SSR原理基本概念:雷达的原意为无线电检测和测距,他起到对目标定位的作用。
以脉冲雷达为例,通过天线发射射频脉冲。
当射频信号遇到目标以后,其中的一部分能量向雷达站方向反射,通过天线进入接收机。
经过雷达的接收系统放大、检测等处理后,可以发现目标的存在,并可以提取其他的参数信息。
测距是基于光速不变的原理。
由于回波信号往返雷达和目标之间,他将滞后于所发射的探测脉冲时间为Tr。
以探测脉冲作为时间基准,目标和雷达站之间的斜距R为:R = C * Tr / 2由上式可见,对目标的测距(系指斜距)和测时是一致的。
测角,对于监视雷达而言系指方位角 ,亦即偏离正北方向的角度。
一般由扫描天线的主波束的指向所确定,在航管雷达系统中常把工作于上述状态下的雷达称之为一次监视雷达(PSR)。
目前一次雷达主要有三大类:A.航路的监视一次雷达,作用距离在300-500公里B.机场的监视一次雷达,作用距离在100-150公里C.着陆雷达(在跑道附近)。
其信号是提供给塔台调度员的,在塔台显示器上观看飞机下滑的全过程,提供信号仰角7度(上下10度)PSR的优缺点:优点:只要有目标存在就可以发现它(不管敌我)缺点:⑴辐射功率很大(要足够大)R与P的关系:R↔功率的四次方根造价要高得多,设备庞大。
⑵易受干扰(障碍物,气象)⑶不能对目标识别当两个目标很近时也无法区别。
⑷要得到目标的高度也很困难。
二次雷达设备——第1页二次监视雷达(SSR)和一次监视雷达的区别在于工作方式不同。
一次监视雷达可以靠目标对雷达发射的电磁波(射频脉冲)反射,主动发现目标并确定其位置,而二次监视雷达不能靠接收目标反射的自身发射的探测脉冲工作。
他是同地面站(通常称询问机)通过天线的方向性波束发射频率为1030兆赫的一组询问编码(射频脉冲)。
当天线的波束指向装有应答机的飞机的方向时,应答机检测这组询问编码信号,判断编码信号的内容,然后由应答机用1090兆赫的频率发射一组约定的回答编码(射频)脉冲。
雷达气象学之第一章(天气雷达系统及探测理论)
天气雷达产品的显示方式2
• RHI (距离高度显示):固定方位角,天线 做俯仰扫描,探测某方位上回波垂直结构 。坐标:R-最低仰角的斜距; H-按测高 公式计算(标准大气折射)。
天气雷达产品的显示方式3
• CAPPI (等高平面位置显示):雷达以多 个仰角(仰角逐渐抬高)做0-360 °扫描 ,得到三维空间回波资料(体扫描),利 用内插技术获得某高度的平面分布
• 基本径向速度:表示整个360度方位扫描径 向速度数据,径向速度即物体运动速度平 行与雷达径向的分量。径向速度有许多直 接的应用,可以导出大气结构,风暴结构, 可以帮助产生、调整和更新高空分析图等。 平均径向速度产品有两点局限性:一是垂 直于雷达波束的风的径向速度被表示为0; 二是距离折叠和不正确的速度退模糊。
• 散射开来的电磁波称 为散射波
入射波
散射波
• 雷达波束通过云、降水粒子时将被散射, 其中有一部分散射波要返回雷达方向,被 雷达天线接收,在雷达显示器上就反映有 回波信号。
二、散射成因
• 微粒——粒子在入射电磁波极化下作强迫 的多极振荡,从而发出次波(散射波)。
• 粒子对电磁波的散射只改变电磁波的传播 方向,没有改变能量大小。
• d≈λ的大球形质点的散射,称为米散射。
§3.2 球形水滴和冰粒的散射
• 雷达天线接收到的只是粒子散射中返回雷 达方向(即θ= 180º方向)的那一部分能量, 这部分能量称为后向散射能量。
在a 2 r 1时 的瑞利散射条件下
在a 2 r 复数1时模的平方
后(向) 散16射 44函r6数mm:22 12(2 代入 4 ( )中
• 产品生成:根据操作员的输入指令,RPG在 体积扫描的基础上产生所需产品。
第1章雷达对抗概述优秀课件
息,并对S作出适当反应的设备。根据不同用途和战技指
标的要求,具体雷达对抗设备对S的检测能力是一有限子
空间D,如:
D { R F A O A P W p } (1―3)
式中,ΩRF、ΩAOA、ΩPW、ΩP分别为雷达对抗设备对信号 载频、到达方向、脉冲宽度和信号功率的检测范围,
为直积。D可以是非时变的(通常称为非搜索检测),也
图1―1 飞机所面临的威胁雷达示意图
雷达对抗是一切从敌方雷达及其武器系统获取信息 (雷达侦察),破坏或扰乱敌方雷达及其武器系统的正常 工作(雷达干扰和雷达攻击)的战术、技术措施的总称。 雷达对抗在现代战争中处于举足轻重、日益重要的地位。 其主要表现在以下两方面:
1.雷达对抗是取得军事优势的重要手段和保证
波束宽度θa在Ωθ范围内扫描
S′是N个具有周期特性的脉冲信号序列
{si(n)}n1,iN01 按照(1―4)式条件的合成。当N
的数量很大时,由于各信号序列的到达时间是相互独立的,
在一定时间内近似满足统计平稳性和无后效性,根据随机
过程理论,S可以采用泊松(Poisson)流近似描述。
在时间τ内到达n个脉冲的概率
可以是时变的(通常称为搜索检测)。雷达对抗设备可
检测的信号环境S′是S中的子集合:
N1
S {si(n)|si(n)D}n 1
i0
(1―4)
显然,D的检测范围越大,则进入S′的雷达信号也越 多。如果以Pi表示i雷达发射脉冲可被雷达对抗设备检 测的概率,则在1秒钟时间内S′中的平均脉冲数λ为
N 1
Pi f ri
步兵肩扛发射的防空导弹杀伤概率也在50%以上。显 然,没有现代雷达对抗技术支持的作战飞机只能是空中 的活靶,难以生存。
第章雷达目标距离的测量
图6.4 大气层中电波的折射
3. 测读方法误差
测距所用具体方法不同, 其测距误差亦有差别。 早期的脉 冲雷达直接从显示器上测量目标距离, 这时显示器荧光屏亮点 的直径大小、所用机械或电刻度的精度、人工测读时的惯性等 都将引起测距误差。当采用电子自动测距的方法时, 如果测读 回波脉冲中心, 则图6.3中回波中心的估计误差(正比于脉宽τ而 反比于信噪比)以及计数器的量化误差等均将造成测距误差。
式中,τ为距离分辨单元所对应的时宽。 当脉冲重复频率选定(即m1m2m3值已定), 即可按式(6.1.9a)
~(6.1.9c)求得C1、C2、C3的数值。只要实际测距时分别测到A1 、 A2、A3的值, 就可按式(6.1.8)算出目标真实距离。
2. “舍脉冲”
当发射高重复频率的脉冲信号而产生测距模糊时, 可采用“ 舍脉冲”法来判断m值。所谓“舍脉冲”, 就是每在发射M个脉冲 中舍弃一个, 作为发射脉冲串的附加标志。如图6.6(b)所示, 发 射脉冲从A1到AM, 其中A2不发射。与发射脉冲相对应, 接收到的 回波脉冲串同样是每M个回波脉冲中缺少一个。只要从A2以后, 逐个累计发射脉冲数, 直到某一发射脉冲(在图中是AM-2)后没有 回波脉冲(如图中缺B2)时停止计数, 则累计的数值就是回波跨越 的重复周期数m。
(6.1.6)
雷达的最大单值测距范围由其脉冲重复周期Tr决定。为保证单 值测距, 通常应选取
Rmxa为被测目标的最大作用距离。 有时雷达重复频率的选择不能满足单值测距的要求, 例如在脉冲 多卜勒雷达或远程雷达, 这时目标回波对应的距离R为
雷达成像基本算法
2Vr2 f 0 f 。 cR0
1.2.2 一般情况下的信号频谱
为了获得双曲距离等式的信号频谱,可进行如下操作:(1) 距离向 FFT;(2) 方位 向 FFT;(3) 距离向逆 FFT。其中前两步得到二维频域表达式,最后一步得到距离多普 勒域表达式。 将信号进行距离向 FFT,利用驻定相位原理,得到 距离频域的表达式
D2 df f , f , Vr 1
c 2 f2 4Vr2 f 0 f c 2 f2 4Vr2 f 0 f
2 2
,则
Vr2 2 R 2
1
(1.2.13)
由于 D2df(fτ, fη, Vr)就是直线几何中方位时刻 η 时的斜视角 θr 的余弦值,且距离徙动可以 表示为 R0 / cosθr 的形式,因此,D2df(fτ, fη, Vr)称为二维频域中的徙动因子。为了给出不 同相位项的显示表达式,令 D f , Vr 1
c 2 f2 4Vr2 f 02
,则二维频域的表达式为
s2 df f , f A0 A1 A2Wr f Wa f fc f2 4 R0 f 0 exp j exp j Kr c
2 f f2 2 f0 f0 (1.2.14)
c 2 f2
可以忽略。第一项代表方位向调制,第二项代表距离徙动,第三项代表距离和方位的交 叉耦合。下面,可以直接写出傅立叶积分中的相位
c 2 f2 f2 f f2 4 R0 f 0 2 3 2 f (1.2.16) D f , Vr c 4Vr2 f 02 K r f D f V f D f V , 2 , 0 0 r r
雷达信号分析与处理第一章第二章
s(t) S ( f )e j2 ftdf
S(W) 或 S(f) 存在的充分条件是 s(t) 绝对可积,即 s(t)dt
雷达信号分析与处1理3
第二章 雷达信号与线性处理系 统
在雷达工程术语中,时间函数 s(t)称为雷达信号的时间波形,频率函数 S(W) 或 S(f) 称为雷达信号的频谱密度或频谱。
s(t) S( f ) 表示信号s(t) 和其频谱S(f)
复数表示
s(t) s1(t) js2 (t) S( f ) R( f ) jI ( f )
e j2 ft cos(2 ft) j sin(2 ft)
s1(t)
R( f ) cos(2 ft) I ( f )sin(2 ft)df
雷达信号分析与处理6
第一章 绪论
雷达发明之前的防空:盲人雷达;光学测距仪
1935年,英国皇家物理研究所的沃森.瓦特博士进行无线电科学考察 荧光屏上的亮点 载重汽车上的第一台雷达 东海岸对空警戒雷达网
雷达信号分析与处理7
第一章 绪论
二 、雷达测量原理
Radar-- Radio detection and ranging(无线电探测和测距)
测距 测高 测速
三、雷达与通信信号区别 1电磁波频率;
3天线方向性;
5信号处理;
2传输目的; 4主要考虑方面;
雷达信号分析与处理8
第一章 绪论
1.2 研究雷达信号的目的和意义
一、雷达所面临的问题 四大威胁 电子干扰 (干扰机:压制式、欺骗式)
徘徊者EA-6B
低空突防(巡航导弹)
咆哮者EF-18G
新型运8电子干扰机
第一章 绪论
二、新型雷达 1.低截获概率雷达; 2.超宽带雷达; 3.稀疏布阵雷达; 4.无源雷达; 5.双/多基地雷达; 6.星载毫米波雷达; 7.雷达组网; 8.多域融合探测系统
雷达信号与数据处理整理多媒体
(3)雷达脉冲压缩技术
窄脉冲宽度可提高距离分辨率,但影响平均功率而降低了测量距离。 发射大时宽带宽积(Bt)信号,可以提高雷达的距离分辨率,同时提
高发射信号的平均功率,即那个地发射脉冲的峰值功率。
接收时对大时宽进行进行匹配滤波,可使接收信号回波信号变窄,成 为脉冲压缩。
雷达可分为陆基、机载、星载或舰载雷达系统; 按雷达波形分,可分为:连续波(CW)雷达、脉冲 (PW)雷达。
2.2 距离
简化的脉冲雷达框图
时间 控制
发射机/调制器 信号处理器
双工器 接收机
发射接收脉冲串
发射脉冲
脉冲1
IPP
τ
脉冲2
脉冲3
接收脉冲
△t τ 脉冲1回波
脉冲2回波
脉冲3回波
时间
IPP:通常被标为PRI脉冲重复间隔
(6)雷达成像技术
机载或星载雷达,距离和方位的高分辨成像。 距离分辨率,通过脉冲压缩技术实现;方位分辨率通过合成孔径技术
实现。 移动雷达,如SAR;地面雷达,ISAR。
(7)雷达目标的识别和分类
目标识别,判别目标类型。
主要通过信号处理实现。
(8)雷达抗电子干扰技术
无源干扰:箔条,可利用抑制气象杂波的方法。
雷达信息显示包括各种原始回波和处理回波的显示; 雷达回波显示与雷达整机控制设计为一体,通过画面显示、重要目
标三维放大显示等,辅助目标识别。
(7)雷达数据处理系统设计技术
输入/输出接口设计; 系统处理能力设计; 核心算法设计; 显示与控制一体化设计; 人-机接口与人性化界面设计; 系统各设备集成设计等。
ERP PJ GJ LJ
(整理)经典雷达资料-第1章 雷 达 概 论
第1章雷达概论Merrill I. Skolnik1.1 雷达描述雷达的基本概念相对简单,但在许多场合下它的实现并不容易。
它以辐射电磁能量并检测反射体(目标)反射的回波的方式工作。
回波信号的特性提供有关目标的信息。
通过测量辐射能量传播到目标并返回的时间可得到目标的距离。
目标的方位通过方向性天线(具有窄波束的天线)测量回波信号的到达角来确定。
如果是动目标,雷达能推导出目标的轨迹或航迹,并能预测它未来的位置。
动目标的多普勒效应使接收的回波信号产生频移,因而即使固定回波信号幅度比动目标回波信号幅度大多个数量级时,雷达也可根据频移将希望检测的动目标(如飞机)和不希望的固定目标(如地杂波和海杂波)区分开。
当雷达具有足够高的分辨力时,它能识别目标尺寸和形状的某些特性。
雷达可在距离上、角度上或这两方面都获得分辨力。
距离分辨力要求雷达具有大的带宽,角度分辨力要求大的电尺寸雷达天线。
在横向尺度上,雷达获得的分辨力通常不如其在距离上获得的分辨力高。
但是当目标的各个部分与雷达间存在相对运动时,可运用多普勒频率固有的分辨力来分辨目标的横向尺寸。
虽然人们通常认为SAR是通过在存储器中存储接收到的信号,从而产生大的“合成”天线,但是用于成像(如地形成像)的合成孔径雷达在横向尺度上获得的分辨力仍可解释为,是由于利用了多普勒频率分辨力的结果。
这两种观点(多普勒分辨力和合成天线)是等效的。
展望用于目标成像的ISAR所能得到的横向分辨力的途径,理所当然应该是多普勒频率分辨力。
雷达是一种有源装置,它有自己的发射机而不像大多数光学和红外传感器那样依赖于外界的辐射。
在任何气象条件下,雷达都能探测或远或近的小目标,并精确测量它们的距离,这是雷达和其他传感器相比具有的主要优势。
雷达原理已在几兆赫兹(高频或电磁频谱的高频端)到远在光谱区外(激光雷达)的频率范围内得到应用。
这范围内的频率比高达109:1。
在如此宽的频率范围内,为实现雷达功能而应用的具体技术差别巨大,但是基本原理是相同的。
雷达原理(第三版)__丁鹭飞第1章
4) 火控雷达 其任务是控制火炮(或地空导弹)对空中目标进 行瞄准攻击, 因此要求它能够连续而准确地测定目标的坐标, 并 迅速地将射击数据传递给火炮(或地空导弹)。这类雷达的作用 距离较小, 一般只有几十公里, 但测量的精度要求很高。
5) 制导雷达 它和火控雷达同属精密跟踪雷达, 不同的是制 导雷达对付的是飞机和导弹, 在测定它们的运动轨迹的同时, 再 控制导弹去攻击目标。制导雷达要求能同时跟踪多个目标, 并 对分辨力要求较高。这类雷达天线的扫描方式往往有其特点, 并随制导体制而异。
6) 战场监视雷达 这类雷达用于发现坦克、 军用车辆、 人 和其它在战场上的运动目标。
7) 机载雷达 这类雷达除机载预警雷达外, 主要有下列数种 类型:
(1) 机载截击雷达。当歼击机按照地面指挥所命令, 接近敌 机并进入有利空域时, 就利用装在机上的截击雷达, 准确地测量 敌机的位置, 以便进行攻击。 它要求测量目标的精确度和分辨 率高。
处目标所照射到的功率密度为
S1
PtG
4R2
目标截获了一部分照射功率并将它们重新辐射于不同的方向。 用雷达截面积σ来表示被目标截获入射功率后再次辐射回雷达处 功率的大小, 或用下式表示在雷达处的回波信号功率密度:
S2S14R24P tG R24R2
σ的大小随具体目标而异, 它可以表示目标被雷达“看见”的尺 寸。雷达接收天线只收集了回波功率的一部分, 设天线的有效 接收面积为Ae, 则雷达收到的回波功率Pr为
当目标向着雷达站运动时, vr>0, 回波载频提高; 反之vr <0, 回波载频降低。雷达只要能够测量出回波信号的多卜勒频移fd , 就可以确定目标与雷达站之间的相对速度。
径向速度也可以用距离的变化率来求得, 此时精度不高但不 会产生模糊。无论是用距离变化率或用多卜勒频移来测量速度, 都需要时间。观测时间愈长,则速度测量精度愈高。
雷达试题-(1-4章)
雷达试题-(1-4章)第⼀章引论⼀、填空1、我国新⼀代天⽓雷达业务组⽹的建设⽬标是:在我国东部和中部地区,装备()和()多普勒天⽓雷达系统。
2、根据我国雷达布局原则,在我国第⼆地形阶梯地域和⿊龙江、吉林省布设()频段新⼀代天⽓雷达。
3、根据我国雷达布局原则,在天⽓、⽓候相近的地区,组⽹的新⼀代天⽓雷达在()和()上要尽可能统⼀。
4、我国《新⼀代天⽓雷达系统功能规格需求书》要求:对⼤范围降⽔天⽓的监测距离应不⼩于()km;对⼩尺度强对流天⽓现象的有效监测和识别距离应⼤于()km。
5、我国《新⼀代天⽓雷达系统功能规格需求书》要求:雷达探测能⼒在50km处可探测到的最⼩回波强度S波段应不⼤于()dBZ、C波段应不⼤于()dBZ。
6、我国《新⼀代天⽓雷达系统功能规格需求书》要求新⼀代天⽓雷达应有⼀定的晴空回波探测能⼒,在湿润季节应能观测到()km左右距离范围内的晴空⼤⽓中的径向风场分布。
7、新⼀代天⽓雷达系统的应⽤主要在于对灾害性天⽓,特别是风害和冰雹相伴随的灾害性天⽓的()和()。
它还可以进⾏较⼤范围降⽔的定量估测,获取降⽔和降⽔云体的()。
8、从径向速度图像上可以看出⽓流的()、()和()的特征,并可给出定性和()的估算。
9、辐合(或辐散)在径向风场图像中表现为⼀个最⼤和最⼩的(),两个极值中⼼的连线和雷达的射线()。
10、⽓流中的⼩尺度⽓旋(或反⽓旋)在径向风场图像中表现为⼀个最⼤和最⼩的(),中⼼连线⾛向于雷达射线()。
11、具有辐合(或辐散)的⽓旋(或反⽓旋)表现出最⼤、最⼩值的连线与雷达射线⾛向()。
根据中⼼连线的长度、径向速度最⼤值、最⼩值及连线与射线的夹⾓,可以半定量地估算⽓旋(或反⽓旋)的()和()。
12、新⼀代天⽓雷达采⽤()体制,共有7种型号,其中S波段有3种型号,分别为()。
C波段有4种型号,分别为CINRAD-()。
13、SA和SB雷达的正式名称分别为CINRAD-SA和CINRAD-SB,在国际上称为()。
雷达信号分析及处理 第一章
6
第一章 绪论
雷达发明之前的防空:盲人雷达;光学测距仪
1935年,英国皇家物理研究所的沃森.瓦特博士进行无线电科学考察
荧光屏上的亮点 载重汽车上的第一台雷达 东海岸对空警戒雷达网
雷达信号分析与处理
7
第一章 绪论
二 、雷达测量原理
测距 测速
Radar-- Radio detection and ranging(无线电探测和测距)
二、新型雷达 1.低截获概率雷达; 2.超宽带雷达; 3.稀疏布阵雷达; 4.无源雷达; 5.双/多基地雷达; 6.星载毫米波雷达; 7.雷达组网; 8.多域融合探测系统
雷达信号分析与处理
11
第一章 绪论
三、新型雷达信号的要求 不易被对方侦察和模拟(LPI),应采用复杂的调制 有良好的分辨力和抗干扰的能力,要求信号应有“图钉”型 的模糊函数 具有极宽的频带,使任何快速侦察干扰系统均无法施行瞄准 式干扰 容易进行最佳信号处理 四、雷达发射信号的发展 单载频矩形脉冲(SP) 线性调频(LFM/NLFM)、相位编码(PC)、脉冲串(PS) 频率步进(SF)、频率捷变(FA)
电波的反射现象,这就预示着可以利用无线电波来发现人类肉眼看不到的目 标。 1904年,德国发明家克里斯蒂安·许尔斯迈尔在实验室进行原始雷达的试验, 并取得了雷达设计的专利,但这种原始的雷达探测距离还达不到声波定位器 作用的距离。 1922年9月,美国海军实验员泰勒和扬格在华盛顿附近的波特马克河畔,进 行两岸无线电通信试验。(波特马克试验)
s(t ) S ( f )
复数表示
表示信号s(t) 和其频谱S(f)
s(t ) s1 (t ) js2 (t ) S ( f ) R( f ) jI ( f )
信号检测与估计第一章
1.2.5 极小极大准则
• 贝叶斯准则要求已知先验概率和各种代价函数;极小极大
准则应用于仅仅知道代价函数 Cij i, j 0 ,1 ,而先验概率 P H i i 0 ,1 未知的情况。
• 极小极大准则:把使最小平均代价(贝叶斯代价)取得最 大值所对应的概率当作先验概率使用。
Hi
Cii
i0
P
x i j 0, j i
Hj
Cij C jj
f x H j dx
定义
M 1
Ii x P H j Cij C jj f x H j
j0, ji
则
i x : Ii x I j x , j 0,1, , M 1, j i
• 记 x x1, x2 , , xN T 。贝叶斯判决的目标是将N维观测空间
划分为互斥的
N 0
,
N 两个区域,使平均代价
1
C
达到最小。
• 相应的判决规则为
x f
x H1
f
x1, x2 ,
f x H0 f x1, x2 ,
xN H1 H1 P H 0 C10 C00 th xN H 0 P H0 H1 C01 C11
设先验概率 P H 0 p ,则贝叶斯判决规则为
f x H1 H1
p C10 C00
f x H 0 H0 1 p C01 C11
贝叶斯代价为
Cmin p p C00 1 p C10 p 1 p C01 p C11 1 p
• M 元假设检验 • 连续信号的检测 • 离散信号的检测
信号分析与处理 第1章(01)
信号分析与处理
华北电力 大 学
1.1 连续时间信号
一 信号的描述与分类
信号:是信息传输过程的载体,是一个自变量或几个
自变量的函数。如 f1(t),f2(n1, n2)。 • 物理上: 信号是信息寄寓变化的形式 • 数学上: 信号是一个或多个变量的函数 • 形态上:信号表现为一种波形
与函数一样,一个实用的信号除用解析式描述外, 还可用图形、测量数据或统计数据描述。 通常,将信号的图形表示称为波形或波形图。
(t ) (t )
华北电力 大 学
t
( )d u(t )
d dt
u (t ) (t )
(t t 0 ) f (t ) dt
f (t 0 ) (t t 0 ) dt f (t0 )
• 检零
(t ) f (t )dt f (0)
信号分析与处理
华北电力 大 学
信号基本概念
• • 什么是信号? 物质的一切运动或状态变化都是一种信号( signal),即信号是物质运动的表现形式。例 如: 机械振动产生力信号、位移信号和噪声信号; 雷电过程产生声、光信号; 大脑、心脏分别产生脑电和心电信号; 通信发射机产生电磁波信号等; 图像信号; 人口数;银行存款;气温等.
f (t) 1
f(t) 1
2
t
0
3
t
信号分析与处理
华北电力 大 学
f1 (t ) A sin(t )
f1 (t) A
f2(t)在t=0处有间 断点
Ae (t t0 ) (t t0 ) f 3 (t ) 0 (t t0 )
雷达成像技术(保铮word版)-第一章-概论
前言雷达成像技术是上个世纪50年代发展起来的,它是雷达发展的一个重要里程碑。
从此,雷达不仅仅是将所观测的对象视为“点”目标,来测定它的位置与运动参数,而是能获得目标和场景的图像。
同时,由于雷达具有全天候、全天时、远距离和宽广观测带,以及易于从固定背景中区分运动目标的能力,雷达成像技术受到广泛重视。
雷达成像技术应用最广的方面是合成孔径雷达(Synthetic Aperture Radar,简称SAR)。
当前,机载和星载SAR的应用已十分广泛,已可得到亚米级的分辨率,场景图像的质量可与同类用途的光学图像相媲美。
利用SAR的高分辨能力,并结合其它雷达技术,SAR还可完成场景的高程测量,以及在场景中显示地面运动目标(GMTI)。
SAR的高分辨,在径向距离上依靠宽带带信号,几百兆赫的频带可将距离分辨单元缩小到亚米级;方向上则依靠雷达平台运动,等效地在空间形成很长的线性阵列,并将各次回波存贮作合成的阵列处理,这正是合成孔径雷达名称的来源。
合成孔径可达几百米或更长,因而可获得高的方位分辨率。
雷达平台相对于固定地面运动形成合成孔径,实现SAR成像。
反过来,若雷达平台固定,而目标运动,则以目标为基准,雷达在发射信号过程中,也等效地反向运动而形成阵列,据此也可对目标成像,通称为逆合成孔径雷达(ISAR)。
ISAR显然可以获取更多的目标信息。
最简单的雷达成像是只利用高距离分辨(HRR)的一维距离像。
当距离分辨率达米级,甚至亚米级时,对飞机、车辆等一般目标,单次回波已是沿距离分布的一维距离像,它相当目标三维像以向量和方式在雷达射线上的投影,其分布与目标相对于雷达的径向结构状况有关。
同时,高距离分辨率有利于分辨距离接近的目标,以及目标回波的直达波和多径信号。
本书将对当前已经广泛应用和具有应用潜力的内容作较为全面的介绍。
本书是《雷达技术丛书》中的一册,主要对象为从事雷达研制工作的技术人员,因此,本书编著时考虑到读者已有《雷达原理》和《雷达系统》方面的基础,对雷达各部件的基本情况也已比较熟悉,与上述内容有关的部分,本书均作了省略。
《雷达原理》第一章 题集
《雷达原理》第一章题集课程名称:雷达原理考试形式:课后练习满分:100 分---注意事项:1. 本题集共四部分,总分 100 分。
2. 请将答案写在答题纸上。
3. 所有题目必须回答,选择题请将正确答案的字母填在答题纸上,其余题目请将答案写清楚。
---第一部分选择题(共 20 题,每题 2 分,共 40 分)1. 雷达的基本工作原理是()A. 信号的反射B. 电磁波的传播C. 信号的放大D. 数据的处理2. 在雷达系统中,天线的主要作用是()A. 发射和接收电磁波B. 处理信号C. 记录数据D. 过滤噪声3. 雷达信号的脉冲宽度越短,分辨率()A. 越高B. 越低C. 不变D. 与天线有关4. 在连续波雷达中,目标的距离是通过()来测量的。
A. 信号的幅度B. 信号的相位C. 信号的频率D. 信号的时延5. 雷达的“多普勒效应”主要用于()A. 测量目标的速度B. 测量目标的距离C. 提高信号的强度D. 过滤杂波6. 在脉冲雷达中,回波信号的延迟时间与目标的()有关。
A. 速度B. 方向C. 距离D. 大小7. 雷达中“信号噪声比”通常用来衡量()A. 信号的强度B. 噪声的强度C. 信号质量D. 接收机的灵敏度8. 目标的回波信号强度与其()成正比。
A. 距离的平方B. 反射面积C. 速度D. 温度9. 雷达中的“波束宽度”主要影响()A. 雷达的探测范围B. 雷达的分辨率C. 信号的强度D. 天线的大小10. 相控阵雷达的主要优点是()A. 结构简单B. 能够快速改变波束方向C. 成本低D. 体积小11. 在雷达系统中,目标检测的基本步骤是()A. 发射信号、接收回波、处理信号B. 仅发射信号C. 仅接收回波D. 处理信号后发射12. 雷达成像的基本原理是()A. 利用信号的频率B. 利用信号的幅度C. 利用信号的相位信息D. 利用信号的时延13. 反射体的形状对雷达信号的影响主要体现在()A. 回波的强度B. 回波的时间C. 回波的频率D. 回波的相位14. 在雷达测距中,使用的公式为()A. 距离 = 光速×时间B. 距离 = 时间 / 光速C. 距离 = 光速 / 时间D. 距离 = 时间 + 光速15. 适合高空探测的雷达类型是()A. 地面雷达B. 空中雷达C. 卫星雷达D. 水面雷达16. 雷达中“脉冲重复频率”的增加将导致()A. 探测距离增加B. 探测范围增加C. 分辨率降低D. 分辨率提高17. 在合成孔径雷达中,成像的关键是()A. 信号的频率B. 运动的路径C. 发射的功率D. 目标的大小18. 关于“目标指向性”,下列说法正确的是()A. 只与目标的速度有关B. 仅与雷达的工作频率有关C. 与目标的形状、材料及入射角有关D. 不影响信号的返回19. 雷达系统中的“干扰”主要来源于()A. 自身发射B. 环境噪声C. 目标物体D. 以上均可20. 在目标检测中,雷达的“波长”对()有影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
雷达信号分析Radar Signal Analysis
张劲东
南京航空航天大学电子信息工程学院
信息与通信工程系雷达探测与信号处理实验室Email: zhangjd@
第1章引言
¾什么是雷达信号,雷达信号的特点,与通信信号的区别
¾雷达信号理论的地位和作用
¾课程的目标和内容
¾课程的要求
¾进一步学习的途径
9雷达信号:
雷达发射机所发出的信号,它不包含任何信息。
当雷达发射的信号碰到目标后,目标就对这个信号进行调制,并反射(这个反射信号通常称为回波),此时目标的全部信息就蕴藏在这个回波中,对它进行处理就可以提取目标的信息。
可提取的信息和信息的质量除与处理系统有关外就与雷达发射信号的形式有直接关系。
因此,研究和分析雷达信号是很重要的。
9雷达信号的特点:
•电磁频段:L、S、C、X和Ku
•功能:目的、天线、提取目标信息、二次散射信号、检测前信噪比
•功率:辐射功率变化范围大
•信号波形:脉冲、连续波、准连续波•信号带宽:范围很大
9通信信号的特点
•电磁频段:HF、VHF和UHF
•功能:目的、全向天线、不失真传输、一次散射信号、所携带信息
•功率:功率较小
•信号波形:连续波、间断连续波
•信号带宽:较窄
Information from Radar Signal:
•分辨力(Resolution)
•精度(Accuracy/error@ SNR/SIR/SCR)•抗杂波/干扰能力(Anti-clutter/jamming)•信号(信息)处理方法(SP Method)
雷达性能的理论分析(Performance Analysis)
Why study radar signal?•Echo, carry more information
•Easy to transmit
•Easy to receive and SP
•Clutter/interference free or suppressed •Easy to see and Not be seen
Resort to optimum waveform
Analyze & design
•Role of radar signal
•Role of radar signal
z现代雷达面临问题
¾电子干扰(软杀伤、干扰机,欺骗式)
¾低空突防(巡航导弹)
¾ARM(硬杀伤、百舌鸟反辐射导弹)
¾隐身(F117A隐身攻击机)
z新型雷达信号的要求
¾不易被对方侦察和模拟(LPI),应采用复杂的调制¾有良好的分辨力和抗消极干扰的能力,要求信号应又有“图钉”型的模糊函数
¾具有极宽的频带,使任何快速侦察干扰系统均无法施行瞄准式干扰
¾容易进行最佳信号处理
•课程目标
最优信号处理&最优波形选择¾学会雷达信号的分析方法
¾了解雷达信号的基本设计方法¾掌握雷达信号的基本原理
¾奠定深入学习雷达系统的基础了解课程体系(其它课程)
•课程内容:
•雷达信号分析基础
•匹配滤波/模糊函数
•雷达分辨和精度理论
•雷达基本信号分析
•复杂/复合信号分析
•波形设计
•新型雷达体制的波形设计:
MIMO、CS、Cognitive
•进一步学习的途径:
参考书:
1、贾鸿志,《雷达信号分析》,南京理工大学
2、林茂庸,《雷达信号理论》,国防科技出版社*
3、N. LEVANON, E. MOZESON,
RADAR SIGNALS,
A JOHN WILEY & SONS, INC., PUBLICATION
4、W.S. BURDIC, RADAR SIGNAL ANALYSIS
雷达信号理论发展大事记
•1943,North匹配滤波理论•1953,Lawson,专著,Threshold Signals
•1953,Urkowitz,推广,白化/逆•1963,Manasse,推广,白+杂波•1953,Woodward,雷达模糊原理•1960-70s,Sussman和Rihaczek
Sussman vs. Rihaczek
•波形综合(Sussman)
这种方法要求给定模糊函数的数学表达式通过最小二乘最优综合法,得到最优波形。
这方面不仅在数学上遇到了困难,而且所得的最优波形,往往是很复杂的调制信号。
•简便的波形选择途径(Rihaczek)
雷达信号可按其模糊函数划分为四类:A类(正刀刃)、B1类(图钉)、B2类(剪切刀刃)和C类(钉床)。
雷达波形设计人员根据目标环境及雷达的战术要求选定合适的信号类型,兼顾技术实现的难易程度和造价高低,选择合适的信号形式及参数,使系统的性能指标满足要求。
•1970s-1990s: Rihaczek方法的大发展•1993: Bell, Radar waveform and information theory
•2002: Waveform diversity
•2006: Cognitive radar
•2009: RF Stealth Characteristic
•1990s~: Adaptive waveform design theory based on optimization theory and computer simulation (Sussman方法的发展)
•绪论
• 1. 课程的性质与意义、学习目标与要求,主要参考书• 2. 雷达系统中信号形式的发展
• 3. 现代雷达信号的多种形式
•第1章雷达信号与线性处理系统
• 1. 雷达信号的复数表示
• 2. 匹配滤波器的时域和频域解释*
• 3. 雷达信号的相关处理*
•第2章雷达测量精度与分辨力
• 1. 测距精度与测速精度*
• 2. 雷达不定原理
• 3. 距离分辨力与速度分辨力*
•第3章模糊函数*
• 1. 模糊函数
• 2. 模糊函数的性质
• 3. 模糊函数与分辨力的关系
• 4. 模糊函数与精度的关系
• 5. 模糊函数与匹配滤波器输出响应的关系
•第4章线性调频脉冲雷达信号的分析
• 1. 线性调频脉冲的产生
• 2. 线性调频脉冲的频谱
• 3. 线性调频脉冲的模糊函数*
• 4. 线性调频脉冲的处理*
•第5章相位编码脉冲雷达信号的分析
• 1. 二相编码信号
• 2. 巴克码序列*
• 3. 相位编码信号的处理*
•第6章新型雷达信号简介
• 1. 频率编码信号
• 2. 多相码信号
• 3. 多载波信号
•第7章现代雷达波形设计方法
• 1. 波形优化准则
• 2. 波形优化方法(模拟退火、遗传算法)
•第8章新型雷达体制中的波形设计
• 1. 新型雷达体制简介(MIMO、压缩感知、认知雷达)• 2. 波形设计中的前沿手段。