自动控制原理 第六章 控制系统的校正

合集下载

第六章自动控制原理自动控制系统的校正

第六章自动控制原理自动控制系统的校正

第六章自动控制原理自动控制系统的校正自动控制原理是指通过一系列的传感器、执行器和控制器等装置,对待控制对象进行检测、判断和调节,以实现对系统的自动调控和校正。

在自动控制系统中,校正是一个重要的环节,对于确保系统的稳定性、准确性和可靠性具有至关重要的作用。

接下来,本文将简要介绍自动控制系统的校正方法和重要性。

首先,自动控制系统的校正主要包括以下几个方面:1.传感器校正:传感器作为自动控制系统中的重要组成部分,负责将物理量转化为电信号进而进行处理。

传感器的准确性直接影响着系统的测量和控制效果,因此需要对传感器的灵敏度、精度和线性度等进行校正,以提高系统的测量准确性。

2.执行器校正:执行器主要负责将控制信号转化为物理动作,控制系统的输出效果依赖于执行器的准确性和稳定性。

因此,需要对执行器的响应速度、灵敏度和动态补偿等进行校正,以确保系统的控制精度和稳定性。

3.控制器校正:控制器是自动控制系统的核心部分,负责对传感器数据进行处理和判断,并生成相应的控制信号。

对于不同类型的控制器,需要根据系统的需求和特点进行各种参数的校正和调整,以保证系统的控制效果。

4.系统校正:系统校正是指对整个自动控制系统进行整体的校准和调整。

由于控制系统中存在着多种参数和输入信号,这些参数和信号之间的相互作用会对系统的控制效果产生影响。

因此,需要对系统的整体参数进行校正,以确保系统的稳定性和性能达到预期的要求。

其次,自动控制系统的校正具有以下几个重要性:1.提高系统的准确性:通过对传感器、执行器和控制器进行校正,可以消除误差、降低噪声的影响,提高系统的测量和控制准确性。

这对于一些对测量和控制精度要求较高的系统而言尤为重要,如飞行器、自动化生产线等。

2.提高系统的稳定性:通过对控制器和系统参数的校正和调整,可以改善系统的阻尼特性和相应速度,增强系统的稳定性和快速响应能力。

这对于一些需要频繁变动的系统而言尤为重要,如电力系统、机械运动系统等。

《自动控制原理》第6章_自动控制系统的校正

《自动控制原理》第6章_自动控制系统的校正
频率法校正的基本原理: 利用校正网络的特性来增大系统的相位裕度,
改善系统瞬态响应。
校正装置分类
校正装置按 控制规律分
超前校正(PD) 滞后校正(PI)
滞后超前校正(PID)
校正装置按 实现方式分
有源校正装置(网络) 无源校正装置(网络)
有源超前校正装置
R2
u r (t)
i 2 (t)
R1
i1(t)
(aTa s
1)(Tb a
s
1)
滞后--超前网络
L'()
20db / dec
20 lg K c
1 1/ T1 2 1/ T2
设相角为零时的角频率
1
()
a)
20db / dec
5
1 T1T2
90
5 校正网络具有相
5
位滞后特性。
90
b)
5 校正网络具有相位
超前特性。
G( j)
Kc
( jT1
G1 (s)
N (s) C(s)
G2 (s)
性能指标
时域:
超调量 σ%
调节时间 ts
上升时间 tr 稳态误差 ess
开环增益 K
常用频域指标:
开环频域 指标
截止频率: 相角裕度:
c
幅值裕度:
h
闭环频域 指标
峰值 : M p
峰值频率: r
带宽: B
复数域指标 是以系统的闭环极点在复平面
上的分布区域来定义的。
解:由稳态速度误差系数 k v 1应00 有
G( j)
100
j( j0.1 1)( j0.01 1)
100 A()
1 0.012 1 0.00012

自动控制原理-控制系统的校正

自动控制原理-控制系统的校正

自动控制原理
第6章 控制系统的校正
1. 基于根轨迹法的超前校正
当系统的性能指标为时域指标时,用根轨迹
法设计校正装置比较方便。
应用根轨迹法设计校正装置的基本思路是: 认为经校正后的闭环控制系统具有一对主导共轭 复数极点,系统的暂态响应主要由这一对主导极 点的位置所决定。
明,网络在正弦信号作用
下的稳态输出电压,在相 位上超前于输入。这也就
m
T
1
是所谓超前网络名称的由
来。
m
arcsin1 1
Lc
(m
)
10
lg
1
自动控制原理
在对数幅频特性中,截 止频率附近的斜率为– 40dB/dec,并且所占频率范 围较宽,此系统的动态响应 振荡强烈,平稳性很差。对 照相频曲线可明显看出,在 范围内,对–π线负穿越一次, 故系统不稳定。
一般来说,串联校正设计比反馈校正设计简 单,也比较容易对信号进行各种必要形式的变换。
反馈校正所需元件数目比串联校正少。反馈 校正可消除系统原来部分参数波动对系统性能的 影响。在性能指标要求较高的控制系统设计中, 常常兼用串联校正与反馈校正两种方式。
自动控制原理
6.1.5 基本控制规律
1. 比例控制规律(P)
虚线表示超前网络的对 数频率特性。加入超前网络 后会有增益损失,不利于稳 态精度,但可以通过提高开 环增益给予补偿。
第6章 控制系统的校正
自动控制原理
第6章 控制系统的校正
由于超前网络对数幅频特性在1/T至1/αT之间 具有正斜率,所以原系统中频段的斜率由– 40dB/dec变成了-20dB/dec,增加平稳性;还是由 于这个正斜率,使系统的截止频率增大到c2 ,系

自动控制原理_吴怀宇_第六章控制系统的校正与设计

自动控制原理_吴怀宇_第六章控制系统的校正与设计

扰动补偿 输入补偿
自动控制原理
按扰动补偿的复合控制系统如图6-3所示。
N(s)
+
Gn (s)
R(s) + E(s)
+
G1 (s)
G2 (s)
C(s)
-
图6-3 按扰动补偿的复合控制系统
自动控制原理
按给定补偿的复合控制系统如图6-4所示。
Gr ( s)
R( s) E( s)
+
G( s )
+
C( s)
自动控制原理
6.4.1 超前校正
基本原理:利用超前校正网络的相角超前特性去增大系 统的相角裕度,以改善系统的暂态响应。 用频率特性法设计串联超前校正装置的步骤:
(1)根据给定的系统稳态性能指标,确定系统的开环增益 ;
K)绘制在确定的 值下系统的伯德图,并计算其相角裕 (2 度 ; K 0
(3)根据给定的相角裕度 ,计算所需要的相角超前量 0
m
60º
40º
20º
1
0 4 8 12 14 20

图6-16 最大超前相角 m 与 的关系
自动控制原理
6.3.2 滞后校正装置 相位滞后校正装置可用图6-17所示的RC无源网络实现, 假设输入信号源的内阻为零,输出负载阻抗为无穷大,可 求得其传递函数为:
G c ( s) s zc s 1 1 s 1 ( ) s pc s 1 ( ) s 1
自动控制原理
与相位超前网络类似,相位滞后网络的最大滞后角位于
1 与 1 的几何中心处。
图6-21还表明相位滞后校正网络实际是一低通滤波器, 值 它对低频信号基本没有衰减作用,但能削弱高频噪声, 10 较为适宜。 愈大,抑制噪声的能力愈强。通常选择 一般可取

自动控制原理第六章线性系统的校正方法

自动控制原理第六章线性系统的校正方法

对数幅频特性曲线如下图
16
10 3) 预选Gc(s)=τs+1,则 Gk ( s ) = (τs + 1) s ( s + 1)
′ 要求τ使系统满足 γ ′′ 和 ω c′ 的要求。 ′ 选择 ω c′=4.4dB/dec,求τ,则:
" L( wc ) = 20 lg 10 − 20 lg 4.4 − 20 lg 4.4 + 20 lg 4.4τ
1 / 2T 则 Gk ( s ) = s (Ts + 1)
其相频特性为: ϕ (ω ) = −90o − arctan Tω
1 = 63.5o γ (ωc ) = 180 + ϕ (ωc ) = 180 − 90 − arctan T ⋅ 2T
o o o
h=∞
21
∴由 ξ = 0.707 得性能指标为:
2
N R E
串联 校正 控制器 对象
已知被控对象数学模型 G p (s),即根据生产要求而 得到的系统数学模型,称为 固有部分数学模型,在工程 实际中是不能改变的。
C
反馈 校正
根据固有数学模型和性能要求进行分析,若现有闭环情况 下没有满足的性能指标或部分没有满足要求的性能指标,则人 为的在固有数学模型基础上,另加一些环节,使系统全面满足 性能指标要求,这个方法或过程称为校正,也称为系统设计。 所附加的环节被称为控制器,其物理装置称为校正装置。 通常记为Gc(s)
2 2 典型二阶系统可表示为: ωn ωn Φ(s) = 2 Gk ( s) = 2 s ( s + 2ξω n ) s + 2ξω n s + ω n
ξ
19
2 ωn C ( jω ) Φ ( jω ) = = =1 2 2 R ( jω ) ( jω ) + 2ξωn ⋅ jω + ωn 2 ωn

数学建模自动控制自动控制系统的校正公开课一等奖优质课大赛微课获奖课件

数学建模自动控制自动控制系统的校正公开课一等奖优质课大赛微课获奖课件

机械网络
C1 C 2 ,T C2
C2
K2
Ts 1
Gc (s) Ts 1
阻容网络
R1 R2 R2
,T
R2C2
第13页
自动控制原理 无源阻容网络
第六章 自动控制系统的校正
滞后-超前校正网络
机械网络
R1 R2
R2
T1 R1C1 T2 R2 C2
K1 K2
K2
T1
C1 K1
T2
C2 K2
系统相位和增益裕量分 别为17°和+∞分贝
1.系统稳定 2.稳态误差满意 3.瞬态响应不满意
改变高频部分, c
超前校正
第17页
自动控制原理
第六章 自动控制系统的校正
第18页
自动控制原理
第六章 自动控制系统的校正
(3)拟定需要增长最大相位超 前角m
50 17 33 m 5 38
补偿c增长造成 Gs(j )相位滞后
K
5
Gs (s)
s(s
5 1)(0.5s
1)
第24页
自动控制原理
第六章 自动控制系统的校正
(2)拟定未校正系统相位裕量和增益裕量
20
1.须增长相位裕 量较大
2.c附近Gs(j) 相角减小不久
3.未提出频宽要求
滞后校正
第25页
自动控制原理
第六章 自动控制系统的校正
第26页
自动控制原理
第六章 自动控制系统的校正
➢执行元件: 受被控对象功率要求和所需能源形式、工作 ➢ 条件限制。伺服电动机、液压/气动伺服马达等;
➢测量元件: 依赖于被控制量形式。电位器、热电偶、测 ➢ 速发电机以及各类传感器等;

自动控制原理第六章控制系统的校正

自动控制原理第六章控制系统的校正

自动控制原理第六章控制系统的校正控制系统的校正是为了保证系统的输出能够准确地跟随参考信号变化而进行的。

它是控制系统运行稳定、可靠的基础,也是实现系统优化性能的重要步骤。

本章主要讨论控制系统的校正方法和常见的校正技术。

一、校正方法1.引导校正:引导校正是通过给系统输入一系列特定的信号,观察系统的输出响应,从而确定系统的参数。

最常用的引导校正方法是阶跃响应法和频率扫描法。

阶跃响应法:即给系统输入一个阶跃信号,观察系统输出的响应曲线。

通过观察输出曲线的形状和响应时间,可以确定系统的参数,如增益、时间常数等。

频率扫描法:即给系统输入一个频率不断变化的信号,观察系统的频率响应曲线。

通过观察响应曲线的峰值、带宽等参数,可以确定系统的参数,如增益、阻尼比等。

2.通用校正:通用校正是利用已知的校准装置,通过对系统进行全面的测试和调整,使系统能够输出符合要求的信号。

通用校正的步骤通常包括系统的全面测试、参数的调整和校准装置的校准。

二、校正技术1.PID控制器的校正PID控制器是最常用的控制器之一,它由比例、积分和微分三个部分组成。

PID控制器的校正主要包括参数的选择和调整。

参数选择:比例参数决定控制系统的响应速度和稳定性,积分参数决定系统对稳态误差的响应能力,微分参数决定系统对突变干扰的响应能力。

选择合适的参数可以使系统具有较好的稳定性和性能。

参数调整:通过参数调整,可以进一步改善系统的性能。

常见的参数调整方法有经验法、试错法和优化算法等。

2.校正装置的使用校正装置是进行控制系统校正的重要工具,常见的校正装置有标准电压源、标准电阻箱、标准电流源等。

标准电压源:用于产生已知精度的参考电压,可以用来校正控制系统的电压测量装置。

标准电阻箱:用于产生已知精度的电阻,可以用来校正控制系统的电流测量装置。

标准电流源:用于产生已知精度的电流,可以用来校正控制系统的电流测量装置。

校正装置的使用可以提高系统的测量精度和控制精度,保证系统的稳定性和可靠性。

自动控制原理第六章

自动控制原理第六章

G(s)

K0 K p (Ti s 1) Ti s2 (Ts 1)
表明:PI控制器提高系统的型号,可消除控制系统对斜 坡输入信号的稳态误差,改善准确性。
校正前系统闭环特征方程:Ts2+s+K0=0 系统总是稳定的
校正后系统闭环特征方程:TiTs3 Ti s2 K p K0Ti s K p K0 0
调节时间 谐振峰值
ts

3.5
n
Mr
2
1 ,
1 2
0.707
谐振频率 r n 1 2 2 , 0.707
带宽频率 b n 1 2 2 2 4 2 4 4 截止频率 c n 1 4 4 2 2
相角裕度
arctan
低频段:
开环增益充分大, 满足闭环系统的 稳态性能的要求。
中频段:
中频段幅频特性斜 率为 -20dB/dec, 而且有足够的频带 宽度,保证适当的 相角裕度。
高频段:
高频段增益尽 快减小,尽可 能地削弱噪声 的影响。
常用的校正装置设计方法 -均仅适用最小相位系统
1.分析法(试探法)
特点:直观,物理上易于实 现,但要求设计者有一定的 设计经验,设计过程带有试 探性,目前工程上多采用的 方法。
列劳思表:
s3 TiT
K p K0Ti
s2 Ti
K pK0
s1 K p K0 (Ti T )
s0 K p K0
若想使系统稳定,需要Ti>T。如果 Ti 太小,可能造成系 统的不稳定。
5.比例-积分-微分(PID)控制规律
R( s )
E(s)
C(s)
K
p (1

自动控制原理--第6章 线性控制系统的校正

自动控制原理--第6章 线性控制系统的校正

自动控制原理
4
6.2 校正装置及其特性 6.2.1 无源校正装置
1. 无源超前网络
复阻抗:
Z1
1
R1 R1Cs
Z2 R2
所以超前网络的传递函数为:
Gc
(s)
Uo (s) Ui (s)
Z2 Z1 Z2
R2 1 R1Cs R1 R2 1 R1R2 Cs
1 1 aTs a 1 Ts
式中:
T R1R2 C R1 R2

g g 0 (c ) c (c )
(6-23)
(4)根据下述关系式确定滞后网络参数b和T
20 lg b L0 (c ) 0
1 bT
(1 5
~
1 10
)
c
(6-24) (6-25)
(5)验算已校正系统相角裕度和幅值裕度。
自动控制原理
25
例6-2 设一控制系统如图所示。要求校正后系统的静态速度误差 系数等于30s-1,相角裕度不低于40°,幅值裕度不小于10 dB,
系统剪切频率c4.4rad/s,相角裕度g 45°,幅值裕度
Kg (dB) 10dB。试选择串联无源超前网络的参数。
解 首先调整开环增益K。未校正系统为Ⅰ型系统,所以有
ess
1 K
0.1
故K值取为10时,可以满足稳态误差要求,则
Go (s)
10 s(s 1)
(6-22)
自动控制原理
21
画出其对数幅频渐近特性,由图中得出未校正系统剪切
串联校正
G(s)为系统不可变部分传递函数 Gc(s)为校正装置的传递函数
自动控制原理
2
并联校正
G(s)为系统不可变部分传递函数 Gc(s)为反馈通道中安置传递函数

自控第6章 线性系统的校正方法

自控第6章 线性系统的校正方法
自动控制原理 Automatic Control Theory
第 六 章
线性系统的校正方法
本章主要内容

6-1 系统的设计与校正问题

6-2 常用校正装置及其特性
6-3 串联校正 6-4 反馈校正 6-5 复合校正



校正:是在系统中加入一些其 参数可以根据需要而改变的机构或 装置,使系统的整个特性发生变化,
Ta R1C1
Tb R2C2,
Tb Ta
T1 Tb 1 Ta T2
式中前一部分为相位滞后校正,后一部分为相位 超前校正。对应的波特图如图所示。由图看出不同频
段内呈现的滞后、超前作用。
波特图
Gc ( s )
(1 Ta s )(1 Tb s ) T (1 Ta s )(1 b s )
Phase (deg)
-135
-180 10
-2
10
-1
10
0
10
1
10
2
10
3
Frequency (rad/sec)
设计无源超前校正网络步骤: 1)根据稳态误差要求,确定开环增益K。 2)利用已确定的开环增益,计算待校正 系统的相角裕度。 3)根据截止频率的要求,计算超前网络 参数a和T。 4)验算已校正系统的相角裕度。
求得
( c) 46

于是 ,由 (c) 曲线查得 c 2.7(rad / s) .由于指标要 求 c 2.3 ,故 c 值可在2.3~2.7范围内任取 .考虑到 c 取
1 1

说明系统不稳定。
Magnitude (dB)
Bode Diagram Gm = -6.02 dB (at 7.07 rad/sec) , Pm = -17.2 deg (at 9.77 rad/sec) 50 0 -50 -100 -150 -90

线性系统的校正方法《自动控制原理》

线性系统的校正方法《自动控制原理》

(1) 反向端输入的有源调节器
反向端输入有源调节器的电路如下图:
图中:
是输入阻容网络的等效阻抗,
是反馈阻容网络的等效
阻抗, 传递函数为:
用不同的阻容网络构成

就可得到不同的调节规律. 可见教材
P.233表6-2典型的有源调节器. (2) 同向端输入的有源调节器 同向端输入有源调节器的电路 如右图:

产生一个小偏差
, 则
变为
, 其相对增量为:
, 采用位置反馈后, 变化前的传递系数为
变化后的增量
, 其相对增量为:
2. 复合控制 工程实际中的系统往往受各种干扰的影响, 当控制系统对在 干扰影响的动静态性能提出很高要求时, 单纯用反馈控制一般难 以满足要求, 此时可考虑采用复合控制的手段. 下面简要介绍针 对干扰作用下的复合控制的方法和特点.
4
特性法设计系统, 都是通过闭环系统的开环特性进行的, 用对数
5
频率特性法设计系统, 就需通过闭环系统的开环对数频率特性进
6
行设计. 下面还是通过具体例子加以说明.
7
6-3 串联校正
例1 设单位负反馈系统的开环传递函数为:
若要求系统的速度误差系数KV =20, 相角裕量
,幅
值裕量
, 试设计串联超前校正装置.
解: (1)确定系统的开环放大倍数.并画开环对数幅频特性曲线
2.串联超前校正
分析当K=20时, 原系统是否满足动态要求.
由于超前网络的放大倍数为
态误差系数降低, 故需再串接一放大倍数为
由上计算可知, 原系统当K=20时, 闭环虽稳定, 但相角裕量仅为 18度, 将会有较大的超调, 不满足相角裕量大于等于50度的动态 要求, 可采用串联超前网络给以校正. 设计网络参数超前网络的传递函数为:

自动控制原理 第六章 控制系统的校正

自动控制原理 第六章 控制系统的校正
第6章
控制系统的校正
自动控制原理研究的内容有两方面:一方面已知控制系统的结构和参数,研究和分析 其静、动态性能,称此过程为系统分析。本书的第 3 章~第 5 章就是采用不同的方法进行 系统分析;另一方面在被控对象已知的前提下,根据实际生产中对系统提出的各项性能要 求,设计一个系统或改善原有系统,使系统静、动态性能满足实际需要,称此过程为系统 校正。本章就是研究控制系统校正的问题。 所谓校正,就是在工程实际中,根据对系统提出的性能指标要求,选择具有合适的结 构和参数的控制器,使之与被控对象组成的系统满足实际性能指标的要求。系统校正又称 系统综合。校正的实质就是在系统中加入一定的机构或装置,使整个系统的结构和参数发 生变化,即改变系统的零、极点分布,从而改变系统的运行特性,使校正后系统的各项性 能指标满足实际要求。 本章研究的主要内容是工程实际中常用的校正方法,即串联校正、反馈校正和复合校 正的设计思想和设计过程,并介绍基于 MATLAB 和 Simulink 的线性控制系统较正的一般 方法。 通过本章的学习,建立系统校正的概念,掌握校正的方法和步骤,并能利用 MATLAB 和 Simulink 对系统进行校正分析,为进行实际系统设计建立理论基础。
Mγ =
ts = K0 π
(6.11) (6.12) (6.13)
ωc
(1≤Mγ≤1.8)
K 0 = 2 + 1.5( M γ − 1) + 2.5( M γ − 1)2
系统的稳态误差或误差系数( K p , K v , K a )也是系统设计中的一个重要指标,它决定系统 的稳态误差 ess 的大小。在系统设计时,常常是根据所要求的误差系数的大小或稳态误差的 大小确定系统开环放大倍数。 带宽频率 ω b 是指闭环幅频特性 M (ω ) 衰减至零频幅值 M (0) 的 0.707 倍时的频率值。 如 图 6.2 所示,它是系统设计中的一项重要性能指标。无论采用何种校正方法,都要求系统 具有足够的带宽,以使系统能够准确复现输入信号;同时要求带宽频率不能太大,否则不 利于抑制高频噪声干扰信号。设系统输入信号 r (t ) 的带宽为 1 ~ ω M ,高频噪声干扰信号的 带宽为 ω1 ~ ω n ,通常控制系统的带宽取为 ω b = (5 ~ 10)ω M (6.14) 且使 ω1 ~ ω n 处于 (0 ~ ω b ) 范围之外,如图 6.3 所示。

自动控制原理 第六章 控制系统的校正(2011-2超前)

自动控制原理 第六章 控制系统的校正(2011-2超前)

1
10
0
10
1
1 T
15
超前网络频率特性
频率特性的分析
最大超前角及最大超前角处幅值与分度系数的关系曲线
a −1 a −1 ϕm = arctg = arcsin a +1 2 a
a ↑→ ϕ m ↑
α不能取得太大(为了保证较高的信噪比),α一般不超过 20。这种超前校正网络的最大相位超前角一般不大 于 65°;如果需要大于 的相位超前角,则要在两个超 65° 前网络相串联来实现,并在所串联的两个网络之间加一 隔离放大器,以消除它们之间的负载效应。
超前校正的基本原理
基本原理: ◇超前网络的特性是相角超前,幅值增加。 ◇串联超前校正的实质是将超前网络的最大超前角补在 校正后系统开环频率特性的截止频率处,提高校正后系 统的相角裕度和截止频率,从而改善系统的动态性能。
-20d B
/dec
c de பைடு நூலகம்/ d 20
-4
0d B/ de c
- 60 d
5
①采用无源超前网络进行串联校正时,整个系统的开环 增益要下降α 倍。需要提高放大器增益加以补偿
R1 ur
C
R2
a

uc
Gc ( s ) =
1 1 + aTs a 1 + Ts
带有附加放大器的无源超前校正网络
此时的传递函数
1 + aTs G ( s ) = aGc ( s ) = 1 + Ts
6
2 超前网络的零极点分布
20lg 20 − 20lg ω − 20lg 1 +
ω2
4
= 26.02 − 19.0 − 13.12 = −6.1

自动控制原理自动控制系统的校正

自动控制原理自动控制系统的校正

2021/8/5
3
举一个例子说明校正的作用。 上一章的例5-7:系统的开环传递函数为
G (s)H (s)
10
s(10.0s2 )1(0.2s)
首先分析一下,未校正系统的性能
稳态误差:有一个积分环节,是I型系统.
开环增益
,稳态速度误差系数
K10 而 Kp,Ka0
Kv10
2021/8/5
4
L()
40 20dB / dec
2021/8/5
1
概述
前面介绍了分析控制系统的三种基本方法: 时域分析法、根轨迹法和频域分析法。利用这些 方法能够在系统结构和参数已经确定的情况下, 计算或估算系统的性能指标:稳态性能指标和暂 态性能指标 。这类问题是系统的分析问题。
系统分析:已知结构、参数→数学模型→动、 静态性能分析→性能指标与参数的关系
1、稳态性能指标
系统的稳态性能与开环系统的型别v与开环传递系数K有关,常用静态误差系 数衡量,误差系数越大(等效于K越大),稳态误差ess就越小。
2021/8/5
8
2、动态性能指标
1)时域指标:最大超调量Mp(反映平稳性)、调节时间ts(反映快速性)。 2)频域指标:
(1)开环频域指标: 稳定性指标:相位裕量、幅值裕量GM、中频段宽度; 快速性指标:幅值穿越频率c。 (2)闭环频域指标:Mr、ωr、ωb 3)复域指标:
2021/8/5
10
二、校正的基本方式
1. 串联校正
R(s)
-
校正装置 Gc(s)
控制器
被控对象 C(s) Go(s)
校正装置和未校正系统的前向通道的环节相串联,这
种方式叫做串联校正。
优点:结构较简单,通常将串联校正装置安置在前向通

自动控制原理6 第一节超前校正

自动控制原理6 第一节超前校正

Gc (s)
1 Ts,
1 Ts
1
L() 20lg
1 (T)2
20lg 1 (T)2
() tg1T tg1T
m
1
T
频率特性的主要特点是:
所有频率下相频特
性为正值,且在频率
m处相频特性()存 在最大相位超前量m。
m发生在对数刻度的
坐标中1/T与1/( T )
的几何中点。
① 求m
令 d() 0,可得 d
20 lg 1 2T 2 20 lg 1 T 2
T 2
T 2
20 lg (1 ) 1
20 lg 10 lg
-90
1
m
1
T
T
19
三、基于伯德图的相位超前校正
R - Gc
C
G
图中,Gc为校正装置,G为 对象。
基于伯德图设计超前校正装置的步骤如下:
① 求出满足稳态性能指标的开环增益K值;
1
二、校正方式
按照校正装置在系统中的连接方式,控制系统校正方式可 分为串联校正、并联校正、前馈校正和复合校正四种。
⒈串联校正装置一般串联于系统前向通道之中系统误差检 测点之后和放大器之前。
R(s) E(s) Gc (s)
-
GP (s) C(s)
B(s)
H (s)
2
⒉并联校正装置接在系统局部反馈通道之中,并联校正也 称为反馈校正。
这里主要介绍基于伯德图的单输入-单输出的线性 定常控制系统的设计和校正的方法和步骤。
6
第一节 用频率法设计串联校 正器的基本概念
9
Im
-1
Re
K2
K1
10
第二节 相位超前校正

自动控制 原理 第六章 线性系统的校正方法

自动控制 原理 第六章 线性系统的校正方法
分析: 1)按照稳态误差的要求,则: K 100 2)按照相角裕度的要求,则: K 22
如何解决: 在原系统中加入一些机构或装置
成都信息工程学院—控制工程系
自动控制原理
如:加入附加装置
R(s)
0.063s 1
0.0063s 1
第六章 线性系统校正方法
100
C(s)
s(0.1s 1)(0.01s 1)
正装置。
校正的本质: 改变系统的零、极点分布,即改变系统的根轨迹或频率特性
曲线的形状,达到改善系统性能的目的。
成都信息工程学院—控制工程系
自动控制原理
第六章 线性系统校正方法
6.1.3 校正中常用的性能指标
校正中常用的性能指标包括稳态精度、 稳定裕量以 及响应速度等。
(1) 稳态精度指标: 位置误差系数K p , 速度误差系
则:满足 ess= 0.01 γ = 37.1o
成都信息工程学院—控制工程系
自动控制原理
6.1.2 校正及其本质
第六章 线性系统校正方法
校正:
所谓校正,就是在系统中加入一些其参数可根据需要而改变 的机构或装置,使整个系统的特性发生变化,从而满足给定的各 项性能指标。
校正装置: 为了改善系统的动态、静态性能附加的这部分装置统称位校
第六章 线性系统校正方法
校正方法分类(3):
三、根据校正装置自身有无放大能力来看
无源校正装置:
自身无放大能力,通常由RC网络组成,在信号传递中,会 产生幅值衰减,且输入阻抗低,输出阻抗高,常需要引入附加的 放大器,补偿幅值衰减和进行阻抗匹配。
无源串联校正装置通常被安置在前向通道中能量较低的 部位上。
成都信息工程学院—控制工程系

自动控制原理与系统第6章 自动控制系统的校正

自动控制原理与系统第6章 自动控制系统的校正
③ 在信号输入处由电容器 构成C0的微分环节很小。 高频很容易进入,而很多干扰信号都是高频信号,因 此比例微分校正容易引入高频干扰,这是它的缺点。
④ 比例微分校正对系统的稳态误差不产生直接的
结论:
比例微分校正将使系统的稳定性和快 速性改善,但抗高频干扰能力明显下降。
由于PD校正使系统的相位前移,所 以又称它为相位超前校正。
Integral Derivative Compensation ) (相位滞后-超前校正)
Tm 为伺服电动机的机电时间常数,设 Tm 0.2s ;Tx 为检测滤波时间常数,设 Tx 10ms 0.01s ;k1 为系
统的总增益,设 K1 35
随动系统固有部分的传递函数为:
G1
s
降低增益,将使系统的稳定性改善,但使系统的稳
态精度变差。若增加增益,系统性能变化与上述相反。
•应用:
调节系统的增益,在系统的相对稳定性和稳态精度
之间作某种折衷的选择,以满足(或兼顾)实际系统的要
求,是最常用的调整方法之一。
3、比例-微分(PD)校正(Proportional-Derivative) (相位超前校正)
串联校正是将校正装置串联在系统的前向通路中,来
改变系统结构,以达到改善系统性能的方法。
2、比例(P)校正(Proportion Compensation) 举例分析:
图6-1为一随动系统框图,图中G1 s 为随动系统的固
有部分的传递函数。
若G1 s 中,K1=100,T1=0.2s,T2=0.01s;则系统固
s T1s 1 s 0.1s 1 s 0.1s 1
图6-6 比例积分校正对系统性能的影响
增设PI ① 系统由0型系统变为Ⅰ型系统,从而实现了无
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因此可以认为,滞后校正是以牺牲快速性 来换取稳定性和改善振荡性的。
例6—3
• 设单位负反馈系统未校正时的对数频率 特性如图6—10中曲线 所示,校正网络 对应的幅频特性如图中曲线所示。
•由图可见,并未改变低频段的斜率与高度, 这说明稳态精度并未由于滞后校正而直接改 善。 •通过提供了通过增加开环放大系数,提高低 频区幅频特性高度的可能性。
对应的角频率为
m
T
1 a
例6-1
图6-6
• 单位负反馈系统原来的开环渐近幅频特 性曲线和相频特性曲线如图6-6所示, 它可以看作是根据给定稳定精度的要求, 而选取的放大系数K所绘制的。
从以上的例子可以看出超前校正, 可以用在既要提高快速性,又要改善振 荡性的情况。
图6-7 无源微分网络
通常式(6—1)的传递函数可以通过图6—7所示 的无源网络来实现。利用复数阻抗的方法不难 求出图6—7所示网络的传递函数为
第6章 控制系统的校正
基本要求 6-1 系统校正设计基础 6-2 串联校正 6-3 串联校正的理论设计方法 6-4 反馈校正 6-5 复合校正
返回主目录
基本要求
① 正确理解串联超前、串联滞后、串联滞后-超前三种 校正的特性及对系统的影响。
② 掌握基本的校正网络及运算电路。 ③ 熟练掌握运用(低、中、高)三频段概念对系统校正
前、后性能进行定性分析、比较的方法。 ④ 熟练掌握串联校正(串联超前、串联滞后)的频率域
设计步骤和方法。了解串联校正的根轨迹设计步骤 和方法。
返回子目录
⑤ 正确理解反馈校正的特点和作用。能通过传递函 数分解为典型环节的方法,比较说明加入反馈局 部校正的作用。
⑥ 正确理解对控制作用和对干扰作用的两种附加前 置校正的特点、使用条件及其作用,会使用等效 系统开环频率特性分析或闭环零、极点比较分析 来说明前置校正的作用。
图6-13 式(6-10)对应的波特图
四、PID校正器
1.PD校正器 又称比例-微分校正,其传递函数
Gc (s) Kd s K p
Gc
(s)
K
p
(
Kd Kp
1)
K p (Ts
1)
(6-11)
作用相当于式(6-1)的超前校正。
2 PI校正器
PI校正器又称比例-积分校正,其传递函数
1 Gc (s) K p Ti s
6-2 串联校正
返回子目录
• 图6-4 系统的串联校正
一、相位超前校正
图6-5
• 由图6—5可见,校正作用的主要特点是 提供正的相移,故称相位超前校正
相位超前校正装置的传递函数
Gc
(s)
1 aTs 1 Ts
a 1
(6-1)
超前角的最大值为
m
sin 1
a a
1 1
这一最大值发生在对数频率特性曲线的几何中心处,
系统动态响应的平稳性很差或不稳定, 对照相频曲线可知,系统接近于临界情 况。
图6-9 例6-2对应的波特图
注意:
由于校正环节的相位滞后主要发生在低频段,故 对中频段的相频特性曲线几乎无影响。
因此校正的作用是利用了网络的高频衰减 特性,减小系统的截止频率,从而使稳定裕度 增大,保证了稳定性和振荡性的改善,
• 例如,若将超前校正环节的参数设置在系统的低频 区,就起不到提高稳定裕度的作用。同理若将滞后 校正环节的参数设置在中频区,会使系统振荡性增 加甚至使系统不稳定。
6-3 串联校正的理论设计方法
一、串联校正的频率域方法
• 频率域设计的基础是开环对数频率特性 曲线与闭环系统品质的关系。
⑦ 了解其它一些改善系统性能的手段与方法。
6-1 系统校正设计基础
一、性能指标
时域:
超调量 σ%
调节度
稳态误差和开环增益等。
返回子目录
常用频域指标:
截止频率: 相稳定裕度: 模稳定裕度:
c pm
GM
峰值 : M p
峰值频率: r
带宽: B
复数域指标 是以系统的闭环极点在复平
面 上的分布区域来定义的。
振荡度:φ 衰减度:η
•图6-1 闭环极点的限制区域
二、几种校正方式
• 图6-2
三、校正设计的方法
1.频率法 2.根轨迹法 3.等效结构与等效传递函数方法
由于前几章中已经比较详细地研究了单位负 反馈系统和典型一、二阶系统的性能指标,这 种方法充分运用这些结果,将给定结构等效为 已知的典型结构进行对比分析,这样往往使问 题变得简单。
图6-10 例6-3对应的波特图
通常式(6-5)的传递函数可以通过图6-11所示 的无源网络来实现
Gc
(s)
Uc Ur
(s) (s)
(R1
R2Cs 1 R2)Cs
1
三、滞后-超前校正
• 为了全面提高系统的动态品质,使稳 态精度、快速性和振荡性均有所改善,
可同时采用滞后与超前的校正,并配
合增益的合理调整。
Gc
(s)
1 a
1 aTs 1 Ts
a 1
a R1 R2 R2
T R1R2 C R1 R2
二、滞后校正
G 滞后校正传递函数为 c
(s)
1 bTs 1 Ts
(b 1)
例6-2
• 单位负反馈系统原有的开环Bode图如图 6—9中曲线所示。
• 曲线 L1 可以看作是根据稳态精度的要
求,所确定的开环放大系数而绘制。
1
Ti
Ti
Kps 1 s
(6-12)
作用相当于式(6-5)的滞后校正。
3 PID校正器
又称比例—积分—微分校正,其传递函数
Gc
(s)
K
p
Kd
s
1 Ti s
Ti Kd s2 Ti K ps 1 Ti s
(6-13)
其作用相应于式(6—7)的滞后—超前校正。
注意:
• 校正装置参数的合理选择和系统开环增益的配合调 整是非常重要的。
• 鉴于超前校正的转折频率应选在系统 中频段,而滞后校正的转折频率应选
在系统的低频段,因此可知滞后—超 前串联校正的传递函数的一般形式应

Gc
(s)
(1 bT1s)(1 aT2s) (1 T1s)(1 T2s)
a 1,b 1
bT1 aT2
式(6-7)的传递函数可 用如图6-12所示的无 源网络来实现。
(6-7)
图6-12
图6—12所示的无源网络,它的传递函数为
Gc (s)
(Tas 1)(Tbs 1) (1 a1Tas)(1 aTbs)
(6-10)
Ta R1C1 Tb R2C2
Tb Ta a 1
式(6-10)中前一部分为相位超前校 正,后一部分为相位滞后校正。对应的 波特图如图6-13所示。由图看出不同频 段内呈现的滞后、超前作用。
相关文档
最新文档