第1章练习题(大学物理1)
(完整版)大学物理题库
第1章 质点运动学一、选择题 1. 一物体在位置1的矢径是 r 1, 速度是1v . 如图1-1-1所示.经∆t 时间后到达位置2,其矢径是 r 2, 速度是2v .则在∆t 时间内的平均速度是 [ ] (A) )(2112v v - (B) )(2112v v + (C) t r r ∆-12 (D) t r r ∆+12 2. 关于加速度的物理意义, 下列说法正确的是 [ ] (A) 加速度是描述物体运动快慢的物理量(B) 加速度是描述物体位移变化率的物理量(C) 加速度是描述物体速度变化的物理量(D) 加速度是描述物体速度变化率的物理量 3. 一质点作曲线运动, 任一时刻的矢径为 r , 速度为v , 则在∆t 时间内[ ] (A) v v ∆=∆ (B) 平均速度为∆∆r t (C) r r ∆=∆ (D) 平均速度为t r ∆∆ 4. 一质点作抛体运动, 忽略空气阻力, 在运动过程中, 该质点的t d d v 和td d v 的变化情况为 [ ] (A) t d d v 的大小和t d d v 的大小都不变 (B) t d d v 的大小改变, t d d v 的大小不变 (C) t d d v 的大小和t d d v 的大小均改变 (D) t d d v 的大小不变, td d v 的大小改变 5. 下面各种判断中, 错误的是[ ] (A) 质点作直线运动时, 加速度的方向和运动方向总是一致的(B) 质点作匀速率圆周运动时, 加速度的方向总是指向圆心(C) 质点作斜抛运动时, 加速度的方向恒定(D) 质点作曲线运动时, 加速度的方向总是指向曲线凹的一边6 下列表述中正确的是[ ] (A) 质点作圆周运动时, 加速度一定与速度垂直(B) 物体作直线运动时, 法向加速度必为零(C) 轨道最弯处法向加速度最大(D) 某时刻的速率为零, 切向加速度必为零7 一物体作匀变速直线运动, 则[ ] (A) 位移与路程总是相等(B) 平均速率与平均速度总是相等(C) 平均速度与瞬时速度总是相等(D) 平均加速度与瞬时加速度总是相等图1-1-18. 在地面上以初速v 0、抛射角θ 斜向上抛出一物体, 不计空气阻力.问经过多长时间后速度的水平分量与竖直分量大小相等, 且竖直分速度方向向下?[ ] (A) )cos (sin 0θθ+gv (B) )cos 2(sin 0θθ-g v (C) )sin (cos 0θθ-g v (D) g0v 9. 从离地面高为h 处抛出一物体,在下列各种方式中,从抛出到落地时间内位移数值最大的一种是 [ ] (A) 自由下落 (B) 以初速v 竖直下抛 (C) 以初速v 平抛 (D) 以初速v 竖直上抛10. 作圆周运动的物体[ ] (A) 加速度的方向必指向圆心 (B) 切向加速度必定等于零(C) 法向加速度必定等于零 (D) 总加速度必定不总等于零11. 质点作变速直线运动时, 速度及加速度的关系为[ ] (A) 速度为0, 加速度一定也为0(B) 速度不为0, 加速度也一定不为0(C) 加速度很大, 速度也一定很大(D) 加速度减小, 速度的变化率也一定减小12. 下列几种情况中, 哪种情况是不可能的?[ ] (A) 物体具有向东的速度和向东的加速度(B) 物体具有向东的速度和向西的加速度(C) 物体具有向东的速度和向南的加速度(D) 物体具有变化的加速度和恒定的速度 13. 一质点在平面上运动, 已知质点位置矢量的表示式为j t b i t a r 22+=(其中a 、b为常量) , 则该质点作[ ] (A) 匀速直线运动 (B) 变速直线运动(C) 抛物曲线运动 (D) 一般曲线运动14 . 一质点在xOy 平面内运动, 其运动方程为Rt t R x ωω+=sin ,R t R y +=ωcos , 式中R 、ω均为常数.当y 达到最大值时该质点的速度为[ ] (A) 0,0==y x v v (B) 0,2==y x R v v ω(C) ωR y x -==v v ,0 (D) ωωR R y x -==v v ,215. 物体不能出现下述哪种情况?[ ] (A) 运动中, 瞬时速率和平均速率恒相等(B) 运动中, 加速度不变, 速度时刻变化(C) 曲线运动中, 加速度越来越大, 曲率半径总不变(D) 曲线运动中, 加速度不变, 速率也不变16. 某物体的运动规律为t k t2d d v v -=, 式中k 为常数.当t = 0时,初速度为0v .则速度v 与时间t 的函数关系是[ ] (A) 0221v v +=t k (B) 0221v v +-=t k(C) 02121v v +=t k (D) 02121v v +-=t k17. 如图1-1-33所示,站在电梯内的人, 看到用细绳连接的质量不同的两物体跨过电梯内的一个无摩擦的定滑轮而处于“平衡”状态, 由此他断定电梯作加速运动, 其加速度的[ ] (A) 大小为g , 方向向上(B) 大小为g , 方向向下(C) 大小为g /2, 方向向上(D) 大小为g /2, 方向向下二、填空题 1. 一辆汽车以10 m.s -1的速率沿水平路面直前进, 司机发现前方有一孩子开始刹车,以加速度-0.2m.s -2作匀减速运动,则刹后1 min 内车的位移大小是 .2. 一质点沿半径为R 的圆周运动一周回到原地, 质点在此运动过程中,其位移大小为 ,路程是 .3. 如图1-2-3所示,甲、乙两卡车在一狭窄的公路上同向行驶,甲车以10 m.s -1速度匀速行驶, 乙车在后. 当乙车发现甲车时, 车速度为15 m.s -1,相距1000m .为避免相撞,乙车立即作匀减速行驶,其加速度大小至少应为 .4. 一质点沿x 轴作直线运动,其t v -曲线如图1-2-5所示.若t =0时质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 .5. 一质点沿x 轴作直线运动, 在t = 0时, 质点位于x 0 =2 m处. 该质点的速度随时间变化的规律为2312t -=v ( t 以s 计). 当质点瞬时静止时,其所在位置为 ,加速度为 .6. 已知一个在xOy 平面内运动的物体的速度为j t i 82-=v .已知t = 0时它通过(3, -7)位置.则该物体任意时刻的位置矢量为 .7 距河岸(看成直线)300 m 处有一艘静止的船,船上的探照灯以转速为1m inr 1-⋅=n 转动,当光束与岸边成30°角时,光束沿岸边移动的速率=v .8 一物体作如图1-2-15所示的斜抛运动,测得在轨道A 点处速度v的大小为v ,其方向与水平方向夹角成30°.则物体在A 点的切向加速度的大小τa = ,轨道的曲率半径=ρ .图1-2-3图1-1-33 1s m -⋅/v 1221345.25.4()t 1-第2章 动力学基本定律一、选择题1. 下列说法中正确的是[ ] (A) 运动的物体有惯性, 静止的物体没有惯性(B) 物体不受外力作用时, 必定静止(C) 物体作圆周运动时, 合外力不可能是恒量(D) 牛顿运动定律只适用于低速、微观物体2. 下列诸说法中, 正确的是[ ] (A) 物体的运动速度等于零时, 合外力一定等于零(B) 物体的速度愈大, 则所受合外力也愈大(C) 物体所受合外力的方向必定与物体运动速度方向一致(D) 以上三种说法都不对3. A 、B 两质点m A >m B , 受到相等的冲量作用, 则[ ] (A) A 比B 的动量增量少 (B) A 与B 的动能增量相等(C) A 比B 的动量增量大 (D) A 与B 的动量增量相等4. 如图2-1-4所示,物体在力F 作用下作直线运动, 如果力F 的量值逐渐减小, 则该物体的[ ] (A) 速度逐渐减小, 加速度逐渐减小(B) 速度逐渐减小, 加速度逐渐增大(C) 速度继续增大, 加速度逐渐减小(D) 速度继续增大, 加速度逐渐增大5. 对一运动质点施加以恒力, 质点的运动会发生什么变化?[ ] (A) 质点沿着力的方向运动 (B) 质点仍表现出惯性(C) 质点的速率变得越来越大 (D) 质点的速度将不会发生变化6. 一物体作匀速率曲线运动, 则[ ] (A) 其所受合外力一定总为零 (B) 其加速度一定总为零(C) 其法向加速度一定总为零 (D) 其切向加速度一定总为零 7. 牛顿第二定律的动量表示式为t m F d )d(v =, 即有tm t m F d d d d v v +=.物体作怎样的运动才能使上式中右边的两项都不等于零, 而且方向不在一直线上?[ ] (A) 定质量的加速直线运动 (B) 定质量的加速曲线运动(C) 变质量的直线运动 (D) 变质量的曲线运动8. 如图2-1-8所,质量相同的两物块A 、B 用轻质弹簧连接后, 再用细绳悬吊着, 当系统平衡后, 突然将细绳剪断, 则剪断后瞬间[ ] (A) A 、B 的加速度大小均为g(B) A 、B 的加速度均为零(C) A 的加速度为零, B 的加速度大小为2gF 图2-1-4 图2-1-8 1m 2m(D) A 的加速度大小为2g , B 的加速度为零9. 假设质量为70 kg 的飞机驾驶员由于动力俯冲得到7g 的净加速度, 问作用于驾驶员上的力最接近于下列的哪一个值?[ ] (A) 10 N (B) 70 N (C) 490 N (D) 4800 N10. 如图2-1-10所示,升降机内地板上放有物体A, 其上再放另一物体B, 二者的质量分别为A m 、B m .当升降机以加速度a 向下加速运动时(a <g ), 物体A 对升降机地板的压力为 [ ] (A) g m A (B) g m m )(B A + (C) ))((B A a g m m ++ (D) ))((B A a g m m -+ 11. 一质量为60 kg 的人静止在一个质量为600 kg 且正以-1s m 2⋅的速率向河岸驶近的木船上, 河水是静止的, 其阻力不计.现人相对于船以一水平速度v 沿船的前进方向向河岸跳去, 该人起跳后, 船速减为原来的一半, 这说明v 值为[ ] (A) -1s m 2⋅ (B) -1s m 12⋅ (C) -1s m 20⋅ (D) -1s m 11⋅ 12. 牛顿定律和动量守恒定律的适用范围为[ ] (A) 仅适用于宏观物体(B) 仅适用于宏观, 低速物体(C) 牛顿定律适用于宏观低速物体, 动量守恒定律普遍适用(D) 牛顿定律适用于宏观低速物体, 动量守恒定律适用于宏观物体13. 一炮弹由于特殊原因在飞行中突然炸成两块, 其中一块作自由下落, 则另一块着地点[ ] (A) 比原来更远 (B) 比原来更近(C) 仍和原来一样 (D) 条件不足不能判定14. 如图2-1-14所示,停在空中的气球的质量和人的质量相等.如果人沿着竖直悬挂在气球上的绳梯向上爬高m 1,不计绳梯的质量, 则气球将[ ] (A) 向上移动m 1 (B) 向下移动m 1(C) 向上移动m 5.0 (D) 向下移动m 5.015. 用锤压钉不易将钉压入木块, 用锤击钉则很容易将钉击入木块,这是因为[ ] (A) 前者遇到的阻力大, 后者遇到的阻力小(B) 前者动量守恒, 后者动量不守恒(C) 后者锤的动量变化大, 给钉的作用力就大(D) 后者锤的动量变化率大, 给钉的作用力就大16. 有两个同样的木块, 从同一高度自由下落, 在下落途中, 一木块被水平飞来的子弹击中, 并陷入其中.子弹的质量不能忽略, 若不计空气阻力, 则 [ ] (A) 两木块同时到达地面 (B) 被击木块先到达地面 (C) 被击木块后到达地面 (D) 不能确定哪块木块先到达地面图2-1-10 a A B图2-1-16图2-1-1417 将一物体提高10 m, 下列哪种情形下提升力所做的功最小?[ ] (A) 以-1s m 5⋅的速度匀速上升(B) 以-1s m 10⋅的速度匀速提升(C) 将物体由静止开始匀加速提升10 m, 速度达到-1s m 5⋅(D) 使物体从-1s m 10⋅的初速度匀减速上升10 m, 速度减为-1s m 5⋅18. 质点系的内力可以改变[ ] (A) 系统的总质量 (B) 系统的总动量(C) 系统的总动能 (D) 系统的总角动量19. 作用在质点组的外力的功与质点组内力做功之和量度了[ ] (A) 质点组动能的变化(B) 质点组内能的变化(C) 质点组内部机械能与其它形式能量的转化(D) 质点组动能与势能的转化20. 在一般的抛体运动中, 下列说法中正确的是[ ] (A) 最高点动能恒为零(B) 在升高的过程中, 物体动能的减少等于物体的势能增加和克服重力 所作功之和(C) 抛射物体机械能守恒, 因而同一高度具有相同的速度矢量(D) 在抛体和地球组成的系统中, 物体克服重力做的功等于势能的增加21. 有A 、B 两个相同的物体, 处于同一位置, 其中物体A 水平抛出, 物体B 沿斜面无摩擦地自由滑下, 则[ ] (A) A 先到达地面, 两物体到达地面时的速率不相等(B) A 先到达地面, 两物体到达地面时的速率相等(C) B 先到达地面, 两物体到达地面时的速率不相等(D) B 先到达地面, 两物体到达地面时的速率相等22. 将一小球系在一端固定的细线(质量不计)上, 使小球在竖直平面内作圆周运动,作用在小球上的力有重力和细线的拉力.将细线、小球和地球一起看作一个系统, 不考虑空气阻力及一切摩擦, 则[ ] (A) 重力和拉力都不做功, 系统的机械能守恒(B) 因为重力和拉力都是系统的内力, 故系统的机械能守恒(C) 因为系统不受外力作用,这样的系统机械能守恒(D) 以上说法都不对23. 关于保守力, 下面说法正确的是[ ] (A) 只有保守力作用的系统动能和势能之和保持不变(B) 只有合外力为零的保守内力作用系统机械能守恒(C) 保守力总是内力(D) 物体沿任一闭合路径运动一周, 作用于它的某种力所做之功为零, 则该力称为保守力24. 在下列叙述中,错误的是[ ] (A) 保守力做正功时相应的势能将减少(B) 势能是属于物体体系的(C) 势能是个相对量,与参考零点的选择有关(D) 势能的大小与初、末态有关, 与路径无关25. 如图2-1-25所示,劲度系数-1m N 1000⋅=k 的轻质弹簧一端固定在天花板上, 另一端悬挂一质量为m = 2 kg 的物体, 并用手托着物体使弹簧无伸长.现突然撒手, 取-2s m 10⋅=g , 则弹簧的最大伸长量为[ ] (A) 0.01 m (B) 0.02 m (C) 0.04 m (D) 0.08 m26. 在弹性范围内, 如果将弹簧的伸长量增加到原来的3倍, 则弹性势能将增加到原来的[ ] (A) 6倍 (B) 8倍 (C) 9倍 (D) 12倍27. 从地面发射人造地球卫星的速度称为发射速度v 0, 卫星绕地球运转的速度称为环绕速度v , 已知rgR 2=v (R 为地球半径, r 为卫星离地心距离), 忽略卫星在运动过程中的阻力, 对于发射速度v 0[ ] (A) v 越小相应的v 0越大 (B) 01v v ∝(C) v 越大相应的v 0越大 (D) 0v v ∝ 28. 设一子弹穿过厚度为l 的木块其初速度大小至少为v .如果木块的材料不变, 而厚度增为2l , 则要穿过这木块, 子弹的初速度大小至少要增为[ ] (A) 2v (B) v 2 (C) v 21 (D) 2v 29. 如图2-1-29所示,用铁锤将一铁钉击入木板, 设铁钉受到的阻力与其进入木块的深度成正比, 铁锤两次击钉的速度相同, 第一次将钉击入木板内1cm, 则第二次能将钉继续击入的深度为[ ] (A) 0.4cm (B) 0.5cm (C) 1cm (D) 1.4cm30. 如图2-1-30所示,一被压缩的弹簧, 两端分别连接A 、B两个不同的物体, 放置在光滑水平桌面上, 设m A = 2m B , 由静止释放. 则物体A 的动能与物体B 的动能之比为 [ ] (A) 1 : 1 (B) 2 : 1 (C) 1 : 2 (D) 1 : 431. 关于功的概念有以下几种说法:(1) 保守力做正功时,系统内相应的势能增加.(2) 质点运动经一闭合路径,保守力对质点做的功为零.(3) 作用力和反作用力大小相等、方向相反,所以两者所做的功的代数和必然为零. 在上述说法中[ ] (A) (1)、(2)是正确的 (B) (2)、(3)是正确的(C) 只有(2)是正确的 (D) 只有(3)是正确的32 关于机械能守恒条件和动量守恒条件有以下几种说法,其中正确的是[ ] (A) 不受力作用的系统,其动量和机械能必然守恒(B) 所受合外力为零、内力都是保守力的系统,其机械能必然守恒(C) 不受外力,而内力都是保守力的系统,其动量和机械能必然同时守恒(D) 外力对一个系统做的功为零,则该系统的机械能和动量必然同时守恒图2-1-3033. 一力学系统由两个质点组成,它们之间只有引力作用,若两质点所受外力的矢量和为零,则此系统[ ] (A) 动量、机械能以及对一轴的角动量守恒(B) 动量、机械能守恒,但角动量是否守恒不能断定(C) 动量守恒,但机械能和角动量守恒与否不能断定(D) 动量和角动量守恒,但机械能是否守恒不能断定34. 一质量为0m 的弹簧振子,水平放置静止在平衡位置,如图2-1-34所示.一质量为m 的子弹以水平速度v射入振子中,并随之一起运动.如果水平面光滑,此后弹簧的最大势能为 [ ] (A) 221v m (B) )(2022m m m +v (C) 220202)(v m m m m + (D) 2022v m m 35. 物体在恒力F 作用下作直线运动, 在∆t 1时间内速度由0增加到v , 在∆t 2时间内速度由v 增加到v 2, 设F 在∆t 1时间内做的功是A 1, 冲量是1I , 在∆t 2时间内做的功是A 2, 冲量是2I 。
大学物理题库-第1章-质点运动学
大学物理题库 第一章 质点运动学一、选择题:1、在平面上运动的质点,如果其运动方程为j bt i at r 22+= (其中b a ,为常数),则该质点作[ ](A ) 匀速直线运动 (B ) 变速直线运动(C ) 抛物线运动 (D ) 一般曲线运动2、质点以速度124-⋅+=s m t v 作直线运动,沿质点运动方向作ox 轴,并已知s t 3=时,质点位于m x 9=处,则该质点的运动方程为[ ](A) t x 2= (B) 2214t t x += (C) 123143-+=t t x (D) 123143++=t t x 3、某雷达刚开机时发现一敌机的位置在j i 96+处,经过3秒钟后,该敌机的位置在j i 612+处,若i 、j分别表示直角坐标系中y x ,的单位矢量,则敌机的平均速度为[ ] (A )j i 36+ (B )j i 36-- (C )j i -2 (D )j i +-2 4、质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2πR /T , 2πR/T . (B) 0 , 2πR /T(C) 0 , 0. (D) 2πR /T , 0. [ ] 5、一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一时间内的平均速度为v ,平均速率为v ,它们之间的关系必定有:(A )v v v,v == (B )v v v,v =≠(C )v v v,v ≠≠ (D )v v v,v ≠= [ ]6、一运动质点的位置矢量为)y ,x (r,其速度大小为[ ] (A)dt dr (B )dt r d (C )dt r d (D )dt r d (E )22)()(dtdy dt dx + 7、某物体的运动规律为t kv dtdv 2-=,式中的k 为大于零的常数,当0=t 时,初速度为0v ,则速度v 与时间t 的函数关系是:[ ](A )0221v kt v += (B ) 0221v kt v +-= (C ) 021211v kt v += (D ) 021211v kt v +-= 8、一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A) 等于零. (B) 等于-2 m/s .(C) 等于2 m/s . (D) 不能确定. [ ]9、质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a 表示切向加速度,下列表达式中,(1) a t = d /d v , (2) v =t r d /d ,(3) v =t S d /d , (4) t a t =d /d v .(A) 只有(1)、(4)是对的.(B) 只有(2)、(4)是对的.(C) 只有(2)是对的.(D) 只有(3)是对的. [ ]10、一质点在运动过程中,0=dt rd ,而=dtdv 常数,这种运动属于[ ] (A )初速为零的匀变速直线运动;(B )速度为零而加速度不为零的运动;(C )加速度不变的圆周运动;(D )匀变速率圆周运动。
《大学物理》各章练习题及答案解析
《大学物理》各章练习题及答案解析第1章 质点运动学一、选择题:1.以下五种运动中,加速度a保持不变的运动是 ( D ) (A) 单摆的运动。
(B) 匀速率圆周运动。
(C) 行星的椭圆轨道运动。
(D) 抛体运动。
(E) 圆锥摆运动。
2.下面表述正确的是( B )(A)质点作圆周运动,加速度一定与速度垂直; (B) 物体作直线运动,法向加速度必为零; (C)轨道最弯处法向加速度最大; (D)某时刻的速率为零,切向加速度必为零。
3.某质点做匀速率圆周运动,则下列说法正确的是( C )(A)质点的速度不变; (B)质点的加速度不变 (C)质点的角速度不变; (D)质点的法向加速度不变4.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为( D )()()(()22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx D C dtrd B dt drA5. 一质点在平面上运动,运动方程为:j t i t r222+=,则该质点作( B )(A)匀速直线运动 (B)匀加速直线运动(C)抛物线运动 (D)一般曲线运动6.一质点做曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,s 表示路程,a t 表示切向加速度,对下列表达式,正确的是( B )(A)dt dr v = (B) dt ds v = (C) dtdv a = (D) dt vd a t=7. 某质点的运动方程为 3723+-=t t X (SI ),则该质点作 [ D ](A)匀加速直线运动,加速度沿 x 轴正方向; (B)匀加速直线运动,加速度沿 x 轴负方向; (C)变加速直线运动.加速度沿 x 轴正方向; (D)变加速直线运动,加速度沿 x 轴负方向8.一质点沿x 轴运动,其运动方程为()SI t t x 3235-=,当t=2s 时,该质点正在( A )(A)加速 (B)减速 (C)匀速 (D)静止1.D2. B3. C4.D5.B ,6B ,7A 8 A二 、填空题1. 一质点的运动方程为x =2t ,y =4t 2-6t ,写出质点的运动方程(位置矢量)j t t i t r)64(22-+=,t =1s 时的速度j i v22+=,加速度j a 8=,轨迹方程为x x y 32-=。
大学物理分章练习 第一章 质点运动学
大学物理分章练习 第一章 质点运动学 一、填空题 1. 两辆车A 和B ,在笔直的公路上同向行驶,它们从同一起始线上同时出发时开始计时,行驶的距离x (m)与行驶时间t (s)的函数关系式分别为24t t x A +=,3222t t x B +=。
它们刚离开出发点时,行驶在前面的一辆车是 A 车;出发后,t = 4133- 时刻,两辆车行驶距离相同;出发后,t = 2/3 时刻,B 车相对A 车速度为零。
2.一质点沿x 轴运动,坐标与时间的变化关系为x=2t+3,式中x,t 分别以m 和s 为单位,则在2s 末的速度为 2 m/s ,在2s 末的加速度为 0 m/s 2,1s 末到2s 末的位移为 2 m 。
3、一质点沿半径为0.1m 的圆周运动, 其角位置随时间的变化规律是θ=2+4t 2(SI 制)。
在t =2s 时,它的法向加速度a n =____25.6_ m/s 2 ______;切向加速度a τ=____0.8m/s 2_______。
4. 在x 轴上作变加速直线运动的质点,已知其初速度为v 0,初始位置为x 0加速度为a=2t 2 (其中C 为常量),则其速度与时间的关系v= v 0+2t 3/3 , 运动方程为x= x 0+v 0t+t 4/6 .5.一质点在xoy 平面内运动,已知x=2t ,y=19-2t 2(SI ),则该质点在1秒末的速率为20m/s,加速度的大小为 4 m/s 2。
6、设质点作平面曲线运动,运动方程为j t i t r ˆˆ22+=,则质点在任意t 时刻的速度矢量=)(t V j t i 22+;切向加速度a t =__212t t+__;法向加速度a n =____212t +__________。
7、一质点沿x 轴运动,坐标与时间的变化关系为22++=t t x ,式中t x ,分别以m 和s 为单位,则在2s 末的速度为 5 m/s ,在2s 末的加速度为 2 m/s 2,1s 末到2s 末的位移为 4 m 。
《大学物理》练习题库
大学物理练习题第一章 质点运动学一、选择题1. 一质点在某时刻位于位矢 (,)r x y 的端点处,其速度大小为( )A.dr dtB.d r dtC.d r dt 2. 一质点作曲线运动,任意时刻的位矢为r ,速度为v ,那么( )A v v ∆=∆B r r ∆=∆C t ∆时间间隔内的平均速度为r t ∆∆D t ∆时间间隔内的平均加速度为v t ∆∆3. 以下五种运动的形式中,a保持不变的运动是( )A 单摆的运动B 匀速率圆周运动C 行星的椭圆轨道运动D 抛物运动4. 下面选项中的物理定义中属于理想模型概念的是( )A 机械能B 质点C 位移D 转动惯量5. 质点以速度v =4+t 2m/s 作直线运动,沿质点运动直线作OX 轴,并已知t =3s 时,质点位于x =9m 处,则该质点的运动方程为( )A x =2tB x =4t +t 3/2C x =4t+t 3/3+12D x =4t +t 3/3-126. 质点做匀速率圆周运动时,其速度和加速度的变化情况为( )A 加速度不变,速度在变化B 速度不变,加速度在变化C 二者都不变D 二者都在变7. 某物体的运动规律为dv /dt =-kv 2t ,式中的k 为大于零的常数,当t =0时,初速度为v 0,则速度v 与时间t 的函数关系是( )A v =kt 2/2+v 0B v =-kt 2/2+v 0C 1/v = kt 2/2+1/v 0D 1/v = -kt 2/2+1/v 0二、填空题1.设质点的运动方程为r =R cos ωt i +R sin ωt j (式中R ,ω皆为常量),则质点的速度v= , v 的大小= ,加速度a = ,写出轨道方程 。
2.质点的运动方程为j t i t r 223+=,则质点的速度表示v = ,加速度a = ,t =1s 时,v 的大小= ,写出轨道方程 。
3.一质点沿X 轴作直线运动,它的运动方程为:x =3+6t +8t 2-12t 3 (SI),则(1)质点在t =0时刻的速度v 0= ,加速度a 0= 。
大学物理习题第一章
第一章 质点运动学一、 基本要求1.掌握位矢、位移、速度、加速度,角速度和角加速度等描述质点运动和运动变化的物理量。
2. 能借助于直角坐标计算质点在平面内运动时的速度、加速度。
3.能计算质点作圆周运动时的角速度和角加速度,切向加速度和法向加速度。
4.理解伽利略坐标,速度变换。
二、 基本内容1.位置矢量(位矢)位置矢量表示质点任意时刻在空间的位置,用从坐标原点向质点所在点所引的一条有向线段r 表示。
r 的端点表示任意时刻质点的空间位置。
r同时表示任意时刻质点离坐标原点的距离及质点位置相对坐标系的方位。
位矢是描述质点运动状态的物理量之一。
注意:(1)瞬时性:质点运动时,其位矢是随时间变化的,即()t r r=;(2)相对性:用r描述质点位置时,对同一质点在同一时刻的位置,在不同坐标系中r 可以是不相同的。
它表示了r的相对性,也反映了运动描述的相对性;(3)矢量性:r为矢量,它有大小,有方向,服从几何加法。
在直角坐标系Oxyz 中k z j y i x r++=222z y x r r ++==r z r y r x ===γβαcos ,cos ,cos质点运动时, ()t r r= (运动方程矢量式)()()()⎪⎩⎪⎨⎧===t z z t y y t x x (运动方程标量式)。
2.位移()(),j y i x t r t t r r ∆+∆=-∆+=∆ r∆的模()()22y x r ∆+∆=∆ 。
注意:(1)r∆与r ∆:前者表示质点位置变化,是矢量,同时反映位置变化的大小和方位;后者是标量,反映质点位置离开坐标原点的距离的变化。
(2)r∆与s ∆:s ∆表示t —t t ∆+时间内质点通过的路程,是标量,只有质点沿直线运动时两者大小相同或0→∆t 时,s r ∆=∆。
3. 速度dtrd v =是描述位置矢量随时间的变化。
在直角坐标系中k v j v i v k dtdz j dt dy i dt dx dt r d v z y x++=++==222222z y x v v v dt dz dt dy dt dx v v ++=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛==v的方向:在直线运动中,v>0表示沿坐标轴正向运动,v <0表示沿坐标轴负向运动。
(完整版)大学物理01质点运动学习题解答
第一章质点运动学一选择题1.以下说法中,正确的选项是:()A.一物体若拥有恒定的速率,则没有变化的速度;B.一物体拥有恒定的速度,但仍有变化的速率;C.一物体拥有恒定的加快度,则其速度不行能为零;D. 一物体拥有沿x 轴正方向的加快度而有沿x 轴负方向的速度。
解:答案是 D。
2.长度不变的杆 AB,其端点 A 以 v0匀速沿 y 轴向下滑动, B 点沿 x 轴挪动,则 B 点的速率为:()A . v0 sinB .v0 cos C.v0 tan D.v0 / cos解:答案是 C。
简要提示:设 B 点的坐标为 x, A 点的坐标为 y,杆的长度为l,则x2y2l 2对上式两边关于时间求导:dx dy0,因dxv,dyv0,所以2 x 2 ydtdt dt dt2xv2yv0 = 0即v=v0 y/x =v0tan所以答案是 C。
3.如图示,路灯距地面高为 H,行人身高为 h,若人以匀速 v 背向路灯行走,灯y人头A H vv0hθvx影sB选择题 3图选择题 2图则人头影子挪动的速度u 为()H h Hv h HA.vB.H H h H h 解:答案是 B 。
简要提示:设人头影子到灯杆的距离为 x ,则x s h , x Hs , x H H hdx H ds HvuH h dt Hdt h所以答案是 B 。
4. 某质点作直线运动的运动学方程为x = 3t-5t 3 + 6 (SI),则该质点作A. 匀加快直线运动,加快度沿 x 轴正方向.B. 匀加快直线运动,加快度沿 x 轴负方向.C. 变加快直线运动,加快度沿 x 轴正方向.D. 变加快直线运动,加快度沿x 轴负方向.()解: 答案是 D5. 一物体从某一确立高度以v 0 的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是: ()v t - v 0v t v 0v t2 22v v 0 v t A.B.C.gD.2 gg2 g解:答案是 C 。
大学物理第一章 质点运动学-习题及答案
第一章 质点运动学1-1 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at += (其中b a ,为常量) 则该质点作(A )匀速直线运动 (B )变速直线运动(C )抛物线运动 (D )一般曲线运动 [B]解:由j i rv bt at t 22d d +==知 v 随t 变化,质点作变速运动。
又由x aby bt y at x =⎪⎭⎪⎬⎫==22 知质点轨迹为一直线。
故该质点作变速直线运动。
1-2 质点作曲线运动,r 表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式中,① a t v =d ② v t r =d ③ v t s =d d ④ t a t =d d v (A )只有(1)、(4)是对的。
(B )只有(2)、(4)是对的。
(C )只有(2)是对的。
(D )只有(3)是对的。
[D]解:由定义:t vt a d d d d ≠=v ; t r t s t v d d d d d d ≠==r ; t t v a d d d d v ≠=τ只有③正确。
1-3 在相对地面静止的坐标系内,A 、B 二船都以21s m -⋅的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向。
今在A 船上设置与静止坐标系方向相同的坐标系(x ,y 方向单位矢用j i ,表示),那么在A 船上的坐标系中,B 船的速度(以1s m -⋅为单位)为(A )j i 22+ (B )j i 22+-(C )j i 22-- (D )j i 22- [B]解:由i v 2=对地A ,j v 2=对地B 可得 A B A B 地对对地对v v v +=⎰对地对地A B v v -=i j 22-=j i 22+-= (1s m -⋅)1-4 一质点沿x 方向运动,其加速度随时间变化关系为)SI (23t a +=如果初始时质点的速度0v 为51s m -⋅,则当t 为3s 时,质点的速度1s m 23-⋅=v解:⎰+=tta v v 00d13s m 23d )23(5-⋅=++=⎰tt1-5 一质点的运动方程为SI)(62t t x -=,则在t 由0至4s 的时间间隔内,质点的位移大小为 8m ,在t 由0到4s 的时间间隔内质点走过的路程为 10m 。
大学物理习题第一章(运动学)
)。
7、质点在x 轴上运动,运动方程为x=4t 2-2t 3,则质点返回 原点时的速度和加速度分别为( )。 (A) 8m/s,16m/s2 √ (B) -8m/s,-16m/s2 (C) -8m/s,16m/s2 (D) 8m/s,-16m/s2
8、如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的 定滑轮拉湖上的船向岸边运动,设该人以匀速率v收绳,绳长不 变,湖水静止,则小船的运动是( )。 (A)匀加速运动 (B)匀减速运动 √ (C)变加速运动 (D)变减速运动
a ax i
v
dv i 6ti dt
dx 2 3t 2 dt
t 2
x
5
dx 2 3t 2 dt
x 5 2t t 3 4 8
x t 3 2t 17
19、一质点在x 轴上做直线运动,其瞬时加速度为a A 2 sint
9、两辆车甲和乙,在笔直的公路上同向行驶,它们从同一起始线 上同时出发,由出发点开始计时,行驶距离x(m)与行驶时间t(s)的 函数关系式:甲为x1=4t+t2,乙为x2=2t2+2t3 (1)它们刚离开出发点时,行驶在前面的一辆车是_____; (2)出发后,两辆车行驶距离相同的时刻是_____; (3)出发后,甲车和乙车速度相同的时刻是_____。
(3) y(1.5) y(1) y(2) y(1.5) 2.25m
16、已知质点的运动方程为 r a sin ti b cos tj ,其中 a、b、 均为正常数。 求:(1)质点的速度和加速度? (2)运动轨迹方程? 解:(1) v
a
dr a cos ti b sin A cos t A dt
大学物理A(1)章节练习题
大学物理A (1)章节练习题第一章 质点运动学1.关于质点的概念下列理解正确的是( )A.研究地球公转时,因为地球直径太大,不能把地球看成质点来研究B.质点是一个理想化的模型,并且是真实存在的C.如果一个物体可以被看成质点,那么我们在研究问题时就可以忽略这个物体的形状和大小D.只有质量小的物体才能被看成质点,质量大的物体则不能被看成质点2.关于质点的概念下列理解错误的是( )A.只有很小的物体才能看成质点B.质点是为了方便研究物体运动而提出的一个理想化的模型,实际并不存在C.质点忽略了物体的形状和大小,看成一个有质量的点D.质点不同于数学中的几何点3. 下列关于速度和速率的说法,正确的是()A.瞬时速度是矢量,而平均速度是平均值,是个标量B.瞬时速率不是平均速率的极限值C.瞬时速率和瞬时速度的大小相等D.瞬时速度可以描述物体运动的快慢,而平均速度不能描述物体运动的快慢4.一运动质点在某瞬时位于位矢r (x ,y )的端点处,对其速度的大小的表示有四种意见,即(1)t d d r ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 下述判断正确的是( )A. 只有(1)(2)正确B. 只有(2)正确C. 只有(2)(3)正确D. 只有(3)(4)正确5.质点作圆周运动时,下列说表述中正确的是( )A.速度方向一定指向切向,加速度方向一定指向圆心B.切向加速度仅由速率的变化引起C.由于法向分速度为零,所以法向加速度也一定为零D.速度方向一定指向切向,加速度方向也一般指向切向6.(判断)质点是一个理想化的模型,所以质点没有大小,形状和质量.7.(判断)物体在做单向直线运动时,位移的大小等于路程.8.(判断)当质点的位矢和速度被同时确定时,其运动状态也就被确定.9.(判断)匀速圆周运动的物体,速度方向一直沿着切线方向.10.(判断)匀加速运动时,速度方向总是与加速度方向在一条直线上.11.(判断)变速圆周运动中,其加速度的方向始终指向圆心.12.(判断)相对地面做匀速直线运动的火车车厢可以看做是惯性参考系.13.(判断)路程和位移是两个不同的概念,在时间趋于零时,位移的大小等于路程.14.一质点在半径为2m 的圆周上运动,其角位置为32t =θ,式中θ的单位为rad ,t 单位是s .(1)质点在任意时刻的角速度=ω .(2)t=1s 时质点的法向加速度 .切向加速度为 。
大学物理学第一章习题答案
习题11、1选择题(1) 一运动质点在某瞬时位于矢径的端点处,其速度大小为(A)(B)(C)(D)[答案:D](2) 一质点作直线运动,某时刻的瞬时速度,瞬时加速度,则一秒钟后质点的速度(A)等于零(B)等于-2m/s(C)等于2m/s (D)不能确定。
[答案:D](3) 一质点沿半径为R的圆周作匀速率运动,每t秒转一圈,在2t时间间隔中,其平均速度大小与平均速率大小分别为(A)(B)(C) (D)[答案:B]1、2填空题(1) 一质点,以的匀速率作半径为5m的圆周运动,则该质点在5s内,位移的大小就是;经过的路程就是。
[答案: 10m;5πm](2) 一质点沿x方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v0为5m·s-1,则当t为3s时,质点的速度v=。
[答案: 23m·s-1 ](3) 轮船在水上以相对于水的速度航行,水流速度为,一人相对于甲板以速度行走。
如人相对于岸静止,则、与的关系就是。
[答案:]1、3一个物体能否被瞧作质点,您认为主要由以下三个因素中哪个因素决定:(1) 物体的大小与形状;(2) 物体的内部结构;(3) 所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
1、4下面几个质点运动学方程,哪个就是匀变速直线运动?(1)x=4t-3;(2)x=-4t3+3t2+6;(3)x=-2t2+8t+4;(4)x=2/t2-4/t。
给出这个匀变速直线运动在t=3s时的速度与加速度,并说明该时刻运动就是加速的还就是减速的。
(x单位为m,t单位为s)解:匀变速直线运动即加速度为不等于零的常数时的运动。
加速度又就是位移对时间的两阶导数。
于就是可得(3)为匀变速直线运动。
其速度与加速度表达式分别为t=3s时的速度与加速度分别为v=20m/s,a=4m/s2。
因加速度为正所以就是加速的。
大学物理习题册及解答_第二版_第一章_质点的运动
( A ) 3i 3 j (C) - 3i 3 j
(B) - 3i 3 j ( D) 3i 3 j
二、填空题
1.一质点沿x轴运动,其加速度a与位置坐标的关系为 a 3 6 x 2 (SI), 如果质点在原点处的速度为零,试求其在任意位置的速度 为 .
d d dx d a dt dx dt dx
8. 半径为R的圆盘在固定支撑面上向右滚动,圆盘质心C的运动速 度为 ,圆盘绕质心转动的角速度为 ,如图所示.则圆盘边 缘上A点的线速度为 ;B点的线速度为 ;O点的 线速度为 . A
分析:刚体上某质点的运动可看为随质心的 平动和绕质心转动的合成
B
C O
A C R
B R
1
消去t得轨道方程为 y M
o
o dr (2) A sinωt i A cosωt j d t d a A cosωt i A sinωt j r dt
x y 2 1 2 A1 A2
2
(椭圆)
1 2
x
2
2
2
1
2
上式表明:加速度恒指向椭圆中心。
质点在通过图中M点时,其速率是增大还是减小?
x A cos t y A sin t
1 2
at
M
y
Q
a
o
V an
P
o
x
(3)当t=0时,x=A1,y=0,质点位于图中P点
质点位于
t 2
时, x A1 cos
y A sin
2
解:(1)从运动方程中消去时间就得到轨道方程
大学物理学第1章
第1章 质点运动学习 题一 选择题1-1 对质点的运动,有以下几种表述,正确的是[ ] (A)在直线运动中,质点的加速度和速度的方向相同(B)在某一过程中平均加速度不为零,则平均速度也不可能为零 (C)若某质点加速度的大小和方向不变,其速度的大小和方向可不断变化 (D)在直线运动中,加速度不断减小,则速度也不断减小解析:速度是描述质点运动的方向和快慢的物理量,加速度是描述质点运动速度变化的物理量,两者没有确定的对应关系,故答案选C 。
1-2 某质点的运动方程为)(12323m t t x +-=,则该质点作[ ] (A)匀加速直线运动,加速度沿ox 轴正向 (B)匀加速直线运动,加速度沿ox 轴负向 (C)变加速直线运动,加速度沿ox 轴正向 (D)变加速直线运动,加速度沿ox 轴负向 解析:229dx v t dt ==-,18dva tdt==-,故答案选D 。
1-3 一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平均速率为v ,平均速度为v ,他们之间的关系必定有[ ](A)v =v ,v =v (B)v ≠v ,v =v (C)v ≠v ,v ≠v (D)v =v ,v ≠v解析:瞬时速度的大小即瞬时速率,故v =v ;平均速率sv t∆=∆,而平均速度t∆∆rv =,故v ≠v 。
答案选D 。
1-4 质点作圆周运动时,下列表述中正确的是[ ](A)速度方向一定指向切向,所以法向加速度也一定为零 (B)法向分速度为零,所以法向加速度也一定为零 (C)必有加速度,但法向加速度可以为零 (D)法向加速度一定不为零解析:质点作圆周运动时,2n t v dva a dtρ=+=+n t n t a e e e e ,所以法向加速度一定不为零,答案选D 。
1-5 某物体的运动规律为2dvkv t dt=-,式中,k 为大于零的常量。
当0t =时,初速为0v ,则速率v 与时间t 的函数关系为[ ](A)2012v kt v =+ (B)20112kt v v =+(C)2012v kt v =-+ (D)20112kt v v =-+解析:由于2dvkv t dt=-,所以020()vtv dv kv t dt =-⎰⎰,得到20112kt v v =+,故答案选B 。
《大学物理A1》练习题
《大学物理A1》练习题 第一章 质点运动学姓名:__________ 学号:_________ 专业及班级:_________1. 某质点的运动方程为6533+-=t t x (SI),则该质点作( )(A)匀加速直线运动,加速度为正值; (B)匀加速直线运动,加速度为负值; (C)变加速直线运动,加速度为正值; (D)变加速直线运动,加速度为负值。
2.一质点沿直线运动,其运动方程为)(62SI t t x -=,则在t 由0至4s 的时间间隔内, 质点的位移大小为:( )A m 6;B m 8;C m 10;D m 12。
3.下列说法正确的是( )A. 在圆周运动中,加速度的方向一定指向圆心B. 匀速率圆周运动的速度和加速度都恒定不变C. 物体作曲线运动时,速度方向一定在运动轨道的切向方向,法向分速度恒等于零,因此其法向加速度也一定等于零D. 物体作曲线运动时,必定有加速度,加速度的法向分量一定不等于零4.某人以4km/h 的速率向东前进时,感觉风从正北吹来,如将速率增加一倍,则感觉风从东北方向吹来。
实际风速与风向为( )A. 4km/h ,从北方吹来B. 4km/h ,从西北方吹来C. 4√2km/h ,从东北方吹来D. 4√2km/h ,从西北方吹来5.沿半径为R 的圆周运动,运动学方程为 212t θ=+ (SI) ,则t时刻质点的法向加速度大小为n a = 。
6.在XY 平面内有一运动的质点,其运动方程为)(5sin 55cos 5SI j t i t r+=,则t 时刻其速度=v_____________________________。
7.灯距地面高度为h 1,一个人身高为h 2,在灯下以匀速率v 沿水平直线行走,如图所示.他的头顶在地上的影子M 点沿地面移动的速度为v M = 。
8.质点P 在水平面内沿一半径为1m 的圆轨道转动,转动的角速度ω与时间t 的关系为2kt =ω,已知t =2s 时,质点P 的速率为16m/s ,试求t=1s 时,质点P 的速率与加速度的大小。
大学物理(上)练习题及答案详解
大学物理学(上)练习题第一编 力 学 第一章 质点的运动1.一质点在平面上作一般曲线运动,其瞬时速度为,v瞬时速率为v ,平均速率为,v 平均速度为v,它们之间如下的关系中必定正确的是(A) v v ≠,v v ≠; (B) v v =,v v ≠;(C) v v =,v v =; (C) v v ≠,v v = [ ] 2.一质点的运动方程为26x t t =-(SI),则在t 由0到4s 的时间间隔内,质点位移的大小为 ,质点走过的路程为 。
3.一质点沿x 轴作直线运动,在t 时刻的坐标为234.52x t t =-(SI )。
试求:质点在 (1)第2秒内的平均速度; (2)第2秒末的瞬时速度; (3)第2秒内运动的路程。
4.灯距地面的高度为1h ,若身高为2h 的人在灯下以匀速率v 沿水平直线行走,如图所示,则他的头顶在地上的影子M 点沿地 面移动的速率M v = 。
5.质点作曲线运动,r表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式 (1)dv a dt =, (2)dr v dt =, (3)ds v dt =, (4)||t dv a dt=. (A )只有(1)、(4)是对的; (B )只有(2)、(4)是对的;(C )只有(2)是对的; (D )只有(3)是对的. [ ]6.对于沿曲线运动的物体,以下几种说法中哪一种是正确的。
(A )切向加速度必不为零; (B )法向加速度必不为零(拐点处除外);(C )由于速度沿切线方向;法向分速度必为零,因此法向加速度必为零; (D )若物体作匀速率运动,其总加速度必为零;(E )若物体的加速度a为恒矢量,它一定作匀变速率运动. [ ]7.在半径为R 的圆周上运动的质点,其速率与时间的关系为2v ct =(c 为常数),则从0t =到t 时刻质点走过的路程()s t = ;t 时刻质点的切向加速度t a = ;t 时刻质点的法向加速度n a =。
大学物理:第1章习题参考答案
习 题 解 答第一章 质点运动学1-1 (1) 质点t 时刻位矢为:j t t i t r ⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移j y y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i ji +=⎥⎦⎤⎢⎣⎡-+--=(3) 前4秒内平均速度)s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i t r V∴ )s m (73)34(314-⋅+=++=j i j i V(5) 前4秒平均加速度)s m (43704204-⋅=-=--=∆∆=j j V V t V a (6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1-2 23d d 23++==t t txv c t t t c t v x x +++=+==⎰⎰241d d 34 当t =2时x =4代入求证 c =-12 即1224134-++=t t t x tt tv a t t v 63d d 23223+==++= 将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m x1-3 (1) 由运动方程⎩⎨⎧+==ty t x 2342消去t 得轨迹方程0)3(2=--y x(2) 1秒时间坐标和位矢方向为 m y m x 5411==[4,5]m: ︒===3.51,25.1ααxytg(3) 第1秒内的位移和平均速度分别为)m (24)35()04(1j i j i r+=-+-=∆)s m (2411-⋅+=∆∆=j i tr V(4) 质点的速度与加速度分别为i t Va j i tr V8d d ,28d d ==+==故t =1s 时的速度和加速度分别为 2111s m 8,s m 28--⋅=⋅+==i a j i V1-4 该星云飞行时间为a 1009.2s 1059.61093.31074.21046.910177915⨯=⨯=⨯⨯⨯⨯ 即该星云是101009.2⨯年前和我们银河系分离的. 1-5 实验车的加速度为g)(25m/s 1047.280.13600101600223≈⨯=⨯⨯==t v a 基本上未超过25g.1.80s 内实验车跑的距离为)(m 40080.13600210160023=⨯⨯⨯==t v s1-6 (1)设第一块石头扔出后t 秒未被第二块击中,则2021gt t v h -= 代入已知数得28.9211511t t ⨯-=解此方程,可得二解为s 22.1s,84.111='=t t第一块石头上升到顶点所用的时间为s 53.18.9/15/10===g v t m由于m t t >1,这对应于第一块石头回落时与第二块相碰;又由于m t t <'1这对应于第一块石头上升时被第二块赶上击中.以20v 和'20v 分别对应于在t 1和'1t 时刻两石块相碰时第二石块的初速度,则由于2111120)(21)(t t g t t v h ∆∆---= 所以184.1)184.1(8.92111)(2121121120--⨯⨯+=∆-∆-+=t t t t g h v m/s 2.17=同理.122.1)122.1(8.92111)(2121121120--⨯⨯+=-'-'+='t t t t g h v ∆∆ m/s)(1.51=(2) 由于'>=123.1t s t ∆,所以第二石块不可能在第一块上升时与第一块相碰.对应于t 1时刻相碰,第二块的初速度为3.184.1)3.184.1(8.92111)(2122122120--⨯⨯+=--+="t t t t g h v ∆∆ m/s)(0.23=1-7 以l 表示从船到定滑轮的绳长,则t l v d /d 0-=.由图可知22h l s -=于是得船的速度为习题1-7图02222d d d d v s h s t l hll t s v +-=-==负号表示船在水面上向岸靠近.船的加速度为3202022d d d d d d s v h tl v h l ll t v a -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--== 负号表示a 的方向指向岸边,因而船向岸边加速运动.1-8 所求位数为522422221048.9601.0)106(44⨯=⨯⨯⨯==ππωg r n g r1-9 物体A 下降的加速度(如图所示)为222m/s 2.024.022=⨯==t h a 此加速度也等于轮缘上一点在s 3='t 时的切向加速度,即)m/s (2.02='t a在s 3='t 时的法向加速度为)m/s (36.00.1)32.0()(2222=⨯='='=R t a R v a t n1-10 2m/s 2.1=a ,s 5.00=t ,m 5.10=h .如图所示,相对南面,小球开始下落时,它和电梯的速度为m /s)(6.05.02.100=⨯==at v以t 表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为2021gt t v h += 电梯下降的距离为习题1-9图 习题1-10图2021at t v h +=' 又20)(21t a g h h h -='-= 由此得s 59.02.18.95.1220=-⨯=-=a g h t 而小球相对地面下落的距离为2021gt t v h += 259.08.92159.06.0⨯⨯+⨯= m 06.2= 1-11 人地风人风地v v v+=画出速度矢量合成图(a)又人地风人风地02v v v +'=,速度矢量合成如图(b )两图中风地v应是同一矢量.可知(a )图必是底角为︒45的等腰直角三角形,所以,风向应为西北风,风速为人地人地风地00245cos v v v =︒=)s m (23.41-⋅=1-12 (1) v LvL t 22==(2) 22212u v vLu v L u v L t t t -=++-=+= 1212-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=v u v L(3) v Lv L t t t '+'=+=21,如图所示风速u 由东向西,由速度合成可得飞机对地速度v u v+=',则22u v V -='.习题1-12图习题1-11图2221222⎪⎭⎫⎝⎛-=--='=v u v L uv L v L t 证毕1-13 (1)设船相对岸的速度为V '(如图所示),由速度合成得V u V +='V 的大小由图1.7示可得αβcos cos u V V +'=即332323cos cos -=⨯-=-='αβu V V 而1212sin sin =⨯=='αβu V 船达到B 点所需时间)s (1000sin =='='=D V DV OB t βAB 两点之距βββsin cos D Dctg S == 将式(1)、(2)代入可得m)(1268)33(=-=D S(2) 由αβsin 101sin 3u V D t ⨯='=船到对岸所需最短时间由极值条件决定0cos sin 11d d 2=⎪⎭⎫⎝⎛-=αααu t 即 2/,0cos παα==故船头应与岸垂直,航时最短.将α值代入(3)式得最短航时为s)(500105.021012/sin 101333min=⨯=⨯=⨯=s u t π (3) 设l OB =,则ααββsin cos 2sin sin 22u uV V u D V D V D l -+=''== 欲使l 最短,应满足极值条件.习题1-13图a a uV V u u D l '⎢⎢⎣⎡''-+-='cos sin cos 2d d 22αα 0cos 2sin sin 2222=⎥⎦⎤'-+''+αuV V u a a uV 简化后可得01cos cos 222=+'+-'αuVV u a 即 01cos 613cos 2=+'-'αa 解此方程得32cos ='α︒=='-2.4832cos 1α 故船头与岸成︒2.48,则航距最短.将α'值代入(4)式得最小航程为222222min 321232322321000cos 1cos 2⎪⎭⎫ ⎝⎛-⨯⨯⨯-+='-'-+-=ααu uv v u D lkm )(5.1m 105.13=⨯= AB 两点最短距离为km)(12.115.122min min =-=-=D l S。
大学物理第一章练习题
C. x 7t 2t 2 t4 21 12 4
D. x 7t 2t 2 t3 12
2
二、填空题
1.
一质点在
oxy
平面内运动,运动方程为
x
2t
,
y
19
2t
2
(SI),质点的轨迹方程为
y
19
1 2
x
2
;
t
时刻质点的位置矢量 r
2ti
(19 2t 2) j
;速度矢量 v
2i
4tj
的意义是质点运动的 速度 。
8. 质点运动学中符号 r 所表示的物理量的意义是质点的 位置矢量 。 r r2 r1 是描述质点空间
位置变化的物理量,称为 位移 。
9. 质点作圆周运动的运动方程为 2 t 4 t 2 ,式中 t 以 s 计, 以弧度计,在开始逆时针转动。问
t 0.5s 时,质点以 顺 (填顺或逆)时针方向转动。
8. 一物体做斜抛运动(略去空气阻力),在由抛出到落地的过程中( D )
(A)物体的加速度是不断变化的; (B)物体在最高点处的速率为零;
(C)物体在任一点处的切向加速度均不为零;(D)物体在最高点处的法向加速度最大。
9.某质点作圆周运动的方程为 5t t2(SI 制).在 t 0 时开始逆时针旋转,则 t 3s 时,
为 (B)ຫໍສະໝຸດ A.-3m , 5m; B. 3m,5m ; C. 3m, 3m ; D.5m,5m 。
3.下列说法正确的是( D )
A) dv dv
dt dt
B) dr dr
C) r r
D)
at
dv dt
4、一运动质点在某瞬时位于矢径 r 的端点处,其速度大小的表达式为( D )
大学物理 第一章 质点运动学习题
l030045060075 质点运动学一.选择题:1.质点的运动方程为)(5363SI t t x -+=,则该质点作 [ ] (A )匀加速直线运动,加速度沿X轴正方向. (B )匀加速直线运动,加速度沿X轴负方向.(C )变加速直线运动,加速度沿X轴正方向. (D )变加速直线运动,加速度沿X轴负方向.2.质点在某瞬时位于矢径),(y x r的端点处其速度大小为 [ ](A)dt dr (B)dt r d (C)dt r d || (D) 22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx3.如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长,湖水静止,则小船的运动是: [ ](A)匀加速运动 (B )匀减速运动 (C) 变加速运动 (D) 变减速运动 (E) 匀速直线运动4.一个质点在做匀速率圆周运动时 [ ] (A )切向加速度改变,法向加速度也改变.(B )切向加速度不变,法向加速度改变.(C )切向加速度不变,法向加速度也不变. (D )切向加速度改变,法向加速度不变.5.如右图所示,几个不同倾角的光滑斜面,有共同的底边,顶点也在同一竖直面上.若使一物体(视为质点)从斜面上端由静止滑到下端的时间最短,则斜面的倾角应选 [ ](A)030. (B)045. (C)060. (D)075.6.一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度 [ ] (A) 等于零.(B) 等于s m /2-.(C) 等于s m /2.(D) 不能确定.)-7.质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈.在t 2时间间隔中,其平均速度大小与平均速率大小分别为 [ ] (A)t R π2,t R π2. (B)0,t R π2.(C)0,0. (D)tRπ2,0. 8.一质点沿x 轴作直线运动,其t v -曲线如下图所示,如0=t 时,质点位于坐标原点,则s t 5.4=时 质点在x 轴上的位置为 (A) m 0. (B)m 5.(C) m 2. (D)m 2-. (E)m 5-.9.一小球沿斜面向上运动,其运动方程为)(452SI t t S -+=,则小球运动到最高点的时刻是 [ ] (A)s t 4=. (B)s t 2=. (C)s t 8=. (D)s t 5=.10.质点在平面上运动,已知质点位置矢量的表示式为)(22SI j bt i at r+=(其中a 、b 为常量), 则该质点作 [ ] (A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D) 一般曲线运动.11.质点作曲线运动,r表示位置矢量,S 表示路程,t a 表示切向加速度,下列表达式中,(1)a dt dv =, (2)v dt dr =, (3)v dt ds =, (4)t a dtv d =||.(A )只有(1)、(4)是对的. (B) 只有(2)、(4)是对的.(C )只有(2)是对的. (D ) 只有(3)是对的. [ ] 12.下列说法中,哪一个是正确的? [ ] (A)一质点在某时刻的瞬时速度是s m /2,说明它在此后s 1内一定要经过m 2的路程. (B)斜向上抛的物体,在最高点处的速度最小,加速度最大. (C)物体作曲线运动时,有可能在某时刻的法向加速度为零. (D)物体加速度越大,则速度越大.13.在相对地面静止的坐标系内,A、B二船都是以s m /2的速率匀速行驶,A船沿x 轴正向,B船沿y 轴正向,今在A船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢量用i、j表示),那么在A船上的坐标系中,B船的速度为:[ ](A)j i 22+. (B)j i22+-.(C)j i22--. (D)j i 22-.14.某人骑自行车以速率v 向正西方向行驶,遇到由北向南刮的风(设风速大小也为v ),则他感到风是从 [ ](A)东北方向吹来; (B)东南方向吹来; (C)西北方向吹来; (D)西南方向吹来. 二.填空题:1.在XY 平面内有一运动的质点,其运动方程为)(5sin 105cos 10SI j t i t r+=,则t 时刻其速度=v___________,其切向加速度的大小=t a ___________;该质点运动的轨迹是_____________.2.一质点沿直线运动,其坐标x 与时间t 有如下关系:)(cos SI t Ae x t ωβ-=(A ,β皆为常数):(1)任意时刻质点的加速度=a __________;(2)质点通过原点的时刻=t __________.3.一物体在某瞬时以速度0v从某点开始运动,在t ∆时间内,经一长度为S的路径后,又回到出发点,此时速度为0v-,则在这段时间内:(1)物体的平均速率是:____________;(2)物体的平均加速度是:___________.4.在一个转动的齿轮上,一个齿尖P沿半径为R 的圆周运动,其路程S 随时间的规律为2021bt t v S +=,其中0v 和b 都是正的常量,则t 时刻齿尖P的速度大小为____________,加速度大小为______________.5.质点沿半径为R 的圆周运动,运动方程为)(322SI t +=θ,则t 时刻质点的法向加速度大小为=n a _________;角加速度=β__________.6.在下列各图中质点M 作曲线运动,指出哪些运动是不可能的?7.一质点在平面上作曲线运动,其速率v 与路程S 的关系为)(12SI S v +=,则其切向加速度以路程S 来表示的表达式为=t a _______(SI).8.已知质点运动方程为)()314()2125(32SI j t t i t t r++-+=当s t 2=时,=a ___________.9.一质点以060仰角作斜上抛运动,忽略空气阻力.若质点运动轨道最高点处的曲率半径为m 10,则抛出时初速度的大小为0v ___________.(重力加速度g 按2/10s m 计) 10.一质点作半径为m 1.0的圆周运动,其运动方程为:)(2142SI t +=πθ,则其切向加速度为=t a ____________.11.一质点沿半径R 的圆周运动,其路程S 随时间t 变化的规律为)(212SI ct bt S -=,式中b 、c 为大于零的常数,且Rc b >2.(1)质点运动的切向加速度=t a _____________;法向加速度=n a _____________.(2)质点经过=t _____________时,n t a a =. 12.试说明质点作何种运动时将出现下述各种情况(0≠v ): (1)0≠t a ,0≠n a ;___________ . (2)0≠t a ,0=n a ;__________.13.一物体作如右图所示的斜抛运动,测得在轨道A点处速度v的大小为v ,其方向与水平方向成030的夹角,则物体在A点的切向加速度=t a __________,轨道的曲率半径=ρ_____________.14.当一列火车以s m /10的速率向东行驶时,若相对于地面竖直下落的雨滴在列车的窗子上形成的雨迹偏离竖直方向030,则雨滴相对于地面的速率是____________;相对于列车的速率是______________.15.一物体作斜抛运动,初速度为0v,与水平方向夹角为θ,如右图所示.则物体达最高点处轨道的曲率半径ρ为______________. 三.计算题:1.有一质点沿X 轴作直线运动,t 时刻的坐标为)(25.432SI t t x -=.试求:(1)第2秒内的平均速度;(2)第2秒末的瞬时速度;(3)第2秒内的路程.2.一质点沿X 轴运动,其加速度为)(4SI t a =,已知0=t 时,质点位于m X 100=处,初速度00=v ,试求其位置和时间的关系式.3.质点M 在水平面内运动轨迹如图所示,OA 段为直线,AB ,BC 段分别为不同半径的两个4/1)(5302SI t t S +=,求s t 2=时刻,质点M的切向4.由楼窗口以水平初速度0v 射出一发子弹,取枪口为坐标原点,沿0v方向为X轴,竖直向下为Y轴,并取发射时s t 0=,试求:(1) 子弹在任意时刻t 的位置坐标及轨迹方程; (2)子弹在t 时刻的速度,切向加速度和法向加速度.5.一物体悬挂在弹簧上作竖直振动,其加速度为ky a -=,式中k 为常量,y 是以平衡位置为原点所测得的坐标,假定振动的物体在坐标0y 处的速度为0v ,试求速度v 与坐标y 的函数关系式.6.一飞机驾驶员想往正北方向航行,而风以h km /60的速度由东向西刮来,如果飞机的航速(在静止空气中的速率)为h km /180,试问驾驶员应取什么航向?飞机相对于地面的速率为多少?试用矢量图说明.7.某物体的运动规律为t kv dt dv 2/-=,式中k 为大于零的常数,求速度v 与时间t 的函数关系式.M8.一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为)(622SI x a +=,如果质点在原点处的速度为零,试求其在任意位置处的速度.9.一质点从静止开始作直线运动,开始加速度为a ,此后加速度随时间均匀增加,经过时间τ后,加速度为a 2,经过时间τ2,加速度为a 3,....求经过时间τn 后,该质点的加速度和走过的距离.10.一质点沿半径为R 的圆周运动,质点所经过的弧长与时间的关系为)(212SI ct bt S +=,其中b 、c 是大于零的常量,求从0=t 开始到切向加速度与法向加速度大小相等时所经历的时间.11.当火车静止时,乘客发现雨滴下落方向偏向车头,偏角为030,当火车以s m /35的速率沿水平直线行驶时,发现雨滴下落方向偏向车尾,偏角为045,假设雨滴相对于地的速度保持不变,试计算雨滴相对于地的速度大小.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章质点的运动与牛顿定律一、选择题易1、对于匀速圆周运动下面说法不正确的是()(A)速率不变;(B)速度不变;(C)角速度不变;(D)周期不变。
易:2、对一质点施以恒力,则;()(A)质点沿着力的方向运动;( B)质点的速率变得越来越大;(C)质点一定做匀变速直线运动;(D)质点速度变化的方向与力的方向相同。
易:3、对于一个运动的质点,下面哪种情形是不可能的()(A)具有恒定速率,但有变化的速度;(B)加速度为零,而速度不为零;(C)加速度不为零,而速度为零。
(D) 加速度恒定(不为零)而速度不变。
中:4、试指出当曲率半径≠0时,下列说法中哪一种是正确的()(A) 在圆周运动中,加速度的方向一定指向圆心;(B) 匀速率圆周运动的速度和加速度都恒定不变;(C)物体作曲线运动时,速度方向一定在运动轨道的切线方向,法线分速度恒等于零,因此法问加速度也一定等于零;(D) 物体作曲线运动时,一定有加速度,加速度的法向分量一定不等于零。
难:5、质点沿x方向运动,其加速度随位置的变化关系为:.如在x = 0处,速度,那么x=3m处的速度大小为(A) ;(B) ;(C) ;(D)。
易:6、一作直线运动的物体的运动规律是,从时刻到间的平均速度是 (A); (B);(C); (D)。
中7、一质量为m 的物体沿X 轴运动,其运动方程为t x x ωsin 0=,式中0x 、ω均为正的常量,t 为时间变量,则该物体所受到的合力为:( ) (A )、x f 2ω=; (B )、mx f 2ω=; (C )、mx f ω-=; (D )、mx f 2ω-=。
中:8、质点由静止开始以匀角加速度沿半径为R 的圆周运动.如果在某一时刻此质点的总加速度与切向加速度成角,则此时刻质点已转过的角度为 (A); (B); (C); (D)。
难9、一质量为本10kg 的物体在力f=(120t+40)i (SI )作用下沿一直线运动,在t=0时,其速度v 0=6i 1-⋅s m ,则t=3s 时,它的速度为:(A )10i 1-⋅s m ; (B )66i 1-⋅s m ; (C )72i 1-⋅s m ; (D )4i 1-⋅s m 。
难:10、一个在XY 平面内运动的质点的速度为,已知t = 0时,它通过(3,-7) 位置处,这质点任意时刻的位矢为 (A) ; (B) ;(C); (D)。
易11、下列说法正确的是: ( ) (A )质点作圆周运动时的加速度指向圆心; (B )匀速圆周运动的速度为恒量;(C )、只有法向加速度的运动一定是圆周运动; (D )直线运动的法向加速度一定为零。
易:12、下列说法正确的是: ( )(A )质点的速度为零,其加速度一定也为零;图16(B )质点作变加速直线运动,其加速度的方向与初速度的方向相同; (C )力是改变物体运动状态的原因;(D )质点作直线运动时,其位移的大小和路程相等。
中;13、某质点的运动方程为2569x t t =-+(SI ),则该质点作( )(A )匀加速直线运动,加速度沿X 轴正方向; (B )匀变速直线运动,加速度沿X 轴负方向; (C )变加速直线运动,加速度沿X 轴正方向; (D )变减速直线运动,加速度沿X 轴负方向。
易:14、一质点沿x 轴作直线运动,其运动方程为x=3+3t 2(米),则:在t=2秒时的速度、加速度为; ( )(A ) 12m/s , 6m/s 2; (B ) 2m/s , 12m/s 2; (C )6m/s , 2m/s 2; (D ) 无正确答案 。
易:15、质点作半径为R 的匀速圆周运动,经时间T 转动一周。
则在2T 时间内,其平均速度的大小和平均速率分别为( )(A )、2R T π、2R T π; (B )、0,2RT π;(C )、0,0 ; (D )、2RTπ,0。
中16、物体沿一闭合路径运动,经Δt 时间后回到出发点A ,如图16所示,初速度v 1,末速度v 2,则在Δt 时间内其平均速度v 与平均加速度a 分别为:(A ) v =0,;0=a (B )v =0,0≠a ; (C )v ;,00≠≠a (D )v .,00=≠a 二、填空题易:1、某直线运动的质点,其运动方程为230x x at bt ct =+++(其中x 0、a 、b 、 c 为常量)。
则质点的加速度为 ;初始速度为 。
中2 一质点从静止出发沿半径R=1m 的圆周运动,其角加速度随时间t 的变化规律是t t 6122-=β(SI )则 质点的角速度=ω___________; 切向加速度a t =___________。
易:3、一质量为5kg 的物体(视为质点)在平面上运动,其运动方程为r=6i-3t 2j (SI ),式中i 、j 分别为X 、Y 正方向的单位矢量,则物体所受的合外力f 的大小为 ;其方向为 。
易:4、一质量为M 的木块在水平面上作直线运动,当速度为v 时仅在摩擦力作用下开始减速,经过距离S 停止,则木块的加速度大小为 , 木块与水平面的摩擦系数为 。
中:5、一质点沿半径为R 的圆周运动,其路程S 随时间t 变化的规律为212s bt ct =-(其中b ,c 为大于零的常数,且2b Rc >),则:质点运动的切向加速度a τ= ,法向加速度n a = ;质点运动经过t = 时,n a a τ= 。
易:6、质量为的质点的运动方程为20.100.02r ti t j =+,则其速度为υ= ,所受到的力为 F = 易:7、质量为10kg 的物体沿x 轴无摩擦地运动。
设t =0时,物体位于原点,速度为零。
物体在力的作用下,运动了3s ,则此时物体的加速度=____,速度 = _____。
难:8、某质点在XY 平面内的运动方程为:,则t = 1s 时,质点的切向加速度大小为______,法向加速度大小为______。
三、判断题易1、质点作匀速圆周运动的速度为恒量。
( )易2、在一质点作斜抛运动的过程中,若忽略空气阻力,则矢量dv/dt 是不断变化的。
( )易3、物体作曲线运动时,必有加速度,加速度的法向分量一定不等于零。
( )易4、惯性离心力是一种虚构力,它只能出现在非惯性系中。
( ) 中5、万有引力恒量G 的量纲为 -T ML 2。
( )中6、质点作曲线运动,质点的加速度为一恒量,但各点加速度与轨道切线间夹角不一样,则该质点一定不能作匀变速率运动。
( ) 中7、物体所受合外力的方向必与物体的运动方向一致。
( )中8、当n a 0,a 0τ≠≠,ρ为有限值,υ≠恒量,物体有可能作直线运动。
( ) 中9、质点在恒力作用下的运动一般都是平面运动。
在一定条件下可以是直线运动。
( )易10、质点作匀速圆周运动的角速度方向与速度方向相同。
( )四、计算 题易1、已知一质点的运动方程为23x 6t 2t =-(单位为SI 制),求:(1)第2秒内的平均速度; (2)第3秒末的速度; (3)第一秒末的加速度;中2、已知一质点由静止出发,其加速度在x 轴和y 轴上分别为x a 4t =,2y a 15t =(a 的单位为SI 制),试求t 时刻质点的速度和位置。
易.3、质点的运动方程为2311(t)(35t t )(4t t )23=+-++r i j ,求t 时刻,质点的速度υ和加速度a 以及t =1s 时速度的大小。
易:4、质点沿半径为R 的圆周运动,运动方程为223t +=θ(S1),求:t 时刻质点的法向加速度大小和角加速度大小。
易5、质量m = 2kg 的物体沿x 轴作直线运动,所受合外力,如果在处时速度,试求该物体移到时速度的大小。
易6、物体沿直线运动,其速度为32t 3t 2=++υ(单位为SI 制)。
如果t=2(s)时,x=4(m),求此时物体的加速度以及t=3(s)时物体的位置。
易7 一质点作半径为r=10(m)的圆周运动,其角坐标θ可用224t θ=+(单位为SI 制)表示,试问:(1)t=2(s)时,法向加速度和切向加速度各是多少 (2)当θ角等于多少时,其总加速度与半径成045易8、已知质点的运动方程21r (3t 5)(t 3t 4)2=+++-i j (单位为SI 制)。
求t=4s 时质点的速度、加速度、位矢。
易9、一质点作一维运动,其加速度与位置的关系为a kx =-,k 为正常数。
已知t=0时,质点瞬时静止于0x x =处。
试求质点的运动规律。
中10、一质量为40kg 的质点在力F 120t 40N =+的作用下沿x 轴作直线运动。
在t=0时,质点位于0x 2.0m =处,速度为10 4.0m s υ-=⋅,求质点在任意时刻的速度和位置。
参考答案: 一、选择题1、B2、 D3、D4、D5、A6、A7、D8、D9、C 10、B11、 D 12、C 13、B 14、A 15、B 16、B二、填空题1、26b ct +、a ;2、3243t t -、2126t t -;3、30N 、y 轴的负方向;4、22s υ、22sg υ; 5、-C 、2()b ct R -、b cR c; 6、0.010.04t +i j 、0.004(N)j ;7、1. 52/m s 、/m s ; 8、2/m s 、2/m s 。
三、判断题1、×2、×3、√4、√5、×6、√7、×8、×9、√ 10、× 四、计算 题1、解: 由23=62x t t - 知质点在任意时刻的速度与加速度分别为:2126dx t t dt υ==-; =1212d a =t dtυ- (1)第2秒内的平均速度()()2323_121(6222)61214211x x x m s t υ-⨯-⨯-⨯-⨯-∆====⋅∆- (2)第3秒末的速度 ()22131261236318t st t m s υ-==-=⨯-⨯=⋅-,与运动方向相反。
(3)第一秒末的加速度 ()21121212121t sa t m s -==-=-⨯=⋅2、解: 由4x a t =, 215y a t =可知质点在任意时刻的速度分量式和位移分量式分别为:4x x d a t dtυ==,变形后再两边积分为:004x t x d tdt υυ=⎰⎰ 22x t υ=215y y d a t dtυ==,变形后再两边积分为:2015yty d t dt υυ=⎰⎰ 35y t υ=t 时刻质点的速度为:2325t x y t t υυυ=+=+i j i j22x dx t dt υ==,变形后再两边积分为:2002x t dx t dt =⎰⎰ 323x t =35y dy t dt υ==,变形后再两边积分为:⎰⎰=y t dt t dy 0035 445t y =t 时刻,质点的位置为:342534t r x y t t =+=+i j i j 3、解:质点在任意时刻的速度为:()()254d t t dt==-++ri j υ 则 5x t υ=-,24y t υ=+当t=1(s)时,质点的速度大小为:)1m s υ-==⋅质点在任意时刻的加速度为:==+2d t dta i j υ- 4、解: (1)由于232t θ=+,则角速度d θω==4t dt ,角加速度2d ==4rad/s dtωβ 在时刻,法向加速度和切向加速度的大小分别为:2216n a =r =Rt ω4a r R τβ==5、解:由牛顿第二定律得22210653()2x F x a x m s m +===+由x x x xd d dx a dx dt dx υυυ=⋅= 得 ()200053x t x x x x d a dx x dx υυυ==+⎰⎰⎰ 质点在任意位置的速度:23102x x x υ=+该物体移到x=时速度的大小为:/s υ==6、解: 由3232t t υ=++可知物体在任意时刻的加速度和位移分别为:2d a ==3t +6t dtυ3232drt t dt υ=++=上式变形后再两边积分为:3224(32)trt t dt dr ++=⎰⎰4312124r =t +t +t -当t=2(s )时,物体的加速度为:2=2=3+6=32+62=2422t sa t t m.s -()×× 当t=3(s )时物体的位置为:4343311=++212=3+3+2312=41.344t s=r t t t m --()××7、解: (1)由于224t θ=+,则角速度8d θω==t dt,在=2t s 时,法向加速度和切向加速度的数值分别为:223264210=2.5610()-n t=2s a =r =m.s ω⨯⨯⨯22==108=80t t s d ωa rm s dt-=⨯⋅ 当总加速度与半径成045时,此时应有:=n τa a即: 28=64r t r ×× 21=8t 于是 212424 2.5()8t rad θ=+=+⨯=8、此题的解在书中P13:例题1-19、此题的解在书中P15:例题1-310、解:由牛顿第二定律得21204031()40x F t a t m s m +===+ 由xx d a dtυ=得 ()4.00031x t t x x d a dt t dt υυ==+⎰⎰⎰质点在任意时刻的速度:234.02x t t υ=++由x dx dt υ=得 22.0003 4.02x t t x dx dt t t dt υ⎛⎫==++ ⎪⎝⎭⎰⎰⎰质点在任意时刻的位置: 3211=++4.0+2.022x t t t m ()。