2019-2020年高三数学理科模拟试题及答案

合集下载

2019-2020年高三第三次模拟考试数学理试题 含答案

2019-2020年高三第三次模拟考试数学理试题 含答案

2019-2020年高三第三次模拟考试数学理试题含答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。

3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4.保持卡面清洁,不折叠,不破损。

5.做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑。

第I卷一、选择题:本大题共12小题,每小题5分,共60分.1.若复数满足(其中是虚数单位),则的实部为()(A)6 (B)1 (C)(D)2.已知集合A={x|(a2-a)x+1=0,x∈R},B={x|ax2-x+1=0,x∈R},若A∪B=,则a的值为 ( ) A.0 B.1 C.0或1 D.0或43.直线的方向向量为且过抛物线的焦点,则直线与抛物线围成的封闭图形的面积为()A. B. C. D.4.已知一个空间几何体的三视图如右图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )A.4 cm3 B.5 cm3 C.6 cm3 D.7 cm35. 要得到函数y=cosx的图像,只需将函数y=sin(2x+)的图像上所有的点的 ( )A.横坐标缩短到原来的倍(纵坐标不变),再向左平行移动个单位长度B.横坐标缩短到原来的倍(纵坐标不变),再向右平行移动个单位长度C.横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动个单位长度D.横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动个单位长度6.如图,若程序框图输出的S是126,则判断框①中应为()A.B.C.D.7.已知,则的最大值为() A. 6 B. 4 C. 3 D.8.已知正方体的棱长为2, 长为2的线段的一个端点在棱上运动, 另一端点在正方形内运动, 则的中点的轨迹的面积为()A. B. C. D.9.在中,角A,B,C的对边分别是,且则等于( ),设函数=,,则大致是()题图11.已知是定义在R上的不恒为零的函数,且对任意的都满足,若,则( )A. B. C. D.12.是定义在区间【-c,c】上的奇函数,其图象如图所示,令,则下列关于函数的叙述正确的是()A.若,则函数的图象关于原点对称B.若,,则方程必有三个实根C.若,,则方程必有两个实根D.若,,则方程必有大于2的实根第II卷二、填空题:本大题共4小题,每小题5分,共20分。

2019-2020年高三数学理科模拟试卷及答案

2019-2020年高三数学理科模拟试卷及答案

2019-2020年高三数学理科模拟试卷及答案一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数2(23)(1)z x x x i =+-+-为纯虚数,则实数x 的值为 A .3 B .1 C .-3 D .1或-3 2.已知{}n a 为等差数列,若1598a a a π++=,则28cos()a a +的值为 A .21-B .23-C .21D .233.若椭圆22221(0)x y a b a b +=>>的离心率为32,则双曲线12222=-bx a y 的渐近线方程为A .12y x =±B .2y x =±C .4y x =±D .14y x =±4.函数()sin()f x A x ωϕ=+(其中0,||2A πϕ><)的图象如图所示,为了得到x x g 2sin )(=的图像,则只需将()f x 的图像A .向右平移6π个长度单位B .向右平移12π个长度单位 C .向左平移6π个长度单位D .向左平移12π个长度单位5.设p ∶210||2x x -<-,q ∶260x x +->,则p 是q 的 A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件6.新学期开始,某校接受6名师大毕业生到校学习 。

学校要把他们分配到三个年级,每个年级2人,其中甲必须在高一年级,乙和丙均不能在高三年级,则不同的安排种数为A .18B .15C .12D .97.已知直线x y a +=与圆224x y +=交于,A B 两点,且||||OA OB OA OB +=- (其中O 为坐标原点),则实数a 的值为 A .2 B .6 C .2或2- D .6或6-8.已知22a <<,则函数22()2f x a x x =-+-的零点个数为 A .1 B .2 C .3 D .49.P 为双曲线16922y x -=1的右支上一点,,M N 分别是圆22(5)4x y ++=和22(5)1x y -+= 上的点,则PM PN -的最大值为A .6B .7C .8D .910.已知函数()f x 对任意x R ∈都有(4)()2(2)f x f x f +-=,若(1)y f x =-的图象关于直线1x =对称,且(1)2f =,则(2011)f =A .2B .3C .4D .6第Ⅱ卷 非选择题(共100分)二、填空题:本大题共5小题,每小题5分,共25分.将答案填写在题中的横线上.11. 右图中的三个直角三角形是一个体积 为320cm 的几何体的三视图,则h= cm12.已知223+=2·23,338+=3·38,4415+=4·415,…。

2019-2020年高三模拟数学(理)试题及答案

2019-2020年高三模拟数学(理)试题及答案

2019-2020年高三模拟数学(理)试题及答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.[来源:]1、已知集合,,则A.B. C. D. R2.已知数列为等差数列,是它的前项和.若,,则 A .10 B .16 C .20 D .243. 在极坐标系下,已知圆的方程为,则下列各点在圆上的是 A . B . C .D .4.执行如图所示的程序框图,若输出的值为23,则输入的值为A .B .1C .D .11 5.已知平面,是内不同于的直线,那么下列命题中 错误..的是 A .若,则 B .若,则 C .若,则 D .若,则6. 已知非零向量满足0,向量的夹角为,且,则向量与的夹角为 A . B . C .D .7.如果存在正整数和实数使得函数(,为常数)的图象如图所示(图象经过点(1,0)),那么的值为A .B .C . 3 D. 48.已知抛物线:,圆:(其中为常数,).过点(1,0)的直线交圆于、D 点,交抛物线于、两点,且满足的直线只有三条的必要条件是 A . B . C . D .非选择题(共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.复数 .[来源:]10.为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为,,,则它们的大小关系为 . (用“”连接)11.如图,A ,B ,C 是⊙O 上的三点,BE 切⊙O 于点B , D 是与⊙O 的交点.若,则______;若,,[来源:] 则 .12.已知平面区域,在区域内任取一点,则取到的点位于直线()下方的概率为____________ .13.若直线被圆所截的弦长不小于2,则在下列曲线中:① ② ③ ④与直线一定有公共点的曲线的序号是 . (写出你认为正确的所有序号)14.如图,线段=8,点在线段上,且=2,为线段上一动点,点绕点旋转后与点绕点旋转后重合于点.设=,的面积为.则的定义域为 ; 的零点是 .三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题共13分)在中,内角A 、B 、C 所对的边分别为,已知,,且. (Ⅰ)求;(Ⅱ)求的面积.16. (本小题共14分)在如图的多面体中,⊥平面,,,, ,,, 是的中点.(Ⅰ) 求证:平面; (Ⅱ) 求证:;(Ⅲ) 求二面角的余弦值.[来源:Z_xx_k]CBD A DFEB G C17. (本小题共13分)[来源:]某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为.现有10件产品,其中6件是一等品,4件是二等品.(Ⅰ) 随机选取1件产品,求能够通过检测的概率;(Ⅱ)随机选取3件产品,其中一等品的件数记为,求的分布列;(Ⅲ) 随机选取3件产品,求这三件产品都不能通过检测的概率.18. (本小题共13分)已知函数,(Ⅰ)若,求函数的极值;(Ⅱ)设函数,求函数的单调区间;(Ⅲ)若在()上存在一点,使得成立,求的取值范围.19.(本小题共14分)已知椭圆经过点其离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设直线与椭圆相交于A、B两点,以线段为邻边作平行四边形OAPB,其中顶点P在椭圆上,为坐标原点.求的取值范围.20.(本小题共13分)已知每项均是正整数的数列:,其中等于的项有个,设,.(Ⅰ)设数列,求;(Ⅱ)若数列满足,求函数的最小值.[来源:学.科.网Z.X.X.K]海淀区高三年级第二学期期中练习数学(理)答案及评分参考2011.4选择题(共40分)一、选择题(本大题共8小题,每小题5分,共40分)非选择题(共110分)[来源:学_科_网Z_X_X_K] 二、填空题(本大题共6小题,每小题5分. 共30分.有两空的题目,第一空3分,第二空2分)9. 10. >> 11. ; 312. 13. ①③ 14.三、解答题(本大题共6小题,共80分)15.(共13分)解:(I)因为,,, …………………1分代入得到, . …………………3分因为 , …………………4分所以=-+=-+=-. …………………5分tan tan(180())tan()1A B C B C(II)因为,由(I)结论可得: . …………………7分因为,所以.…………8分所以. …………9分由得,…………………11分所以的面积为:. ………………13分16. (共14分)解:(Ⅰ)证明:∵,∴.又∵,是的中点,∴,∴四边形是平行四边形,∴ . ……………2分∵平面,平面,∴平面. …………………4分(Ⅱ) 解法1证明:∵平面,平面,∴,又,平面,∴平面. ………………………5分过作交于,则平面.∵平面,∴. ………………………6分∵,∴四边形平行四边形,∴,∴,又,∴四边形为正方形,∴,………………………7分又平面,平面,∴⊥平面. ………………………8分∵平面,∴. ………………………9分解法2∵平面,平面,平面,∴,,又,∴两两垂直. ……………………5分以点E为坐标原点,分别为轴建立如图的空间直角坐标系.由已知得,(0,0,2),(2,0,0),(2,4,0),(0,3,0),(0,2,2),(2,2,0). …………………………6分∴,,………7分∴, ………8分∴. …………………………9分(Ⅲ)由已知得是平面的法向量. …………………………10分设平面的法向量为,∵,[来源:]∴,即,令,得. …………………………12分设二面角的大小为,HA DFEB G C则, …………………………13分∴二面角的余弦值为 …………………………14分 17. (共13分)解:(Ⅰ)设随机选取一件产品,能够通过检测的事件为 …………………………1分事件等于事件 “选取一等品都通过检测或者是选取二等品通过检测” ……………2分 …………………………4分 (Ⅱ) 由题可知可能取值为0,1,2,3. [来源:] ,,,. ………………8分[来源:] ……………9分(Ⅲ)设随机选取3件产品都不能通过检测的事件为 ……………10分 事件等于事件“随机选取3件产品都是二等品且都不能通过检测”所以,. ……………13分[来源:学#科#网]18. (共13分)解:(Ⅰ)的定义域为, ………………………1分 当时,, , ………………………2分[来源:]………………………3分[来源:学。

2019-2020年高三下学期第三次模拟考试数学(理)试题 含答案

2019-2020年高三下学期第三次模拟考试数学(理)试题 含答案

2019-2020年高三下学期第三次模拟考试数学(理)试题含答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,且有4个子集,则实数的取值范围是()A. B. C. D.2.复数等于()A. B. C. D.03. 函数的单调递减区间是()A. B.C. D.4.等比数列中,,前3项和为,则公比的值是()A. 1B.-C. 1或-D. -1或-5. 已知关于的二项式展开式的二项式系数之和为32,常数项为80,则的值为()A.1 B.C.2 D.6. 若两个正实数满足,且不等式有解,则实数的取值范围是()A. B.C. D.7. 执行如图所示的程序框图,若输入的值为8,则输出的值为()A. 4B. 8C. 10D. 128.若为不等式组表示的平面区域,则当从-2连续变化到1时,动直线扫过中的那部分区域的面积为 ( )A.1 B. C.D.9. 如图,一个空间几何体的正视图、侧视图都是面积为,一个内角为的菱形,俯视图为正方形,那么这个几何体的表面积为()A. B. C. D.10. 已知为正三角形内一点,且满足,若的面积与的面积比值为3,则的值为()A. B. C. 2 D. 311. 过双曲线的左焦点作圆的切线,切点为,延长交抛物线于点,为原点,若,则双曲线的离心率为()A. B. C. D.12.定义在上的单调函数,则方程的解所在区间是()A. B. C. D.第Ⅱ卷(非选择题共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答,第22题~24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13. 已知等差数列中,,那么 .14. 5位同学排队,其中3位女生,2位男生.如果2位男生不能相邻,且女生甲不能排在排头,则排法种数为 .15. 已知球的直径,是球球面上的三点,, 是正三角形,则三棱锥的体积为 . 16. 给出下列四个结论:(1)如图中,是斜边上的点,. 以为起点任作一条射线交于点,则点落在线段上的概率是;(2)设某大学的女生体重与身高具有线性相关关系,根据一组样本数据,用最小二乘法建立的线性回归方程为,则若该大学某女生身高增加,则其体重约增加;(3)若是定义在上的奇函数,且满足,则函数的图像关于对称;(4)已知随机变量服从正态分布则.其中正确结论的序号为三、解答题:本大题共70分,解答应写出必要的文字说明,证明过程或演算步骤. 17.(本小题满分12分)“德是”号飞船返回舱顺利到达地球后,为了及时将航天员救出,地面指挥中心在返回舱预计到达的区域安排了同一条直线上的三个救援中心(记为).当返回舱距地面1万米的点时(假定以后垂直下落,并在点着陆),救援中心测得飞船位于其南偏东方向,仰角为,救援中心测得飞船位于其南偏西方向,仰角为.救援中心测得着陆点位于其正东方向. (1)求两救援中心间的距离;(2)救援中心与着陆点间的距离.18.(本小题满分12分)我国新修订的《环境空气质量标准》指出空气质量指数在为优秀,各类人群可正常活动.市环保局对我市xx 年进行为期一年的空气质量监测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为,,,,空气质量指数0.032 0.020 0.018O 5 15 25 35 45 A BCD E北 A P东B C D由此得到样本的空气质量指数频率分布直方图,如图.(1) 求的值;(2) 根据样本数据,试估计这一年度的空气质量指数的平均值;(3) 如果空气质量指数不超过,就认定空气质量为“特优等级”,则从这一年的监测数据中随机抽取天的数值,其中达到“特优等级”的天数为,求的分布列和数学期望.19. (本小题满分12分)如图,在四棱锥中,平面平面,,在锐角中,并且,.(1)点是上的一点,证明:平面平面;(2)若与平面成角,当面平面时,求点到平面的距离.20.(本小题满分12分)已知椭圆的左,右顶点分别为,圆上有一动点,点在轴的上方,,直线交椭圆于点,连接.(1)若,求△的面积;(2)设直线的斜率存在且分别为,若,求的取值范围.21. (本小题满分12分)设函数.(1)若函数在处有极值,求函数的最大值;(2)①是否存在实数,使得关于的不等式在上恒成立?若存在,求出的取值范围;若不存在,说明理由;②证明:不等式考生在题(22)(23)(24)中任选一题作答,如果多做,则按所做的的第一题计分.做题时用2B铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)选修4—1:几何证明选讲如图,已知点在⊙直径的延长线上,切⊙于点,是的平分线,交于点,交于点.(Ⅰ)求的度数;(Ⅱ)若,求.23.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系中,直线的参数方程为(为参数),直线与曲线交于两点.(1)求的长;(2)在以为极点,轴的正半轴为极轴建立极坐标系,设点的极坐标为,求点到线段中点的距离.24.(本小题满分10分)选修4—5:不等式选讲已知实数满足,且.(Ⅰ)证明:;(Ⅱ)证明:.哈尔滨市第六中学xx届高三第三次模拟考试数学试卷(理工类)答案一.选择题1.B2.D3.B4.C5.C6.B7.B8.D9.D 10.A 11.A 12.C二.填空题13. 14. 15.40 16.②③④三.解答题17. 解:(1)由题意知,则均为直角三角形………………1分在中,,解得…………………………2分在中,,解得…………………………3分又,万米. …………………………5分(2),,…………………………7分又,所以.…………………………9分在中,由正弦定理,…………………………10分万米…………………………12分18.(1) 解:由题意,得,……………1分解得. ……………2分(2)解:个样本中空气质量指数的平均值为0.2100.32200.3300.184024.6X=⨯+⨯+⨯+⨯=……………3分由样本估计总体,可估计这一年度空气质量指数的平均值约为. …………4分(3)解:利用样本估计总体,该年度空气质量指数在内为“特优等级”,且指数达到“特优等级”的概率为,则. ………5分的取值为,………6分,,,. ……………10分∴的分布列为:……11分∴6448121301231251251251255Eξ=⨯+⨯+⨯+⨯=. ………12分(或者)19.解法一(1)因为,,由勾股定理得,因为平面平面,平面平面=,面,所以平面面,所以平面平面………6分M(2)如图,因为平面,所以平面平面,所以,做于,所以面,,设面面=,面平面所以面面,所以,取中点,得为平行四边形,由平面边长得为中点,所以………12分解法二(1)同一(2)在平面过做垂线为轴,由(1),以为原点,为轴建立空间直角坐标系,设平面法向量为,设,锐角所以,由,解得,,,解得或(舍)设,解得因为面平面,,所以面法向量为,所以,解得,所以到平面的距离为竖坐标.………12分20.(1)依题意,.设,则.由得, ,, 解得, . …………5分(2)设, 动点在圆上, .又, , 即====.又由题意可知,且,则问题可转化为求函数的值域.由导数可知函数在其定义域内为减函数,函数的值域为从而的取值范围为……12分21.(1)由已知得:,且函数在处有极值∴,即∴∴当时,,单调递增;当时,,单调递减;∴函数的最大值为(2)①由已知得:(i)若,则时,∴在上为减函数,∴在上恒成立;(ii)若,则时,∴在上为增函数,∴,不能使在上恒成立;(iii)若,则时,,xyz当时,,∴在上为增函数, 此时, ∴不能使在上恒成立; 综上所述,的取值范围是 …………8分 ②由以上得:取得: 令, 则,()1222111ln 101111n n n n x x n n n n n n-⎛⎫-=-+<-=-< ⎪+-++⎝⎭. 因此. 又()1211ln ln ln 1ln1ln 1nn k k n k k k -==⎛⎫=--+=+⎡⎤ ⎪⎣⎦⎝⎭∑∑ 故1122211111ln 1ln 1111nn n n k k k k k n x k k k k n --===⎡⎤⎛⎫⎛⎫=-+=-++ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎣⎦∑∑∑ ()()11122111111111111n n n k k k kk k k kn k k ---===⎛⎫>-=-≥=-+>- ⎪+++⎝⎭∑∑∑ ……12分22.(1)因为为⊙的切线,所以…………1分因为是的平分线,所以…………2分 所以,即,…………3分又因为为⊙的直径,所以…………4分. 所以.…………5分(2)因为,所以,所以∽,所以,………7分在中,又因为,所以,………8分 中,………10分23.解:(1)直线的参数方程化为标准型(为参数) …… 2分代入曲线方程得设对应的参数分别为,则,,所以 …… 5分 (2)由极坐标与直角坐标互化公式得直角坐标, …… 6分 所以点在直线, 中点对应参数为, 由参数几何意义,所以点到线段中点的距离 ……10分 24.(1) ,相乘得证——————5分 (2),, 相加得证——————10分。

2019-2020年高三仿真模拟数学理科试卷3含答案.doc

2019-2020年高三仿真模拟数学理科试卷3含答案.doc

2019-2020年高三仿真模拟数学理科试卷3含答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. (1)已知全集U =R ,集合{|021}xA x =<<,3{|log 0}B x x =>,则U ()AB =(A ){|1}x x > (B ){|0}x x > (C ){|01}x x << (D ){|0}x x <(2)设,x y ∈R ,那么“0>>y x ”是“1>yx”的 (A )必要不充分条件 (B )充分不必要条件(C )充分必要条 (D )既不充分又不必要条件(3)三棱柱的侧棱与底面垂直,且底面是边长为2的等边三角形,其正视图(如图所示)的面积为8,则侧视图的面积为 (A ) 8 (B ) 4(C)(D(4)已知随机变量X 服从正态分布(, 4)N a ,且(1)0.5P X >=,则实数 a 的值为 (A )1 (B(C )2 (D )4(5)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4,5,6这六个数字中任取3个数,组成无重复数字的三位数,其中“伞数”有 (A )120个 (B )80个 (C )40个 (D )20个(6)点P 是抛物线x y 42=上一动点,则点P 到点(0,1)A -的距离与到直线1-=x 的距离和的最小值是(A(B(C )2 (D )2(7)已知棱长为1的正方体1111ABCD A B C D -中,点E ,F 分别是棱1BB ,1DD 上的动点,且1BE D F λ==1(0)2λ<≤.设EF 与AB 所成的角为α,与BC 所成的角为β,则αβ+的最小值(A )不存在 (B )等于60︒ (C )等于90︒ (D )等于120︒(8)已知点P 是ABC ∆的中位线EF 上任意一点,且//EF BC ,实数x ,y 满足PA xPB yPC ++=0.设ABC ∆,PBC ∆,PCA ∆,PAB ∆的面积分别为S ,1S ,2S ,3S , 记11S S λ=,22SS λ=,33S Sλ=.则23λλ⋅取最大值时,2x y +的值为 正视图(A )32 (B )12(C ) 1 (D )2 第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. (9)已知复数z 满足1iz i =-,则z = .(10)曲线C :cos 1,sin 1x y θθ=-⎧⎨=+⎩(θ为参数)的普通方程为 .(11)曲线233y x =-与x 轴所围成的图形面积为________.(12)已知数列{}n a 满足12a =,且*1120,n n n n a a a a n +++-=∈N ,则2a = ;并归纳出数列{}n a 的通项公式n a = .(13)如图,PA 与圆O 相切点A ,PCB 为圆O 的割线,并且不过圆心O , 已知30BPA ∠=,PA =1PC =,则PB = ;圆O 的 半径等于 .(14)已知函数2()(1)1f x ax b x b =+++-,且(0, 3)a ∈,则对于任意 的b ∈R ,函数()()F x f x x =-总有两个不同的零点的概率是 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题满分13分)已知函数2()2sin sin()2sin 12f x x x x π=⋅+-+ ()x ∈R . (Ⅰ)求函数()f x 的最小正周期及函数()f x 的单调递增区间;(Ⅱ)若0()23x f =,0ππ(, )44x ∈-,求0cos 2x 的值. (16)(本小题满分13分)为了防止受到核污染的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为16,第二轮检测不合格的概率为110,两轮检测是否合格相互没有影响. (Ⅰ)求该产品不能销售的概率;(Ⅱ)如果产品可以销售,则每件产品可获利40元;如果产品不能销售,则每件产品亏损80元(即获利-80元).已知一箱中有产品4件,记一箱产品获利X 元,求X 的分布列,并求出均值E (X ). (17)(本小题满分13分)在长方形11AA B B 中,124AB AA ==,C ,1C 分别是AB ,11A B 的中点(如图1). 将此长方形沿1CC 对折,使二面角11A CC B --为直二面角,D ,E 分别是11A B ,1CC 的中点(如图2).(Ⅰ)求证:1C D ∥平面1A BE ; (Ⅱ)求证:平面1A BE ⊥平面11AA B B ; (Ⅲ)求直线1BC 与平面1A BE 所成角的正弦值.(18)(本小题满分13分)设函数2()ln ()f x x x a =+-,a ∈R . (Ⅰ)若0a =,求函数()f x 在[1,]e 上的最小值;(Ⅱ)若函数()f x 在1[, 2]2上存在单调递增区间,试求实数a 的取值范围; (Ⅲ)求函数)(x f 的极值点. (19)(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>经过点(2, 1)A,离心率为2.过点(3, 0)B 的直线l 与椭圆C 交于不同的两点,M N . (Ⅰ)求椭圆C 的方程; (Ⅱ)求BM BN ⋅的取值范围;(Ⅲ)设直线AM 和直线AN 的斜率分别为AM k 和AN k ,求证:AM AN k k +为定值. (20)(本小题满分14分)对于正整数, a b ,存在唯一一对整数q 和r ,使得a bq r =+,0r b <≤. 特别地,当0r =时,称b 能整除a ,记作|b a ,已知{1, 2, 3,,23}A =⋅⋅⋅.图(1)(Ⅰ)存在q A ∈,使得201191 (091)q r r =+<≤,试求,q r 的值;(Ⅱ)求证:不存在这样的函数:{1,2,3}f A →,使得对任意的整数12,x x A ∈,若12||{1,2,3}x x -∈,则12()()f x f x ≠;(Ⅲ)若B A ⊆,12)(=B card (()card B 指集合B 中的元素的个数),且存在,a b B ∈,b a <,|b a ,则称B 为“和谐集”. 求最大的m A ∈,使含m 的集合A 的有12个元素的任意子集为“和谐集”,并说明理由.参考答案1. D 【解析】分别把两个集合表示为{}{}0,1A x x B x x =<=>,所以{}1U C B x x =≤,(){}0.U AC B x x =<2. B 【解析】 当0>>y x 时1>y x 成立,若1>yx,则出现0>>y x 和0x y <<两种情形.3. C 【解析】侧视图应为矩形,高为4,宽为22=因此侧视图的面积为 4. A 【解析】由(1)0.5P X >=可知 1.a μ==5. C 【解析】分四种情形处理,当中间数依次分别为3,4,5,6时,相应“伞数”的个数分别为22222345,,,,A A A A 所以2222234540.A A A A +++=6. D 【解析】点P 到点(0,1)A -的距离与到直线1-=x 的距离和转化为点P 到点(0,1)A -的距离与点P 到焦点()1,0F 的距离和,显然最小值为AF =7. C 【解析】在1AA 上取一点M ,使EM AB ∥,连结MF ,则MEF α∠=,同理可判断αβ=.在MFE ∆中,1,ME EF MF ===所以cos 2α=≥,所以min 45,α︒=因此()min 90.αβ︒+= 【易错点拨】在判断EF 与AB 所成的角α、BC 所成的角β时不能从图形直接判断为相等是本题解答的一个障碍,由三角函数值确定角也是较为容易出错的地方。

2019-2020年高三3月高考模拟 理科数学 含答案

2019-2020年高三3月高考模拟 理科数学 含答案

2019-2020年高三3月高考模拟理科数学含答案本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页. 考试时间120分钟.满分150分,考试结束后,将本试卷和答题卡一并交回.注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第I卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1.已知全集,集合,,则A.B.C.D.2.已知复数(是虚数单位),它的实部和虚部的和是A.4 B.6 C.2 D.33.某苗圃基地为了解基地内甲、乙两块地种植的同一种树苗的长势情况,从两块地各随机抽取了10株树苗,用茎叶图表示上述两组数据,对两块地抽取树苗的高度的平均数和中位数进行比较,下面结论正确的是A.B.C.D.4.已知实数满足,则目标函数的最小值为A.B.5 C.6 D.75.“”是“函数在区间上为增函数”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.函数的图象是A. B. C. D.7.阅读右边的程序框图,运行相应的程序,输出的结果为A.B.C.D.8.二项式的展开式中常数项是A.28 B.-7 C.7 D.-289.已知直线与圆相交于两点,且则的值是A.B.C.D.010.右图是函数在区间上的图象.为了得到这个函数的图象,只需将的图象上所有的点A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变11.一个几何体的三视图如右图所示,则它的体积为A.B.C.D.12.设235111111,,a dxb dxc dxx x x===⎰⎰⎰,则下列关系式成立的是A.B.C.D.第7题图第11题图第Ⅱ卷(非选择题共90分)二、填空题:本大题共4个小题,每小题4分,共16分.13.若点在直线上,其中则的最小值为.14.已知抛物线的焦点恰好是双曲线的右顶点,且渐近线方程为,则双曲线方程为.(),,nf x=三、解答题:本大题共6小题,共74分.17.(本题满分12分)已知,,且.(1)将表示为的函数,并求的单调增区间;(2)已知分别为的三个内角对应的边长,若,且,,求的面积.18.(本题满分12分)已知四棱锥的底面是等腰梯形,且,2,2PO ABCD PO AB CD⊥===底面分别是的中点.(1)求证:;(2)求二面角的余弦值.EA19.(本题满分12分)数列的前项和为,,,等差数列满足.(1)分别求数列,的通项公式;(2)设,求证.20.(本题满分12分)某学生参加某高校的自主招生考试,须依次参加A、B、C、D、E五项考试,如果前四项中有两项不合格或第五项不合格,则该考生就被淘汰,考试即结束;考生未被淘汰时,一定继续参加后面的考试。

2019-2020年高三高考模拟卷(二)理科数学 含答案

2019-2020年高三高考模拟卷(二)理科数学 含答案
三、解答题:本大题共6个小题,共74分.解答应写文字说明、证明过程或演算步骤,把答案填写在答题纸的相应位置.
17.(本小题满分12分)
已知函数.
(1)求的最小正周期及其单调增区间:
(2)当时,求的值域.
18.(本小题满分12分)
如图,在三棱锥A-BCD中,△ABD和△BCD是两个全等的等腰直角三角形,O为BD的中点,且AB=AD=CB=CD=2,AC=.
过点A作AK⊥BC,垂足为K,连接HK.
因为BC⊥AH,AKAH=A,所以BC⊥平面AHK.
因为HK平面AHK,所以BC⊥HK,
所以∠AKH为二面角的平面角.
在△AOH中,∠AOH=,,则,,
所以.
在Rt△CHK中,∠HCK=,所以.
在Rt△AHK中,,
所以二面角的正切值为.
19.【解析】(1)日平均销售量为(吨).

所以,即二面角的正切值为.
法二在△ABD中,BD⊥AO,在△BCD中,BD⊥CO,
所以∠AOC是二面角的平面角,即∠AOC=.
如图,过点A作CO的垂线交CO的延长线于点H,
因为BD⊥CO,BD⊥AO,且COAO=O,
所以BD⊥平面AOC.
因为AH平面AOC,所以BD⊥AH.
又CO⊥AH,且COBD=O,所以AH⊥平面BCD.
(2)①日销售量为1.5吨的概率.
设5天中该商品有Y天的销售量为1.5吨,则,
所以.
②X的所有可能取值为4,5,6,7,8.又日销售量为1吨的概率为,日销售量为2吨的概率为,则





所以X的分布列为
数学期望 .
20.【解析】(1)由已知得,,,
即时,函数为单调增函数,所以函数的单调增区间为,.

2019-2020年高考数学模拟试卷6—10套含答案及解析(理科)

2019-2020年高考数学模拟试卷6—10套含答案及解析(理科)

2019-2020年高考数学模拟试卷6—10套(理科)高考理科数学模拟试卷(六)时间:120分钟 分值:150分注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、考生号填写在答题卡上。

2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试卷上无效。

3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。

4、考试结束,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.21ii+=-( ) A.1322i - B. 1322i + C. 3122i - D. 31i 22+ 2.已知集合{}22(,)|1,,A x y x y x y =+=∈∈Z Z ,则A 中元素的个数为( ) A. 1 B. 2C. 3D. 43.函数sin ()xf x x=的部分图象大致为( ) A. B.C. D.4.已知M ,N 是四边形ABCD 所在平面内的点,满足:,2MA MC MB MD DN NC +=+=u u u r u u u u r u u u r u u u u r u u u r u u u r,则( )A. 12AN AB AD =+u u u r u u u r u u u rB. 1 2AN AB AD =+u u u r u u u r u u u rC. 23AN AB AD =+u u u r u u u r u u u rD. 11 22AN AB AD =+u u u r u u u r u u u r5.已知双曲线2222:1(0,0)x y C a b a b -=>>的一个顶点A 到渐近线的距离为2,则C的离心率为( )C. 2D. 46.设等差数列{}n a 的前n 项和为n S ,且1133S =,则3510a a a ++的值是( ) A. 3B. 6C. 9D. 167.执行如图所示程序框图,如果输入的0.1t =,则输出的n=( )A. 3B. 4C. 5D. 68.一个多面体的直观图和三视图如图所示,M 是AB 的中点,一只蝴蝶在几何体ADF BCE -内自由飞翔,由它飞入几何体F AMCD -内的概率为( )A.34B.23C.13D.129.已知正四棱柱1111ABCD A B C D -,1AB =,12AA =,点E 为1BB 的中点,则点1A 到平面AEC 的距离为( )D. 110.已知函数()2sin()(0)3f x x πωω=+>,若方程()2f x =在[0,2]上有且只有两个实数根,则ω的取值范围为( ) A. [),2ππB. 13,212ππ⎡⎫⎪⎢⎣⎭ C. 1325,1212ππ⎡⎫⎪⎢⎣⎭ D. 25,12ππ⎡⎫⎪⎢⎣⎭11.已知A ,B ,P 是双曲线2222:1(0,0)x y C a b a b-=>>上不同的三点,直线PA 的斜率为1k ,直线PB 的斜率为2k ,且12k k ,是关于x 的方程2430x mx ++=的两个实数根,若0OA OB +=u u u r u u u r r,则双曲线C 的离心率是( )A. 2D.3212.设函数ln ,02()sin ,262x x f x x x π⎧<⎪=⎨⎛⎫< ⎪⎪⎝⎭⎩„„,若1234x x x x ,,,互不相等,且1234()()()()f x f x f x f x k ====,则1234x x x x k ++++的最大值为( )A. 111e e++B.15lne 2+ C. 12 D.25ln 22+ 第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.若实数x ,y 满足:2211y x y x y x ≥-⎧⎪≥-+⎨⎪≤+⎩,则3z x y =-的最大值是________;14.已知等比数列{}n a 的前n 项和为n S ,满足11a =,33=S ,则n S =________; 15.已知函数()()()sin 0,0,f x A x A ωϕωϕπ=+>><的图象过点,012P π⎛⎫⎪⎝⎭,且图象上与点P 最近的一个最高点是,23Q π⎛⎫⎪⎝⎭,把函数()f x 的图象上所有点的横坐标伸长为原来的3πϕ倍,纵坐标不变,得到函数()g x 的图象,则函数()g x 的单调递增区间是________;16.已知'()f x 是函数cx bx ax x f ++=232131)(的导函数,且1'(1)2f a =-,322a c b >>,则下列说法正确的是___________. ①)0(0f '>; ②曲线()y f x =在2bx a=-处的切线斜率最小; ③函数()f x 在(,)-∞+∞存在极大值和极小值; ④'()f x 在区间)2,0(上至少有一个零点.三、解答题:共70分。

2019-2020年高三校模拟考试数学(理)试题含答案.doc

2019-2020年高三校模拟考试数学(理)试题含答案.doc

2019-2020年高三校模拟考试数学(理)试题含答案注意:本卷共22题,满分150分,考试时间120分钟第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.集合}{,,,,,U =123456,}{,,S =145,}{,,T =234,则)(T C S U 等于 A .}{,,,1456 B .}{4C .}{,15D .}{,,,,123452.若复数iia 213++(a R ∈,i 为虚数单位)是纯虚数,则实数a 的值为 A .-6 B .13 C .32D .133.设a ∈R ,则“a =-2”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.一个几何体的三视图及部分数据如图所示,正视图、侧视图和俯视图都是等腰直角三角形,则该几何体的体积为A .16B .13C .23D .15.已知,m n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足l m ⊥,l n ⊥,且l α⊄,l β⊄,则A .//αβ,且//l αB .αβ⊥,且l β⊥C .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l6.()cos()(,0)f x A x A ωϕω=+>的图象如图所示,为得到()sin()6g x A x πω=-+的图象,可以将)(x f 的图象A .向右平移65π个单位长度 B .向右平移125π个单位长度 C .向左平移65π个单位长度 D .向左平移125π个单位长度 7.数列{}n a 共有11项,1110,4,a a ==且11(1,2,...,10)k k a a k +-==,则满足该条件的不同数列的个数为A .100B .120C .140D .1608.若正数,x y 满足2610x xy +-=,则2x y +的最小值是A .3 B .3 C .3 D9.已知抛物线24y x =,圆22:(1)1F x y -+=,过点F 作直线l ,自上而下顺次与上述两曲线交于点,,,A B C D (如图所示),则AB CD ⋅的值正确的是A .等于1B .最小值是1C .等于4D .最大值是410.若函数()f x =22(1)()x x ax b -++的图像关于直线x =2对称,则()f x 的最大值是A .9B .14C .15D .16第Ⅱ卷(非选择题部分 共100分)二、填空题:本大题共7小题,每小题4分,共28分。

2019-2020年高三数学三模试卷(理科) 含解析

2019-2020年高三数学三模试卷(理科) 含解析

2019-2020年高三数学三模试卷(理科)含解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设全集U=R,集合M={x|y=},N={y|y=3﹣2x},则图中阴影部分表示的集合是()A.{x|<x≤3}B.{x|<x<3}C.{x|≤x<2}D.{x|<x<2}2.已知复数z=1+,则1+z+z2+…+z xx为()A.1+i B.1﹣i C.i D.13.(1﹣3x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,求|a0|+|a1|+|a2|+|a3|+|a4|+|a5|=()A.1024 B.243 C.32 D.244.若某程序框图如图所示,则输出的n的值是()A.43 B.44 C.45 D.465.给出下列四个结论:①“若am2<bm2,则a<b”的逆命题是真命题;②若x,y∈R,则“x≥2或y≥2”是“x2+y2≥4”的充分不必要条件;③函数y=log a(x+1)+1(a>0且a≠0)的图象必过点(0,1);④已知ξ服从正态分布N(0,σ2),且P(﹣2≤ξ≤0)=0.4,则P(ξ>2)=0.2.其中正确的结论是()A.①②B.①③C.②③D.③④6.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则其侧视图的面积是()A. B. C.1 D.7.已知实数x,y满足:,z=|2x﹣2y﹣1|,则z的取值范围是()A.[,5]B.[0,5]C.[0,5)D.[,5)8.某中学学生社团活动迅猛发展,高一新生中的五名同学打算参加“清净了文学社”、“科技社”、“十年国学社”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“围棋苑”,则不同的参加方法的种数为()A.72 B.108 C.180 D.2169.若sin2α=,sin(β﹣α)=,且α∈[,π],β∈[π,],则α+β的值是()A. B. C.或D.或10.设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为()A.1 B. C. D.11.已知双曲线的左右焦点分别为F1,F2,点O为坐标原点,点P在双曲线右支上,△PF1F2内切圆的圆心为Q,圆Q与x轴相切于点A,过F2作直线PQ的垂线,垂足为B,则|OA|与|OB|的长度依次为()A.a,a B.a,C. D.12.设D是函数y=f(x)定义域内的一个区间,若存在x0∈D,使f(x0)=﹣x0,则称x0是f(x)的一个“次不动点”,也称f(x)在区间D上存在次不动点.若函数f(x)=ax2﹣3x﹣a+在区间[1,4]上存在次不动点,则实数a的取值范围是()A.(﹣∞,0)B.(0,)C.[,+∞)D.(﹣∞,]二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题线上.13.已知向量⊥,||=3,则•=.14.设等差数列{a n}的前n项和为S n,若,则=.15.从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i(单位:千元)的数据资料,算得=80,y i=20,x i y i=184,=720.家庭的月储蓄y对月收入x的线性回归方程为y=bx+a,若该居民区某家庭的月储蓄为2千元,预测该家庭的月收入为千元.(附:线性回归方程y=bx+a中,b=,a=﹣b)16.已知P点为圆O1与圆O2公共点,圆O1:(x﹣a)2+(y﹣b)2=b2+1,圆O2:(x﹣c)2+(y﹣d)2=d2+1,若ac=8,=,则点P与直线l:3x﹣4y﹣25=0上任意一点M之间的距离的最小值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,角A,B,C的对边分别为a,b,c,已知=,A+3C=B,(1)求cosC的值;(2)若b=3,求△ABC的面积.18.市积极倡导学生参与绿色环保活动,其中代号为“环保卫士﹣﹣12369”的绿色环保活动小组对xx1月﹣xx12月(一月)内空气质量指数API进行监测,如表是在这一年随机抽取100为t)的关系为:,在这一年内随机抽取一天,估计该天经济损失P∈若本次抽取的样本数据有30天是在供暖季节,其中有8天为重度污染,完成2 295%A xx参考公式:.19.在四棱锥P﹣ABCD中,AD⊥平面PDC,PD⊥DC,底面ABCD是梯形,AB∥DC,AB=AD=PD=1,CD=2(1)求证:平面PBC⊥平面PBD;(2)设Q为棱PC上一点,=λ,试确定λ的值使得二面角Q﹣BD﹣P为60°.20.在平面直角坐标系xOy中,已知椭圆C: +=1(a>b>0)的离心率e=,直线l:x﹣my﹣1=0(m∈R)过椭圆C的右焦点F,且交椭圆C于A,B两点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)过点A作垂直于y轴的直线l1,设直线l1与定直线l2:x=4交于点P,试探索当m变化时,直线BP是否过定点?21.已知函数f(x)=e x,g(x)=mx+n.(1)设h(x)=f(x)﹣g(x).①若函数h(x)在x=0处的切线过点(1,0),求m+n的值;②当n=0时,若函数h(x)在(﹣1,+∞)上没有零点,求m的取值范围;(2)设函数r(x)=+,且n=4m(m>0),求证:当x≥0时,r(x)≥1.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,C,F为⊙O上的点,CA是∠BAF的角平分线,过点C作CD⊥AF交AF的延长线于D点,CM⊥AB,垂足为点M.(1)求证:DC是⊙O的切线;(2)求证:AM•MB=DF•DA.[选修4-4:坐标系与参数方程]23.在直角坐标系xoy中,直线l的参数方程为(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C 的方程为ρsin2θ=4cosθ.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)设曲线C与直线l交于点A、B,若点P的坐标为(1,1),求|PA|+|PB|的值.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣4|+|x+5|.(Ⅰ)试求使等式f(x)=|2x+1|成立的x的取值范围;(Ⅱ)若关于x的不等式f(x)<a的解集不是空集,求实数a的取值范围.xx重庆市高考数学三模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设全集U=R,集合M={x|y=},N={y|y=3﹣2x},则图中阴影部分表示的集合是()A.{x|<x≤3}B.{x|<x<3}C.{x|≤x<2}D.{x|<x<2}【考点】Venn图表达集合的关系及运算.【分析】首先化简集合A和B,然后根据V enn图求出结果.【解答】解:∵M={x|y=}={x|x≤}N={y|y=3﹣2x}={y|y<3}图中的阴影部分表示集合N去掉集合M∴图中阴影部分表示的集合{x|<x<3}故选:B.2.已知复数z=1+,则1+z+z2+…+z xx为()A.1+i B.1﹣i C.i D.1【考点】复数代数形式的混合运算.【分析】化简复数,然后利用复数单位的幂运算求解即可.【解答】解:复数z=1+=1+=i.1+z+z2+…+z xx=1+i+i2+…+i xx=1.故选:D.3.(1﹣3x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,求|a0|+|a1|+|a2|+|a3|+|a4|+|a5|=()A.1024 B.243 C.32 D.24【考点】二项式系数的性质.【分析】由于|a0|+|a1|+|a2|+|a3|+|a4|+|a5|正好等于(1+3x)5的各项系数和,故在(1+3x)5的展开式中,令x=1,即可求得|a0|+|a1|+|a2|+|a3|+|a4|+|a5|的值.【解答】解:由题意(1﹣3x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5可得,|a0|+|a1|+|a2|+|a3|+|a4|+|a5|正好等于(1+3x)5的各项系数和,故在(1+3x)5的展开式中,令x=1可得|a0|+|a1|+|a2|+|a3|+|a4|+|a5|=45=1024,故选:A.4.若某程序框图如图所示,则输出的n的值是()A.43 B.44 C.45 D.46【考点】程序框图.【分析】框图首先给循环变量n赋值1,给累加变量p赋值1,然后执行运算n=n+1,p=p+2n ﹣1,然后判断p>xx是否成立,不成立循环执行n=n+1,p=p+2n﹣1,成立时算法结束,输出n的值.且由框图可知,程序执行的是求等差数列的前n项和问题.当前n项和大于xx 时,输出n的值.【解答】解:框图首先给循环变量n赋值1,给累加变量p赋值1,执行n=1+1=2,p=1+(2×2﹣1)=1+3=4;判断4>xx不成立,执行n=2+1=3,p=1+3+(2×3﹣1)=1+3+5=9;判断9>xx不成立,执行n=3+1=4,p=1+3+5+(2×4﹣1)=1+3+5+7=16;…由上可知,程序运行的是求首项为1,公差为2的等差数列的前n项和,由p=>xx,且n∈N*,得n=45.故选:C.5.给出下列四个结论:①“若am2<bm2,则a<b”的逆命题是真命题;②若x,y∈R,则“x≥2或y≥2”是“x2+y2≥4”的充分不必要条件;③函数y=log a(x+1)+1(a>0且a≠0)的图象必过点(0,1);④已知ξ服从正态分布N(0,σ2),且P(﹣2≤ξ≤0)=0.4,则P(ξ>2)=0.2.其中正确的结论是()A.①②B.①③C.②③D.③④【考点】命题的真假判断与应用.【分析】逐一分析四个结论的真假,综合讨论结果,可得答案.【解答】解:①“若am2<bm2,则a<b”的逆命题是“若a<b,则am2<bm2”,当m=0时不成立,故为假命题,故错误;②若x,y∈R,当“x≥2或y≥2”时,“x2+y2≥4”成立,当“x2+y2≥4”时,“x≥2或y≥2”不一定成立,故“x≥2或y≥2”是“x2+y2≥4”的充分不必要条件,故正确;③当x=0时,y=log a(x+1)+1=1恒成立,故函数y=log a(x+1)+1(a>0且a≠0)的图象必过点(0,1),故正确;④已知ξ服从正态分布N(0,σ2),且P(﹣2≤ξ≤0)=0.4,则P(ξ>2)=0.1,故错误;故选:C6.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则其侧视图的面积是()A. B. C.1 D.【考点】由三视图求面积、体积.【分析】由三视图知几何体的直观图是半个圆锥,再根据其中正视图是腰长为2的等腰三角形,我们易得圆锥的底面直径为2,母线为为2,故圆锥的底面半径为1,高为,进而可得其侧视图的面积.【解答】解:由三视图知几何体的直观图是半个圆锥,又∵正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,∴半圆锥的底面半径为1,高为,即半圆锥的侧视图是一个两直角边长分别为1和的直角三角形,故侧视图的面积是,故选:B.7.已知实数x,y满足:,z=|2x﹣2y﹣1|,则z的取值范围是()A.[,5]B.[0,5]C.[0,5)D.[,5)【考点】简单线性规划.【分析】由约束条件作出可行域如图,令u=2x﹣2y﹣1,由线性规划知识求出u的最值,取绝对值求得z=|u|的取值范围.【解答】解:由约束条件作可行域如图,联立,解得,∴A(2,﹣1),联立,解得,∴.令u=2x﹣2y﹣1,则,由图可知,当经过点A(2,﹣1)时,直线在y轴上的截距最小,u最大,最大值为u=2×2﹣2×(﹣1)﹣1=5;当经过点时,直线在y轴上的截距最大,u最小,最小值为u=.∴,∴z=|u|∈[0,5).故选:C.8.某中学学生社团活动迅猛发展,高一新生中的五名同学打算参加“清净了文学社”、“科技社”、“十年国学社”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“围棋苑”,则不同的参加方法的种数为()A.72 B.108 C.180 D.216【考点】计数原理的应用.【分析】根据题意,分析可得,必有2人参加同一个社团,分2步讨论,首先分析甲,因为甲不参加“围棋苑”,则其有3种情况,再分析其他4人,此时分甲单独参加一个社团与甲与另外1人参加同一个社团,2种情况讨论,由加法原理,可得第二步的情况数目,进而由乘法原理,计算可得答案.【解答】解:根据题意,分析可得,必有2人参加同一个社团,首先分析甲,甲不参加“围棋苑”,则其有3种情况,再分析其他4人,若甲与另外1人参加同一个社团,则有A44=24种情况,若甲是1个人参加一个社团,则有C42•A33=36种情况,则除甲外的4人有24+36=60种情况;故不同的参加方法的种数为3×60=180种;故选C.9.若sin2α=,sin(β﹣α)=,且α∈[,π],β∈[π,],则α+β的值是()A. B. C.或D.或【考点】两角和与差的正弦函数;二倍角的正弦.【分析】依题意,可求得α∈[,],2α∈[,π],进一步可知β﹣α∈[,π],于是可求得cos (β﹣α)与cos2α的值,再利用两角和的余弦及余弦函数的单调性即可求得答案.【解答】解:∵α∈[,π],β∈[π,],∴2α∈[,2π],又sin2α=>0,∴2α∈[,π],cos2α=﹣=﹣;又sin(β﹣α)=,β﹣α∈[,π],∴cos(β﹣α)=﹣=﹣,∴cos(α+β)=cos[2α+(β﹣α)]=cos2αcos(β﹣α)﹣sin2αsin(β﹣α)=﹣×(﹣)﹣×=.又α∈[,],β∈[π,],∴(α+β)∈[,2π],∴α+β=,故选:A.10.设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为()A.1 B. C. D.【考点】导数在最大值、最小值问题中的应用.【分析】将两个函数作差,得到函数y=f(x)﹣g(x),再求此函数的最小值对应的自变量x的值.【解答】解:设函数y=f(x)﹣g(x)=x2﹣lnx,求导数得=当时,y′<0,函数在上为单调减函数,当时,y′>0,函数在上为单调增函数所以当时,所设函数的最小值为所求t的值为故选D11.已知双曲线的左右焦点分别为F1,F2,点O为坐标原点,点P在双曲线右支上,△PF1F2内切圆的圆心为Q,圆Q与x轴相切于点A,过F2作直线PQ的垂线,垂足为B,则|OA|与|OB|的长度依次为()A.a,a B.a,C. D.【考点】双曲线的简单性质.【分析】利用切线长定理,结合双曲线的定义,把|PF1|﹣|PF2|=2a,转化为|AF1|﹣|AF2|=2a,从而求得点A的横坐标.再在三角形PCF2中,由题意得,它是一个等腰三角形,从而在△F1CF2中,利用中位线定理得出OB,从而解决问题.【解答】解:根据题意得F1(﹣c,0),F2(c,0),设△PF1F2的内切圆分别与PF1,PF2切于点A1,B1,与F1F2切于点A,则|PA1|=|PB1|,|F1A1|=|F1A|,|F2B1|=|F2A|,又点P在双曲线右支上,∴|PF1|﹣|PF2|=2a,∴|F1A|﹣|F2A|=2a,而|F1A|+|F2A|=2c,设A点坐标为(x,0),则由|F1A|﹣|F2A|=2a,得(x+c)﹣(c﹣x)=2a,解得x=a,∵|OA|=a,∴在△F1CF2中,OB=CF1=(PF1﹣PC)=(PF1﹣PF2)==a,∴|OA|与|OB|的长度依次为a,a.故选:A.12.设D是函数y=f(x)定义域内的一个区间,若存在x0∈D,使f(x0)=﹣x0,则称x0是f(x)的一个“次不动点”,也称f(x)在区间D上存在次不动点.若函数f(x)=ax2﹣3x﹣a+在区间[1,4]上存在次不动点,则实数a的取值范围是()A.(﹣∞,0)B.(0,)C.[,+∞)D.(﹣∞,]【考点】二次函数的性质.【分析】根据“f(x)在区间D上有次不动点”当且仅当“F(x)=f(x)+x在区间D上有零点”,依题意,存在x∈[1,4],使F(x)=f(x)+x=ax2﹣2x﹣a+=0,讨论将a分离出来,利用导数研究出等式另一侧函数的取值范围即可求出a的范围.【解答】解:依题意,存在x∈[1,4],使F(x)=f(x)+x=ax2﹣2x﹣a+=0,当x=1时,使F(1)=≠0;当x≠1时,解得a=,∴a′==0,x=2x=1∴当时,最大,所以常数a的取值范围是(﹣∞,],故选:D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题线上.13.已知向量⊥,||=3,则•=9.【考点】平面向量数量积的运算.【分析】由已知结合平面向量是数量积运算求得答案.【解答】解:由⊥,得•=0,即•()=0,∵||=3,∴.故答案为:9.14.设等差数列{a n}的前n项和为S n,若,则=9.【考点】等差数列的性质;定积分的简单应用.【分析】先利用定积分求得,再根据等差数列的等差中项的性质可知S9=9a5,S5=5a3,根据a5=5a3,进而可得则的值.【解答】解:∵=(x2+x)|02=5,∵{a n}为等差数列,S9=a1+a2+…+a9=9a5,S5=a1+a2+…+a5=5a3,∴故答案为9.15.从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i(单位:千元)的数据资料,算得=80,y i=20,x i y i=184,=720.家庭的月储蓄y对月收入x的线性回归方程为y=bx+a,若该居民区某家庭的月储蓄为2千元,预测该家庭的月收入为8千元.(附:线性回归方程y=bx+a中,b=,a=﹣b)【考点】线性回归方程.【分析】利用已知条件求出,样本中心坐标,利用参考公式求出b,a,然后求出线性回归方程y=bx+a,通过x=2,利用回归直线方程,推测该家庭的月储蓄.【解答】解:(1)由题意知,n=10,==8,=y i=2,b===0.3,a=﹣b=2﹣0.3×8=﹣0.4,∴线性回归方程为y=0.3x﹣0.4,当y=2时,x=8,故答案为:8.16.已知P点为圆O1与圆O2公共点,圆O1:(x﹣a)2+(y﹣b)2=b2+1,圆O2:(x﹣c)2+(y﹣d)2=d2+1,若ac=8,=,则点P与直线l:3x﹣4y﹣25=0上任意一点M之间的距离的最小值为2.【考点】直线与圆的位置关系.【分析】把两个圆的方程相减与圆O1联立可得x2+y2=9,令4y﹣3x=t,则y=,代入可得25x2+6tx+t2﹣144=0,由△≥0,可得﹣15≤t≤15,再利用P到直线l的距离为=,即可求出点P与直线l上任意一点M之间的距离的最小值.【解答】解:∵ac=8,=,∴=,故两圆的圆心O1(a,b)、圆心O2(c,d)、原点O三点共线,不妨设==k,则c=,b=ka,d=kc=.把圆O1:(x﹣a)2+(y﹣b)2=b2+1,圆O2:(x﹣c)2+(y﹣d)2=d2+1相减,可得公共弦的方程为(2c﹣2a)x+(2d﹣2b)y=c2﹣a2,即(﹣2a)x+(﹣2•ka)y=﹣a2,即2(﹣a)x+2k(﹣a)y=(+a)(﹣a),当a≠±2时,﹣a≠0,公共弦的方程为:2x+2ky=+a,即:2ax+2kay=a2+8,即:2ax+2by=a2+8.O1:(x﹣a)2+(y﹣b)2=b2+1,即x2+y2=2ax+2by﹣a2+1,再把公共弦的方程代入圆O1的方程可得x2+y2=9 ①.令4y﹣3x=t,代入①可得25x2+6tx+t2﹣144=0.再根据此方程的判别式△=36t2﹣100(t2﹣144)≥0,求得﹣15≤t≤15.点P到直线l:3x﹣4y﹣25=0的距离为==,故当4y﹣3x=t=﹣15时,点P到直线l:3x﹣4y﹣25=0的距离取得最小值为2.当a=±2时,由条件可得a=c,b=d,此时,两圆重合,不合题意.故答案为:2.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,角A,B,C的对边分别为a,b,c,已知=,A+3C=B,(1)求cosC的值;(2)若b=3,求△ABC的面积.【考点】余弦定理;正弦定理.【分析】(1)把A+3C=B代入A+B+C=π得B=+C,可得sinB=cosC>0,由条件和正弦定理化简后,利用平方关系求出cosC的值;(2)由条件求出边c的值,由(1)和平方关系求出cosB和sinC的值,利用两角和的正弦公式求出sinA的值,代入三角形的面积公式求解即可.【解答】解:(1)由题意得A+3C=B,则A=B﹣3C,代入A+B+C=π得,B=+C,所以sinB=cosC>0,∵,∴由正弦定理得,,则,①又sin2C+cos2C=1,②由①②得,cos2C=,则cosC=;(2)∵,b=3,∴c=,由(1)知sinB=cosC=,且B=+C,∴cosB=﹣=﹣,同理可得sinC=,则sinA=sin(B+C)=sinBcosC+cosBsinC=×+(﹣)×=∴△ABC的面积S===.18.市积极倡导学生参与绿色环保活动,其中代号为“环保卫士﹣﹣12369”的绿色环保活动小组对xx1月﹣xx12月(一月)内空气质量指数API进行监测,如表是在这一年随机抽取为t)的关系为:,在这一年内随机抽取一天,估计该天经济损失P∈若本次抽取的样本数据有30天是在供暖季节,其中有8天为重度污染,完成2 295%A xx参考公式:.【考点】独立性检验.【分析】(Ⅰ)由200<4t﹣400≤600,得150<t≤250,频数为39,即可求出概率;(Ⅱ)根据所给的数据,列出列联表,根据所给的观测值的公式,代入数据做出观测值,同临界值进行比较,即可得出结论.【解答】解:(Ⅰ)设“在本年内随机抽取一天,该天经济损失P∈=….K2的观测值K2=≈4.575>3.841…所以有95%的把握认为A市本xx空气重度污染与供暖有关.…19.在四棱锥P﹣ABCD中,AD⊥平面PDC,PD⊥DC,底面ABCD是梯形,AB∥DC,AB=AD=PD=1,CD=2(1)求证:平面PBC⊥平面PBD;(2)设Q为棱PC上一点,=λ,试确定λ的值使得二面角Q﹣BD﹣P为60°.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(1)在梯形ABCD中,过点作B作BH⊥CD于H,通过面面垂直的判定定理即得结论;(2)过点Q作QM∥BC交PB于点M,过点M作MN⊥BD于点N,连QN.则∠QNM 是二面角Q﹣BD﹣P的平面角,在Rt三角形MNQ中利用tan∠MNQ=计算即可.【解答】(1)证明:∵AD⊥平面PDC,PD⊂平面PCD,DC⊂平面PDC,图1所示.∴AD⊥PD,AD⊥DC,在梯形ABCD中,过点作B作BH⊥CD于H,在△BCH中,BH=CH=1,∴∠BCH=45°,又在△DAB中,AD=AB=1,∴∠ADB=45°,∴∠BDC=45°,∴∠DBC=90°,∴BC⊥BD.∵PD⊥AD,PD⊥DC,AD∩DC=D.AD⊂平面ABCD,DC⊂平面ABCD,∴PD⊥平面ABCD,∵BC⊂平面ABCD,∴PD⊥BC,∵BD∩PD=D,BD⊂平面PBD,PD⊂平面PBD.∴BC⊥平面PBD,∵BC⊂平面PBC,∴平面PBC⊥平面PBD;(2)解:过点Q作QM∥BC交PB于点M,过点M作MN⊥BD于点N,连QN.由(1)可知BC⊥平面PDB,∴QM⊥平面PDB,∴QM⊥BD,∵QM∩MN=M,∴BD⊥平面MNQ,∴BD⊥QN,图2所示.∴∠QNM是二面角Q﹣BD﹣P的平面角,∴∠QNM=60°,∵,∴,∵QM∥BC,∴,∴QM=λBC,由(1)知,∴,又∵PD=1,MN∥PD,∴,∴MN===1﹣λ,∵tan∠MNQ=,∴,∴.20.在平面直角坐标系xOy中,已知椭圆C: +=1(a>b>0)的离心率e=,直线l:x﹣my﹣1=0(m∈R)过椭圆C的右焦点F,且交椭圆C于A,B两点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)过点A作垂直于y轴的直线l1,设直线l1与定直线l2:x=4交于点P,试探索当m变化时,直线BP是否过定点?【考点】椭圆的简单性质.【分析】(Ⅰ)由椭圆C: +=1(a>b>0)的离心率e=,直线l:x﹣my﹣1=0(m∈R)过椭圆C的右焦点F,列出方程组,求出a,b,由此能求出椭圆C的标准方程.(Ⅱ)令m=0,则A(1,),B(1,﹣)或A(1,﹣),B(1,),从而得到满足题意的定点只能是(,0),设为D点,再证明P、B、D三点共线.由此得到BP恒过定点(,0).【解答】解:(Ⅰ)∵椭圆C: +=1(a>b>0)的离心率e=,直线l:x﹣my﹣1=0(m∈R)过椭圆C的右焦点F,∴由题设,得,解得a=2,c=1,∴b2=a2﹣c2=3,∴椭圆C的标准方程为=1.(Ⅱ)令m=0,则A(1,),B(1,﹣)或A(1,﹣),B(1,),当A(1,),B(1,﹣)时,P(4,),直线BP:y=x﹣,当A(1,﹣),B(1,)时,P(4,﹣),直线BP:y=﹣x+,∴满足题意的定点只能是(,0),设为D点,下面证明P、B、D三点共线.设A(x1,y1),B(x2,y2),∵PA垂直于y轴,∴点P的纵坐标为y1,从而只要证明P(4,y1)在直线BD上,由,得(4+3m2)y2+6my﹣9=0,∵△=144(1+m2)>0,∴,,①∵k DB﹣k DP=﹣=﹣==,①式代入上式,得k DB﹣k DP=0,∴k DB=k DP,∴点P(4,y1)恒在直线BD上,从而P、B、D三点共线,即BP恒过定点(,0).21.已知函数f(x)=e x,g(x)=mx+n.(1)设h(x)=f(x)﹣g(x).①若函数h(x)在x=0处的切线过点(1,0),求m+n的值;②当n=0时,若函数h(x)在(﹣1,+∞)上没有零点,求m的取值范围;(2)设函数r(x)=+,且n=4m(m>0),求证:当x≥0时,r(x)≥1.【考点】利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,利用导数的几何意义即可得到结论.(2)求出r(x)的表达式,求函数的导数,利用导数研究函数的单调性即可.【解答】解:(1)①h(x)=f(x)﹣g(x)=e x﹣mx﹣n.则h(0)=1﹣n,函数的导数f′(x)=e x﹣m,则f′(0)=1﹣m,则函数在x=0处的切线方程为y﹣(1﹣n)=(1﹣m)x,∵切线过点(1,0),∴﹣(1﹣n)=1﹣m,即m+n=2.②当n=0时,h(x)=f(x)﹣g(x)=e x﹣mx.若函数h(x)在(﹣1,+∞)上没有零点,即e x﹣mx=0在(﹣1,+∞)上无解,若x=0,则方程无解,满足条件,若x≠0,则方程等价为m=,设g(x)=,则函数的导数g′(x)=,若﹣1<x<0,则g′(x)<0,此时函数单调递减,则g(x)<g(﹣1)=﹣e﹣1,若x>0,由g′(x)>0得x>1,由g′(x)<0,得0<x<1,即当x=1时,函数取得极小值,同时也是最小值,此时g(x)≥g(1)=e,综上g(x)≥e或g(x)<﹣e﹣1,若方程m=无解,则﹣e﹣1≤m<e.(2)∵n=4m(m>0),∴函数r(x)=+=+=+,则函数的导数r′(x)=﹣+=,设h(x)=16e x﹣(x+4)2,则h′(x)=16e x﹣2(x+4)=16e x﹣2x﹣8,[h′(x)]′=16e x﹣2,当x≥0时,[h′(x)]′=16e x﹣2>0,则h′(x)为增函数,即h′(x)>h′(0)=16﹣8=8>0,即h(x)为增函数,∴h(x)≥h(0)=16﹣16=0,即r′(x)≥0,即函数r(x)在[0,+∞)上单调递增,故r(x)≥r(0)=,故当x≥0时,r(x)≥1成立.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,C,F为⊙O上的点,CA是∠BAF的角平分线,过点C作CD⊥AF交AF的延长线于D点,CM⊥AB,垂足为点M.(1)求证:DC是⊙O的切线;(2)求证:AM•MB=DF•DA.【考点】与圆有关的比例线段;圆的切线的判定定理的证明;圆的切线的性质定理的证明.【分析】(1)证明DC是⊙O的切线,就是要证明CD⊥OC,根据CD⊥AF,我们只要证明OC∥AD;(2)首先,我们可以利用射影定理得到CM2=AM•MB,再利用切割线定理得到DC2=DF•DA,根据证明的结论,只要证明DC=CM.【解答】证明:(1)连接OC,∵OA=OC∴∠OAC=∠OCA,∵CA是∠BAF的角平分线,∴∠OAC=∠FAC∴∠FAC=∠OCA,∴OC∥AD.…∵CD⊥AF,∴CD⊥OC,即DC是⊙O的切线.…(2)连接BC,在Rt△ACB中,CM⊥AB,∴CM2=AM•MB.又∵DC是⊙O的切线,∴DC2=DF•DA.∵∠MAC=∠DAC,∠D=∠AMC,AC=AC∴△AMC≌△ADC,∴DC=CM,∴AM•MB=DF•DA…[选修4-4:坐标系与参数方程]23.在直角坐标系xoy中,直线l的参数方程为(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C 的方程为ρsin2θ=4cosθ.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)设曲线C与直线l交于点A、B,若点P的坐标为(1,1),求|PA|+|PB|的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)曲线C的方程为ρsin2θ=4cosθ,即ρ2sin2θ=4ρcosθ.把代入上述方程即可化为直角坐标方程.(Ⅱ)直线l经过点P(1,1)(t=0时),把直线l的参数方程代入抛物线方程可得:t2+6t﹣6=0,利用|PA|+|PB|=|t1|+|t2|=|t1﹣t2|=即可得出.【解答】解:(Ⅰ)曲线C的方程为ρsin2θ=4cosθ,即ρ2sin2θ=4ρcosθ.化为直角坐标方程:y2=4x.(Ⅱ)直线l经过点P(1,1)(t=0时),把直线l的参数方程(t为参数),代入抛物线方程可得:t2+6t﹣6=0,∴|PA|+|PB|=|t1|+|t2|=|t1﹣t2|==4.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣4|+|x+5|.(Ⅰ)试求使等式f(x)=|2x+1|成立的x的取值范围;(Ⅱ)若关于x的不等式f(x)<a的解集不是空集,求实数a的取值范围.【考点】绝对值不等式的解法.【分析】(Ⅰ)f(x)=|x﹣4|+|x+5|和f(x)=|2x+1|,根据绝对值不等式,对|x﹣4|+|x+5|放缩,注意等号成立的条件,(Ⅱ)把关于x的不等式f(x)<a的解集不是空集,转化为关于x的不等式f(x)<a的解集非空,求函数f(x)的最小值.【解答】解:(Ⅰ)因为f(x)=|x﹣4|+|x+5|≥|(x﹣4)+(x+5)|=|2x+1|,当且仅当(x﹣4)(x+5)≥0,即x≤﹣5或x≥4时取等号.所以若f(x)=|2x+1|成立,则x的取值范围是(﹣∞,﹣5]∪[4,+∞).(Ⅱ)因为f(x)=|x﹣4|+|x+5|≥|(x﹣4)﹣(x+5)|=9,所以若关于x的不等式f(x)<a的解集非空,则a>f(x)min=9,即a的取值范围是(9,+∞).xx7月29日。

2019-2020年高三高考模拟数学理科试题(2)

2019-2020年高三高考模拟数学理科试题(2)

2019-2020年高三高考模拟数学理科试题(2)一、填空题(本大题共14小题,每小题5分,共70分,把答案填在题中横线上).1. 已知集合M={0,1,2},N={x|x=2a,a∈M},则集合M∩N=( )A. B. C. D.1. 【答案】B【命题立意】本题考查集合的运算,注意审题,属容易题【解题思路】∴2. 复数在复平面上对应的点位于第( )象限.A. 一B. 二C. 三D. 四2.【答案】C【命题立意】本题考查复数的基本运算【解题思路】3. 已知集合A=(x,y)|x一2y一l=0},B={(x,y)|ax-by+1=0},其中a,b∈ {1,2,3,4,5,6},则A∩B=的概率为( )A. B. C. D.3.【答案】A【命题立意】本题考查列举法计算随机事件所含的基本事件及事件发生的概率等基础知识.【解题思路】∵∴直线与直线平行∴这样的有:共3个∴4. 若对任意实数,不等式成立,则实数的取值范围为( )A. B.C. D.4.【答案】D【命题立意】本题考查函数思想、注意审题,本题中为自变量,为字母.【解题思路】设则∴5. 在样本的频率分布直方图中,共有4个小长方形,这4个小长方形的面积由小到大构成等比数列,已知,且样本容量为300,则小长方形面积最大的一组的频数为( )A. 80B. 120C. 160D. 2005.【答案】C【命题立意】本题考查频率分布直方图知识,理解频率与小长方形之间关系.【解题思路】∴小长方形面积最大的一组的频率为,相应频数为6. 已知公差不为的正项等差数列中,为其前项和,若,,也成等差数列,,则等于( )A. 30B. 40C. 50D. 60 6.【答案】A【命题立意】本题考查等并数列的基本运算. 【解题思路】设公差, 则 ∴ 又∴ ∴7. 一个算法的流程图如图所示.若输入的n 是100,则输出值S 是( ) A. 196 B. 198 C. 200 D. 202 7.【答案】B【命题立意】本题考查算法中循环结构流程图,关键注意何时结束循环.【解题思路】列举出每一次循环的结果.8. 已知周期函数是定义在R 上的奇函数,且的最小正周期为3, 的取值范围为( ) A. B. C. D. 8.【答案】D【命题立意】本题考查函数奇偶性、周期性相结合的问题. 【解题思路】 ∴9. 抛物线在处的切线与轴及该抛物线所围成的图形面积为( )A. B. C. 1 D. 2【答案】A 【解析】切线为,由定积分的几何意义得,所求图形的面积为()()1320111221330A x x dx x x x =--=-+=⎡⎤⎣⎦⎰【命题立意】本题考查了根据导数几何意义求切线方程,再根据定积分的几何意义求平面图形的面积,是一道小综合题.10. 若将函数的图像向右平移个单位长度后,得到一个奇函数的图象,则的最小值为( ) A. B. 1 C. D. 2 10.【答案】C【命题立意】本题考查三角函数的图象与性质、三角函数图象变换知识.yxy=x 211 -1O【解题思路】()()6sin sin 464y x y w x ππππω⎡⎤=+−−−−−−→=-+⎢⎥⎣⎦向右平移 ∵为奇函数∴ ∴∴正数最小值为11. 若的展开式的各项系数之和为,那么展开式中的常数项为( ) A. 30 B. 60 C. 90 D. 120 11.【答案】C【命题立意】本题考查了二项式各项系数和与展开式的通项. 【解题思路】令得 ∴∴通项()()1055615530,1,2,,5rrrr rr r T C C xr --+⎛=⋅=-⋅= ⎝令 得∴常数项为12. 给出定义:若(其中m 为整数),则m 叫做离实数x 最近的整数,记作{x },即.在此基础上给出下列关于函数的四个命题: ①函数定义域是R ,值域是; ②函数的图像关于直线对称;③函数是周期函数,最小正周期是1; ④函数在上是增函数. 则其中真命题是( ) A. ①②③ B. ②③④ C. ①②④ D. ①③④ 12. 【答案】A【命题立意】本题为新定义题目,解题的关键是读懂定义内涵,尝试探究解决,属难题.【解题思路】∵{}11,22131,22352,22x x x x x x x x ⎧⎪-<≤⎪⎪⎪-=-<≤⎨⎪⎪-<≤⎪⎪⎩可由此作出的图象 由此可选择①②③ 二、填空题13. 在△ABC 中,,D 是BC 边上任意一点(D 与B 、C 不重合),且,则等于 .13.【答案】x【命题立意】本题考查平面向量的加减数量积等有关运算知识,考查学生的运算能力和逻辑推理能力. 【解题思路】∵22220AB AD BD DC AD AB BD DC =+⋅⇒-+⋅= ∴ ∴ ∴取BC 中点E ,则∴是以A 为顶点的等腰三角形 ∵ ∴14. 设为坐标原点,动点满足,则的最小值是 . 14. 【答案】【命题立意】本题考查向量与线性规划求最值相综合,属中档题. 【解题思路】依题意 作出可行域(如图) 平移直线,当直线经过时,15. 设的内角所对的边长分别为,且.则角的大小为 .15. 【命题立意】本小题主要考查正弦定理、两角和与差的正弦、余弦定理等基础知识,考查运算能力,解题的关键在于边与角互化. 【解析】(1)因为, 所以(2sin )cos cos B C A A C =2sin cos cos cos B A A C C A =, 则,所以,于是16. 如图所示,在边长为的正方形纸片中,与相交于,剪去,将剩余部分沿折叠,使重合,则以为顶点的四面体的体积是 . 16.【解析】【命题立意】本题考查平面图形的翻折问题,关键在于确定翻折形成的几何体与平面图形前后量的变化关系.【解题思路】翻折形成的四面体是以O 为顶点的正三棱锥,是OA 、OC 、OB 两两相互垂直(___21132O ACDV V ==⨯⨯⨯= 三、解答题17. 设为正整数,两直线的交点是,对于正整数,过点的直线与直线的交点记为.⑴求数列通项公式;⑵求数列的前次和.17. 【命题立意】本题考查直线的交点、数列通项的求法等知识,综合性较强.OD CA(B)【解题思路】⑴依题意()11112111,222n n n n n n s x x s x n s x x x s---==⇒=+≥+∴为等差数列,且首项为,公差为∴⑵()()()22141141212n n s x x s n n n n +==-++++ ()()()21111114233412n S s n n ⎡⎤=-+-++-⎢⎥++⎣⎦18.(本题满分14分)如图,在直三棱柱—中,,点分别为,,的中点.(1)证明://平面; (2)证明:平面平面.18. 【命题立意】本题主要考查线面平行、线面垂直等基础知识,考查空间想象能力和推理论证能力. 【解析】【解析】证明:⑴连接BC 1,A 1B ∵E 为A 1C 1中点,O 为BC 1中点 ∴OE ∥AB 1又OE 平面AA 1B 1B A 1B 平面AA 1B 1B ∴OE ∥平面AA 1B 1B ⑵取BC 中点M ,连AM ∵AB=AC ∴AM ⊥BC 又平面ABC ⊥平面BB 1C 1C AM ⊥平面BB 1C 1C易知四边形AMOD 为平行四边形 ∴AM ∥DO∴DO ⊥平面BB 1C 1C ∵DO 平面B 1DC∴平面B 1DC ⊥平面BB 1C 1C19. 为防止风沙危害,某地决定建设防护绿化带,种植杨树,沙柳等植物,某人一次种植了株沙柳,各株沙柳的成活与否是相互独立的,成活率为,设为成活沙柳的株数,数学期望,标准差. ⑴求的值,并写出的分布列;⑵若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.M【解析】⑴由,得,从而..20.(本题满分16分)已知圆O:交轴于A,B两点,曲线C是以为长轴,离心率为的椭圆,其左焦点为F.若P是圆O上一点,连结PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q.(1)求椭圆C的标准方程;(2)若点P的坐标为(1,1),求证:直线PQ与圆相切;(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.20.【命题立意】本小题主要考查椭圆的标准方程及几何性质,直线与圆的位置关系,考查探究能力和推理论证能力.【解析】(1)因为,所以c=1 则b=1,即椭圆的标准方程为(2)因为(1,1),所以,所以,所以直线OQ的方程为y=-2x又椭圆的左准线方程为x=-2,所以点Q(,4)所以,又,所以,即,故直线与圆相切(3)当点在圆上运动时,直线与圆保持相切证明:设(),则,所以,,所以直线OQ的方程为所以点Q(-2,)所以02200000000000022(22)22(2)(2)PQxyy y x x x xkx x y x y y+--+--====-+++,又,所以,即,故直线始终与圆相切21. (本题满分16分)已知定理:“若为常数,满足,则函数的图象关于点中心对称”.设函数,定义域为A.(1)试证明的图象关于点成中心对称;(2)当时,求证:;(3)对于给定的,设计构造过程:,…,.如果,构造过程将继续下去;如果,构造过程将停止.若对任意,构造过程可以无限进行下去,求a的值.21. 【命题立意】本小题为新情境题,主要考查函数的概率、性质、函数与方程等基础知识,考查灵活运用数形结合思想、分类讨论思想进行探索、分析与解决问题的综合能力.【解析】(1)∵,∴11()()(1)(1)2f a x f a x x x ++-=-++-+=--. 由已知定理,得的图象关于点成中心对称.(2)先证明在上是增函数,只要证明在上是增函数.设,则1212121211()()0()()x x f x f x a x a x a x a x --=-=<----,∴在上是增函数.再由在上是增函数,得 当时,,即.(3)∵构造过程可以无限进行下去,∴对任意恒成立.∴方程无解,即方程无解或有唯一解. ∴或由此得到.22. 如图,的半径垂直于直径AC ,M 为AO 上一点,BM 的延长线交于N ,过N 点的切线交CA 的延长线于P. ⑴求证:;⑵若的半径为,求的长.22. 【命题立意】本题主要考查矩阵与变换等基础知识,考查运算求解能力. 【解析】解:⑴连结ON ,∵PN 切于,∴,∴. ∵,∴. ∵于,∴ ∴,∴. ∴. ⑵.∵()()2322328BM MN CM MA ⋅=⋅=+-=∴.23. 证明:直线与圆相切的必要条件是.23. 【命题立意】本小题主要考查极坐标与直角坐标的互化、考查运算求解能力,考查化归与转化思想.【解析】证明:222)(1c y c x by ax =+-=+,圆为:直线为:, 由相切可得:.24. 求函数的最大值.24. 【解析】解:函数的定义域为,且.()()()222251255215y x x x x=⨯-+⨯-+⨯-+-≤.当且仅当时,即时函数取最大值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高三数学理科模拟试题及答案一.选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目的要求的.) 1. 设复数z 满足12ii z+=,则z =( ) A .2i -+ B .2i -- C .2i - D .2i +2.设0<x<1,则a=2x ,b=1+x , c=x-11中最大的一个是( )A .aB .bC .cD .不能确定3.已知方程0,,0(022>≠≠=++=+c b a ab c by ax ab by ax 其中和,它们所表示的曲线可能是( )A. B. C. D.4.已知直线n m ,和平面α,则//m n 的一个必要非充分条件是( ) A .//m α且α//n B .m α⊥且α⊥n C .//m α且α⊂n D .,m n 与α所成角相等5.设变量y x ,满足约束条件0021x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩,则1y x +的最大值是( )A .1B .14 C .12D .2 6.等差数列{}n a 的前n 项和为等于则若982,12,S a a S n =+( )A .54B .45C .36D .277.设函数na x x f )()(+=,其中⎰=2cos 6πxdx n ,3)0()0(-='f f ,则)(x f 的展开式中4x 的系数为( )A .-360B .360C .-60D .60N M CABO8.一圆形纸片的圆心为原点O,点Q 是圆外的一定点,A 是圆周上一点,把纸片折叠使点A 与点Q 重合,然后展开纸片,折痕CD 与OA 交于P 点,当点A 运动时P 的轨迹是 A .椭圆 B .双曲线 C .抛物线 D .圆二、填空题:本大题共6小题,每小题5分,满分30分.9.在某项测量中,测量结果ξ服从正态分布2(1)(0)N σσ>,.若ξ在(01),内取值的概率为 0.4,则ξ在(02),内取值的概率为 .10.将5本不同的书全发给4名同学,每名同学至少有一本书的分配方案有 种 (用数字表示) 11. 在ABC ∆中,c b a ,,分别是角C B A ,,的对边,且ca bC B +-=2cos cos , 则角B 的大小为12.已知一个几何体的主视图及左视图均是边长为2的正三角形,俯视图是直径为2 的圆,则此几何体的外接球的表面积为13.函数xe y 2=图像上的点到直线042=--y x 距离的最小值是 _ 14、已知直线l 的参数方程为:2,14x t y t=⎧⎨=+⎩(t 为参数),圆C的极坐标方程为ρθ=,则直线l 与圆C 的位置关系为 .15、如图,点B 在⊙O 上, M 为直径AC 上一点,BM 的延长线交⊙O 于N ,45BNA ∠= ,若⊙O的半径为,,则MN 的长为 .三、解答题(本大题共6小题,共80分,解答应写出必要的文字说明、证明过程或演算步骤) 16.(本小题满分12分)已知tan 2θ= (Ⅰ)求tan()4πθ-的值(Ⅱ)求cos2θ的值17. (本小题满分12分) 甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量,x h ,已知甲、乙两名射手在每次射击中击中的环数均大于6环,且甲射中10,9,8,7环的概率分别为0.5,3a ,a ,0.1,乙射中10,9,8环的概率分别为0.3,0.3,0.2。

(1)求,x h 的分布列;(2)求,x h 的数学期望与方差,并以此比较甲、乙的射击技术。

18.(本小题满分14分)在四棱锥P ABCD -中,AD AB ^,CD ∥AB ,PD ⊥底面ABCD ,2ABAD=,直线PA 与底面ABCD 成60°角,点,M N 分别是PA 、PB 的中点. (Ⅰ)求二面角P MN D --的大小; (Ⅱ)当CDAB的值为多少时,CND Ð为直角?19.(本小题满分14分)已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足AP PB =,0MA AP ⋅=.(Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.20.(本小题满分14分)已知xxx g e x x ax x f ln )(],,0(,ln )(=∈-=,其中e 是自然常数,.a R ∈ (1)讨论1=a 时, ()f x 的单调性、极值; (2)求证:在(1)的条件下,1()()2f xg x >+; (3)是否存在实数a ,使()f x 的最小值是3,若存在,求出a 的值;若不存在,说明理由. 21、已知函数)(x f 的图象经过点),1(λ,且对任意R x ∈,都有.2)()1(+=+x f x f 数列{}n a 满足.),(,2,211⎩⎨⎧=-=+为偶数为奇数n a f n a a n n n λ(1)当x 为正整数时,求)(n f 的表达式; (2)设3=λ,求n a a a a 2321++++ ;P ABDM N(3)若对任意*N n ∈,总有211+++<n n n n a a a a ,求实数λ的取值范围.参考答案一.选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目的要求的.)二、填空题:本大题共6小题,每小题5分,满分30分, 9. 8.0 10. 24011.32π 12. 316π13.5 14. 相交 15、2三、解答题(本大题共6小题,共80分,解答应写出必要的文字说明、证明过程或演算步骤) 16.(本小题满分12分)解:(1)2tan =θ tan tan 1214tan()41231tantan 4πθπθπθ--∴-===-++ ………… 4分 (2) sin tan 22sin 2cos cos θθθθθ=∴=∴=……① …………6分又22sin cos 1q q += 由①②得21cos 5q =……………8分 23cos 22cos 15θθ∴=-=- …………………………………………12分17. (本小题满分12分)解:(1)依题意得0.530.11a a +++=解得0.1a =………………………2分 乙射中10,9,8环的概率分别为0.3,0.3,0.2乙射中7环的概率为1-(0.3+0.3+0.2)=0.2……………4分,x h 的分布列为:………………6分 (2)略18.(本小题满分14分)解:(Ⅰ)∵PD ⊥面ABCD ,AB ⊂面ABCD ,∴AB ⊥PD ,又AB ⊥AD , ∴AB ⊥面PAD .又MN 是△PAB 的中位线, ∴MN ∥AB ,从而MN ⊥面PAD .∴∠PMD 为二面角P —MN —D 的平面角 ………………………………4分由已知,在Rt △PAD 中,易证:∠PAD =60°,而M 是PA 的中点, ∴∠PMD =120°.即所求二面角P —MN —D 的大小为120°.…………………………………6分 (Ⅱ)令CDx AB=,不妨设AD =2,则,,4CD x AB x ==.……8分 以D 为原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则D (0,0,0),N (1,2,C (0,4x ,0),∴DN =(1,2,CN =(1,2-4x若∠CND 为直角,则必有DN CN ⊥, 即0DN CN ⋅=于是有112(24)0x ⨯+-+=,解得1x =. ∴当1CDAB=时,∠CND 为直角.……………………………………14分 19.(本小题满分14分)(Ⅰ)解:设P (,)x y ,(,0),(0,)(0)A B B A x B y y >则(,)A AP x x y =- (,)B PB x y y =-- …………………………………2分由AP PB = 得 2A x x =,2B y y = …………………………………4分 又(,2)A MA x = (,)A AP x x y =-即(2,2)MA x =,(,)AP x y =-……………6分由0MA AP ⋅= 得 2(0)x y y =≥…………………………………..8分 (Ⅱ)显然直线l 的斜率存在,设直线l 的方程为:(2)y k x =+设11(,)E x y ,22(,)F x y 因为'2y x = ,故两切线的斜率分别为122,2x x …………………10分由方程组2(2)x yy k x ⎧=⎨=+⎩ 得220x kx k --=所以12x x k += 122x x k ⋅=-………………………………………12分当12l l ⊥时,,12221x x ⋅=-,所以 18k =所以,直线l 的方程是 1(2)8y x =+ ………………………………14分20.(本小题满分14分)解:(1) x x x f ln )(-=,xx x x f 111)(-=-=' ……1分 ∴当10<<x 时,/()0f x <,此时()f x 单调递减当e x <<1时,/()0f x >,此时()f x 单调递增 …………3分 ∴()f x 的极小值为1)1(=f ……4分(2) ()f x 的极小值为1,即()f x 在],0(e 上的最小值为1, ∴ 0)(>x f ,min ()1f x =……5分 令21ln 21)()(+=+=x x x g x h ,21ln ()x h x x -¢=, …………6分 当e x <<0时,0)(>'x h ,()h x 在],0(e 上单调递增 ………7分 ∴min max |)(|12121211)()(x f e e h x h ==+<+== ∴在(1)的条件下,1()()2f xg x >+……………………………9分 (3)假设存在实数a ,使x ax x f ln )(-=(],0(e x ∈)有最小值3,/1()f x a x =-xax 1-=① 当0≤a 时,(0,]x e Î,所以()0f x ¢< , 所以)(x f 在],0(e 上单调递减,31)()(min =-==ae e f x f ,ea 4=(舍去), 所以,此时)(x f 无最小值. ……10分 ②当e a <<10时,)(x f 在)1,0(a 上单调递减,在],1(e a上单调递增 3ln 1)1()(min =+==a af x f ,2e a =,满足条件. ……11分③ 当e a≥1时,(0,]x e Î,所以()0f x ¢<, 所以)(x f 在],0(e 上单调递减,31)()(min =-==ae e f x f ,ea 4=(舍去), 所以,此时)(x f 无最小值.综上,存在实数2e a =,使得当],0(e x ∈时()f x 有最小值3.……14分21、【解析】(1)记)(n f b n =,由2)()1(+=+x f x f 有21=-+n n b b 对任意*N n ∈都成立,又λ==)1(1f b ,所以数列{}n b 为首项为λ公差为2的等差数列,………2分 故22-+=λn b n ,即.22)(-+=λn n f …………………………………4分(2)由题设3=λ若n 为偶数,则;21-=n n a ………………5分若n 为奇数且3≥n ,则2111()2222222n n n n n a f a a λλλ----==+-=⋅+-=+-,121n -=+………6分又21-=λa 1=,即11112132n n n n a n n n --=⎧⎪=+≥⎨⎪⎩为奇数且为偶数)()(24212312321n n n a a a a a a a a a a +++++++=++++-2221321(2221)(222)n n n --=++++-++++1221(1222)1n n -=+++++- 22 2.n n =+-……9分(3)当n 为奇数且3n ≥时,)]22(22[2)(1121121-+--+=-=--++++++λλn n n n n n n n n n a a a a a a a02312>⋅=-n ;…………………10分当n 为偶数时,)]22)(22()(1121121-++++++--+=-=-n n n n n n n n n n a a a a a a a λ)22(231-+⋅=-λn n ,……………11分因为211+++<n n n n a a a a ,所以022>-+λn,…………………………12分2n n ∴≥为偶数,,∵22n λ+-单增∴420λ+->即2->λ……………13分故λ的取值范围为).,2(+∞-…………………………………………………14分。

相关文档
最新文档