图像增强综述(终稿)

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图像增强综述

XXX

(长沙理工大学电路与系统学号:0000000000)

摘要:本文介绍了数字图像增强的国内外应用状况,对图像增强的目的与意义进行了阐述,对图像增强的两种主要算法做了简单介绍,介绍了图像增强在航空航天、生物医学、工业生

产、公共安全等领域的应用情况。

关键字:图像增强;空间域;频率域;算法

An Overview of Image Enhancement

Abstract:This paper introduces the application state of digital image enhancement at home and abroad,the purpose of image enhancement and significance of image enhancement are described,the two main algorithm of image enhancement are introduced in brief,introduces the application of image enhancement in aerospace, biological medicine, industrial production, public security and other areas.

Keywords:image enhancement;spatial domain;frequency domain;algorithm

1 图像增强技术的国内外发展现状

20世纪20年代图片第一次通过海底电缆从伦敦传往纽约。当时人们通过字符模拟得到中间色调的方法来还原图像。早期的图像增强技术往往涉及硬件参数的设置,如打印过程的选择和亮度等级的分布等问题[1-3]。到20世纪60年代早期第一台可以执行数字图像处理任务的大型计算机制造出来了,这标志着利用计算机技术处理数字图像时代的到来。20世纪60年代末和20世纪70年代初有学者开始将图像增强技术用于医学图像、地球遥感监测和天文学等领域。20世纪70年代Godfrey N. Hounsfield 先生和Allan M. Cormack教授共同发明计算机轴向断层技术。到了20世纪80年代以后,各种硬件的发展使得人们不仅能够处理二维图像,而且开始处理三维图像。许多能获得三维图像的设备和分析处理三维图像的系统已经研制成功了,图像处理技术得到了广泛的应用。进入20世纪90年代,图像增强技术已经逐步涉及人类生活和社会发展的各个方面。

在借鉴国外相对成熟理论体系和技术应用体系的条件下,国内的增强技术和应用也有了很大的发展。总体来说,图像增强技术的发展大致经历了初创期、发展期、普及期和应用期4个阶段。初创期开始于20世纪60年代,当时的图像采用像素型光栅进行扫描显示,大多采用中、大型机对其进行处理。20世纪70年代进入了发展期,开始大量采用中、大型机进行处理,图像处理也逐渐改用光栅扫描显示方式,特别是

出现了CT和卫星遥感图像,对图像增强处理提出了一个更高的要求。到了20世纪80年代,图像增强技术进入普及期,此时的计算机已经能够承担起图形图像处理的任务。20世纪90年代进入了应用期,数字图像增强技术在生物医学工程、工业、农业、工程、公共安全等领域,得到了广泛的应用。

2 图像增强的目的与意义

人类传递信息的主要媒介是语言和图像。据统计在人类接受的各种信息中视觉信息占80%,所以图像信息是十分重要的信息传递媒体和方式。图像传递系统包括图像采集、图像压缩、图像编码、图像存储、图像通信、图像显示这六个部分。但在实际应用中每个部分都有可能导致图像的品质变差,使图像传递的信息无法被正常读取和识别,因此研究图像增强技术具有非常重要的实现意义[2]。

图像增强是图像处理的基本内容之一。图像增强是指按特定的需要突出一幅图像中的某些信息,同时,削弱或去除某些不需要的信息的处理方法。其主要目的是使处理后的图像对某种特定的应用,比原始图像更适合,处理的结果使图像更适合于人的视觉特性或机器的识别系统。图像增强可归纳为两方面: (l)消除噪声;(2)边缘增强和结构信息的保护。

3 图像增强的算法介绍

由于图像增强技术现在还没有通用的算法,因此图像增强技术根据各种不同目的而产生了多种算法,最常用的即“空间域方法”和“频率域方法”[1-4]。随着数学各分支在理论和应用上的逐步深入,使得数学形态学、模糊数学、遗传算法、小波理论等在图像增强技术中的应用取得了很大进展,产生了不少新的算法。如数学形态滤波器,基于模糊数学的滤波方法,基于遗传算法的滤波方法,小波滤波器等。本文只介绍空间域与频域法。

3.1 空间域法

空间域增强是指在图像所在的二维空间进行增强处理,即增强构成图像的像素。空间域增强法主要有灰度变换增强、直方图增强、图像平滑和图像锐化等[5]。

3.1.1 灰度变换增强

灰度变换可调整图像的灰度动态范围或图像对比度,是图像增强的重要手段之一。它是将原图中的灰度f(x,y)经过一个变换函数g=T[f] 转化成一个新的灰度g(x,y)即:

g(x,y)=T[f(x,y)]

灰度变换可使灰度动态范围加大,根据变换函数的形式,灰度变换分为线性变换,分段性变换和非线性变换。

图1 线性变换示意图

采用线性变换对图像每一个像素灰度作线性拉伸,可有效地改善图像视觉效果。令图像f (i,j)的灰度范围为[a,b],线性变换后图像g (i,j)的范围为[a´,b´],如图1所示,g (i,j)与f (i,j)之间的关系式为:

g(i,j)='a +)),((''a j i f a

b a b --- 为了突出感兴趣目标所在的灰度区间,相对抑制那些不感兴趣的灰度区间,可采用分段线性变换。图2为分段线性的示意图,设原图像f(x,y)在[0,Mf],感兴趣目标的灰度范围在[a,b],欲使其灰度范围拉伸到[c,d],则对应的分段线性变换表达式为:

图2分段线性的示意图

当用某些非线性函数如对数函数、指数函数等,作为映射函数时,可实现图像灰度的非线性变换。

3.1.2直方图增强

灰度直方图反映了数字图像中每一灰度级与其出现频率间的关系,它能描述该图像的概貌。通过修改直方图的方法增强图像是一种实用而有效的处理技术。直方图修正法包括直方

相关文档
最新文档