锐角三角函数课件ppt

合集下载

《锐角三角函数》PPT教学课件(第1课时)

《锐角三角函数》PPT教学课件(第1课时)

BC AC
= 12 =
AC
34,所以AC=9.故填9.
随堂训练
AB 6.如图,在Rt△ABC中,∠C=90°,BC
17 15
,则tan
15 A=_8__.
由正切定义可知tan A=BACC , 因为 AB 17 , 可设BC=15a,AB=17a,从而可
BC 15
用勾股定理表示出第三边AC=8a,再用正切的定义求解得 tan A= BC 15 .
由勾股定理可得 AB= BC2 AC2 122 162 =20.
∴AB的长为20.
课堂小结
1.正切的定义: 如图,在Rt△ABC中,如果锐角A确定,那么∠A的对边与邻
边的比便随之确定,这个比叫做 ∠A的正切,记作tan A, 即tan A= A的对边
A的邻边
2.tanA的值越大,梯子(坡)越陡
图①
图②
新课导入
问题引入
如图所示,轮船在A处时,灯塔B位于它 的北偏东35°的方向上.轮船向东航行5 km 到达C处时,轮船位于灯塔的正南方,此时轮 船距灯塔多少千米?(结果保留两位小数)
该实际问题中的已知和所求为图中的哪些角和线段?
(事实上,求轮船距灯塔的距离,就是在Rt△ABC中,已知 ∠C=90°,∠BAC=55°,AC=5 km,求BC长度的问题)
C,C'.
BC AC
与BACC
具有怎样的关系?
在两个直角三角形中,当一对锐角相等
时,这两个直角三角形相似,从而两条对应直
角边的比相等,即当∠A(小于90°)确定时,以 ∠A为锐角的Rt△ABC的两条直角边的比 BC
AC
是确定的.
知识讲解
1.正切的定义
如图所示,在Rt△ABC中,∠C=90°,我们把∠A的对边与邻边的比叫

第18讲锐角三角函数ppt课件

第18讲锐角三角函数ppt课件

( C)
4
3
3
4
A.5
B.5
C.4
D.3
第18讲┃ 锐角三角函数
[归纳总结]
如图18-2,在Rt△ABC中,∠C=90°,∠A,∠B, ∠ tanCA的=对__边__分ab__别__为.a,b,c,则sinA=____ac____,cosA=bc,
图18-2
第18讲┃ 锐角三角函数
考点2 特殊角的三角函数值 1.在直角三角形中,若有一个角为30°,那么它所对
探究一 锐角三角函数 例1 如图18-9,A,B,C三点在正方形网格线的交
点处,若将△ACB绕着点A逆时针旋转得到△AC′B′,则
tanB′的值为
(B )
图18-9
A.12
B.13
C.14
D.
2 4
第18讲┃ 锐角三角函数
[解析] 旋转后的三角形与原三角形全等,得∠B′= ∠B,将∠B放在以BC为斜边,直角边在网格线上的直角 三角形中,∠B的对边为1,邻边为3,tanB′=tanB=13.
第18讲┃ 锐角三角函数
7.[2013·安顺] 在 Rt△ABC 中,∠C=90°,tanA=43, BC=8,则△ABC 的面积为__2_4_____. [解析] ∵tanA=BACC=43,∴AC=6, ∴△ABC的面积为12×6×8=24, 故答案为24.
第18讲┃ 锐角三角函数
8.[2013·河池] 如图18-16,在△ABC中,AC=6,BC= 5,sinA=23,则tanB=____43____. 图18-16 第18讲┃ 锐角三角函数
┃考点自主梳理与热身反馈 ┃ 考点1 锐角三角函数
1. 如BC图=181-,1则,s在inAR=t△__A_B12_C__中__,,∠coCs=A=90_°__,2_3_若__A_B.=2,

《锐角三角函数》课件

《锐角三角函数》课件
锐角三角函数图像与性质
正弦函数图像及性质
周期性
振幅
相位
图像特点
正弦函数具有周期性,周期为2π。
正弦函数的相位表示函数在水平方向上的移动,通过调整相位可以得到不同位置的正弦波。
正弦函数的振幅为1,表示函数在垂直方向上的波动范围。
正弦函数的图像是一条连续的、平滑的曲线,呈现周期性的波动。
余弦函数图像及性质
202X
单击此处添加副标题内容
《锐角三角函数》ppt课件
汇报日期
汇报人姓名
目录
锐角三角函数基本概念
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数图像与性质
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数运算规则
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数在实际问题中应用
乘法运算规则
两个锐角三角函数的除法运算,通常转化为同角三角函数的除法运算,再利用同角三角函数的基本关系式进行化简。
除法运算规则
按照先乘除后加减的运算顺序进行乘除混合运算,注意运算过程中的化简和约分。
乘除混合运算规则
复合运算规则
复合函数的定义域
复合函数的值域
复合函数的单调性
复合函数的周期性
01
02
03
钝角三角函数定义
探讨了钝角三角函数的性质,如取值范围、增减性等,以及与锐角三角函数的异同点。
钝角三角函数的性质
介绍了在直角情况下,一些特殊角的三角函数值,如0°、30°、45°、60°、90°等,以及如何利用这些特殊值进行计算和证明。
直角情况下的特殊值
感谢观看
THANKS
渐近线与间断点
02

沪科版数学九年级上册 23.1 锐角三角函数 课件(共13张PPT)

沪科版数学九年级上册 23.1 锐角三角函数  课件(共13张PPT)

(6) tan30°·tan60°+ cos230°
本节课学习了什么内容?
三角函数 sina cos a tan a
30°
1 2
3 2 3 3
45°
2 2
2 2
1
60°
3 2
1 2
3
拓展探究
求已知锐角的三角函数值:
21..求求csoint7603゜゜4552′′的41值″的.(值精. 确(到精0确.0到0001.)0001) 在先角用度如单下位方状法态将为角“度度单” 位的状情态况设下定:屏为幕“显度示”出
显示
按再下按列下列顺顺序序依依次次按按键键
由锐角三角函数值求锐角:
已知tan x=0.7410,求锐角 x.(精确到1′) 在角度单位状态为“度” 的情况下(屏幕显示 出 ),按下列顺序 依次按键:
显示结果为36.538 445 77.
再按键:
24.2锐角三角函数值
自学检测:
根据三角函数的定义,sin30°是一个常数.用刻度
尺量出你所用的含30°的三角尺中,30°所对的
直角边与斜边的长,与同桌交流,看看这个常数
是什么.
B
sin30°=
对边 =1 Βιβλιοθήκη 边 2理由:30在直角三角形中,如果A一个锐角等于30°,C
那么它所对的直角边等于斜边的一半.
若 tan 1 则α=______3_0_°____;
3
若 cos 1 ,则α=______4_5_°____.
2
2.根据下列条件,求出相应的锐角A:
(1) sin A 2 ; (2) cos A 3 0;
2
2
(3) tan(A 20) 1.
基础练习:

26.2 锐角三角函数的计算课件(共16张PPT)

26.2 锐角三角函数的计算课件(共16张PPT)
例1 用计算器求三角函数值:(精确到0.000 1).(1)sin 10°; (2) cos 50°18' .
例题示范
解:(1) ∴ sin 10°≈ 0.173 6.(2) ∴ cos 50°18' ≈ 0. 638 8.
例2 用计算器求下列各锐角的度数:(结果精确到1")(1)已知cosα=0.523 7,求锐角α.
第二十六章 解直角三角形
26.2 锐角三角函数的计算
学习目标
学习重难点
重点
难点
1.会用计算器求锐角的三角函数值.2.会用计算器根据一个锐角三角函数的值求对应的锐角.
会用计算器求锐角的三角函数值.
正确使用计算器求锐角的三角函数值.
回顾复习
根据前面学习的特殊角的三角函数值,完成下面的表格.
问题引入
我们已经知道30°,45°,60°的三角函数值,那么,怎样计算任意锐角的函数值呢?反过来,已知一个锐角的三角函数值,怎样求出这个锐角呢?如何求它的三角函数值呢?
新知引入
思考 如何用计算器求锐角的三角函数值呢?

计算器上只要有sin,cos,tan键,就可以用来求锐角的三角函数值.
不同计算器的按键方法各有不同,现在介绍一种计算器,先按ON/C键,再按MODE键,使显示器屏幕出现“DEG”,然后再按有关三角函数的键.
拓展练习
1.用计算器求sin 16°,cos 42°,tan 85°,sin 72°38′25″的值.
按键顺序
显示结果
sin 16°
0.275 637 355
cos 42°
0.743 144 825
tan 85°
11. 430 052 3
sin72°38′25″

锐角的三角函数PPT

锐角的三角函数PPT

余弦函数的符号为cos,表示为cos(θ), 其中θ为锐角。
02
余弦函数的图像是一条周期为2π的余弦 曲线,表示在直角三角形中,邻边的长 度与斜边的长度的比值在[-1,1]之间周 期性变化。
04
正切函数的定义
01
正切函数:tan(θ) = sin(θ) / cos(θ)
02
正切函数的定义域:(0, π/2)
余弦函数的值域:[-1, 1]
余弦函数的图像:一个周期为2π的周 期函数,图像关于y轴对称
余弦函数的奇偶性:偶函数,f(x) = f(-x)
余弦函数的单调性:在[0, π/2]上是 增函数,在[π/2, π]上是减函数
余弦函数的导数:f'(x) = -sin(x)
正切函数的性质
01
02
03
04
05
值域:正弦函数的值域是[-1, 1]
奇偶性:正弦函数是奇函数, 即f(x) = -f(-x)
周期性:正弦函数的周期是 2π,即f(x + 2π) = f(x)
最值:正弦函数的最大值是1, 最小值是-1
图像:正弦函数的图像是一 条正弦曲线,关于原点对称
余弦函数的性质
定义:余弦函数是直角三角形中的一 个角与对边和斜边的比值
03
正切函数的值域:(0, ∞)
04
正切函数的图像:在平 面直角坐标系中,正切 函数的图像是一条以原 点为中心的对称曲线, 在y轴右侧的部分为单调 递增,在y轴左侧的部分 为单调递减。
Part Two
锐角三角函数的性 质
正弦函数的性质
定义:正弦函数是直角三角 形中的一个角(锐角)的正 弦值与对边长度的比值
06
正切函数是锐 角三角函数中 的一种,表示 在一个直角三 角形中,对边 (opposite) 的长度与邻边 (adjacent) 的长度之比。

锐角三角函数(18张PPT)

锐角三角函数(18张PPT)
13 5
解:如图(2)在Rt△ABC中,
BC 5 sin A , AB 13
C
(2)
A
AC AB2 BC 2 132 52 12
AC 12 因此sin B AB 13
小试牛刀
1.判断对错:
BC √ ) 1) 如图 (1) sinA= ( AB
BC (2)sinB= (×) AB
B 3
解:如图(1)在Rt△ABC中,
C
B 13
5
A
AB AC BC 4 (1)
4
2 2
2
C 3
2
5
B
(2)
A
13
BC 3 AC 4 因此sin A , sin B AB 5 AB 5
5
C
(2)
A
试一试
例1 如图,在Rt△ABC中,∠C=90°,求 B sinA和sinB的值.
B 10m 6m C
(3)sinA=0.6m (×) (4)SinB=0.8 (√ ) BC 2)如图,sinA= (× ) AB
A
sinA是一个比值(注意比的顺序),无单位;
小试牛刀
2倍,sinA的值( C
A.扩大100倍

1 B.缩小 100
B
a
c
C
b
A
独立完成作业的良好习惯,
是成长过程中的良师益友。
结论:在直角三角形中,当锐角A的度数一定时, 不管三角形的大小如何,∠A的对边与斜边的比 也是一个固定值.
直角三角形的一个锐角的对边与斜边 的比值为这个锐角的正弦
如:∠A的正弦 记作:sinA 即 a ∠A的对边 sinA= = 斜边 c

冀教版九年级数学上册26.1《锐角三角函数》(共19张PPT)

冀教版九年级数学上册26.1《锐角三角函数》(共19张PPT)

30°、45°、60°角的正弦值、余弦值和正切值如下表:
锐角a
三角函数 sin a cos a tan a
30°
1 2 3 2
3 3
45°
2 2
2 2
1
60°
3 2
1 2 3
典例精析 例2. 求下列各式的值:
(1) 2sin 30 3 tan 30 tan 45
(2) sin2 45 tan 60 sin 60
第二十六章 解直角三角形
26.1 锐角三角函数
第2课时 正弦与余弦
导入新课
讲授新课
当堂练习
课堂小结
复习巩固
1.正切的定义:
Rt△ABC中,锐角A的对边与邻边的比叫做∠A的正切,记作
tanA,即
tanA=2ຫໍສະໝຸດ 特殊角的正切值:A的对边 A的邻边
B
tan30° tan45° tan60°
31 3
3
斜边 ∠A的对边
AB 10 5
课堂小结
锐角三角函数
在Rt△ABC中
sinA= A的对边 = a
A的斜边
c
cosA= A的邻边 = b
A的斜边
c
tanA= A的对边 = a
A的邻边
b
课堂小测
1. 在Rt△ABC中,∠C=90°,AC=3,BC=4,则 sinA的值为(D )
A.
B.
C.
D.
2. sin2 30 cos2 30 tan 45 0
典例精析1、 例题3.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,
的三角函数A值.
C
5
12
解:由勾股定理
A

浙教版数学九年级下册 1.1 锐角三角函数 课件(共18张PPT)

浙教版数学九年级下册 1.1 锐角三角函数 课件(共18张PPT)
? 求BE的长.
B(山顶)
H
当锐角为30°时,
30°
西坡
其所对的直角边与
斜边之比始终
30°
A
D
B(山顶)
为 1.
C
2
E
东坡
当锐角为45°时,
其所对的直角边
30°
CF
D
B(山顶)
与 斜边之比始 终为 2 .
2
当锐角为50°时,
G 南坡
这个比值是一个确 定的值.
C
HD
任意作一个锐角∠A,在角的边上任意取两点B
与B1分别作BC⊥AC于点C ,B1C1⊥A1C1于点C1.
判断 BC 与 B1C1 是否相等,并说明理由. B1
AB
AB1
B
A
C C1
对于每一个确定的锐角α,在角的边上任意取
一点B作BC⊥AC于点C,比值 BC 是一个确
定的值.
AB
B
A
C
直角三角形中锐角ɑ与其对边与斜边比值关系
ɑ
BC (对边与斜边比值)
1.1锐角三角函数(1)
我关心的是本质 其它都是细节(爱因斯坦)
一 情境创小设红、小强、小颖约好去爬山,他们沿不同倾 斜度的三条道路上山,若山顶与山下的铅垂距离为100 米,你能分别求出他们到达山顶要走的路程吗?
南坡
50°
小颖出发地
西坡
东坡
30°
小红出发地
45°
小强出发地
转化成的数学问题 B(山顶)
2.sinα是一个完整的符号,单独的“sin”没有意义.
练一练
1. 如图△ABC中,∠C=90°,BC=5,AC=12B.
5
计算:(1)sinA= 13.

锐角三角函数总复习ppt课件.pptx

锐角三角函数总复习ppt课件.pptx

基础自主导学
1.如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的 是( )
A.sin
A=
3 2
C.cos
B=
3 2
答案:D
B.tan A=12 D.tan B= 3
2.在正方形网格中,△ABC的位置如图,则cos B的值为( )
A.
1 2
C.
3 2
答案:B
B.
2 2
D.
┃ 知识归类
解直角三角形
1.三边关系:a2+b2=c2
2.三角关系:∠A=90°-∠B
a
3.边角关系:sinA=cosB= c


b
,cosA=sinB=c ,tanA
sinA
sinB
= cosA ,tanB= cosB
.
4.面积关系:sABC
1 2
ab
1 2
ch
(2)直角三角形可解的条件和解法
条件:解直角三角形时知道其中的2个元素(至少有一个是边), 就可以求出其余的3个未知元素.
[思路分析]设每层楼高为x m,由MC-CC′求出MC′的 长,进而表示出DC′与EC′的长,在直角三角形DC′A′中, 利用锐角三角函数定义表示出C′A′,同理表示出C′B′, 由 C′B′-C′A′求出 AB 的长即可.
解:设每层楼高为 x m, 由题意,得 MC′=MC-CC′=2.5-1.5=1(m). ∴DC′=5x+1,EC′=4x+1. 在Rt△DC′A′中,∠DA′C′=60°, ∴C′A′=tDanC6′0°= 33(5x+1).
1 2
,sin45°=
2 2
,sin60°=
3 2

浙教版数学九年级下册 1.1 锐角三角函数 课件(共25张PPT)

浙教版数学九年级下册  1.1 锐角三角函数 课件(共25张PPT)

观察以上计算结果,你发现了什么?
sinA=cosB ,cosA=sinB (∠A+∠B=90)
tanA·tanB=1
(∠A+∠B=90)
B
c
a

A
b
C
sin A a cos A b tan A a
c
c
b
sin B b cos B a
c
c
tan B b a
如图,在△ABC中,若AB=5,BC=3,则下列结论正确
锐角A,A′的余弦值的关系为( ) A
A.cosA=cosA′ B.cosA=3cosA′ C.3cosA=cosA′ D.不能确定 2.如图,已知P是射线OB上的任意一点,PM⊥OA于M,
且PM:OM=3:4,则cosα的值等于( C)
3 A.4
4 B.3
C.4 5
3
D.
5
3.在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,
是关于锐角α的三角函数。
AB AB AC
B
A
C
锐角α的正弦,余弦和正切统称∠α的三角函数.
比值 BC 叫做∠α的正弦(sine),记做sinα.
AB
BC
比值 AC
即sinα= AB
叫做∠α的余弦(cosine) ,记做cosα.
AB
即cosα= AC
AB 比值 叫做∠α的正切(tangent) ,记做tanα.
b,c,则下列各项中正确的是( ) B
A.a=c·sinB B.a=c·cosB C.a=c·tanB D.以上均不正确
4.在Rt△ABC中,∠C=90°,cosA= 2 ,则tanB等于( )
C

26.1 锐角三角函数 - 第1课时课件(共19张PPT)

26.1 锐角三角函数 - 第1课时课件(共19张PPT)
提示:过点A作AD垂直于BC于点D.求锐角三角函数时,勾股定理的运用是很重要的.
3.如图,正方形ABCD的边长为4,点M在BC上,M,N两点关于对角线AC对称, 若DM=1,求tan∠ADN的值.
解:由正方形的性质可知,∠ADN=∠DNC,BC=DC=4,∵ M、N两点关于对角线AC对称, ∴ DM=1BN=DM=1.tan∠AND=tan∠DNC= .
知识点 正切的概念
新知探究
思考
在两个直角三角形中,当一对锐角相等时,这两个直角三角形相似,从而两条对应直角边的比相等,即当∠A(小于90°)确定时,以∠A为锐角的Rt△ABC的两条直角边的比 是确定的.
发现
正切
如图,在Rt△ABC中,∠C=90°,∠A的对边与邻边的比叫做∠A的正切,记作:tanA ,即
在Rt△ABC中,∠C=90°.(1)如图(1),∠A=30°,求tanA,tanB的值.(2)如图(2),∠A=45°,求tanA的值.
例1
例题示范
随堂演练
1.在△ABC中,已知AC=5,BC=4,AB=3.那么下列各式正确的是( )A.tanA= B.tanA=CtanC= DtanC=
课堂小结
正切
定义
对边与邻边的比
表示方法
有关计算
与锐角的大小有关,与三角形边的长短无关
同学们再见!
授课老师:
时间:2024年9月15日
A
2.在Rt△ABC中,锐角A的对边和邻边同时扩大100倍,tanA的值( ) A.扩大100倍 B.缩小 C.不变 D.不能确定
C
3. 如图, P是平面直角坐标系上的一点,且点P的坐标为(3,4),则tan α = .
第 二十六章 解直角三角形

锐角三角函数优秀教学课件市公开课一等奖省优质课获奖课件.pptx

锐角三角函数优秀教学课件市公开课一等奖省优质课获奖课件.pptx

用计算器求出以下各角三角函数值,说明你发觉,
并尝试验证.
(1)sin 62°25'30″; (2)sin 80°;
(3)sin 12°25'; (4)cos 27°34'30″;
(5)cos 10°;
(6)cos 77°35'.
【结论】
(1)锐角α正弦值伴随α增大而增大;
(2)sin α=cos(90°-α),其中α为锐角.
第6页
检测反馈
1.用计算器求sin 62°20'值正确是 ( ) A A.0.8857 B.0.8856 C.0.8852 D.0.8851
解析:按计算器使用说明依次按键得sin 62°20'≈3249,则∠A约为
A.17° B.18° C.19°
(B) D.20°
解析:按计算器使说明依次按键得∠A≈18°.故选B.
3.用计算器求三角函数值(准确到0.001).
(1)sin 23°≈ 0.391 ;
(2)tan 54°53'40″≈ 1.423 .
解析:用计算器求得sin 23°≈0.391,tan 54°53'40″≈1.423.
第7页
4.已知sin α=0.2,cos β=0.8,则α+β≈ 48°24' .(准确到1')
第2页
用计算器求任意锐角三角函数值
求出以下各角三角函数值.
(1)sin 18°; (2)cos 21°28'30″; (3)tan 30°36'.
解:(1)sin 18°≈0.309016994. (2)cos 21°28'30″≈0.930577395. (3)tan 30°36'≈0.591398351.

锐角三角函数--课件

锐角三角函数--课件
D
A
F
E
C
B
哪个轨道更陡?
你是如何判断的?
问题1:如图,梯子AB和DE哪个更陡?你
是怎么判断的?
问题2:如图,梯子AB和DE哪个更陡?你
是怎么判断的?
E
(1)
B
(2)
4m
6m
A
2m C
D
3m
F
问题3:如图,梯子AB和DE哪个更陡?你
是怎么判断的?
(1)
B
(2)
E
4m
A
3m C
3m
D
2m F
(2)若AC=9,AB=15,求
tanA和tanB
B
C
如图,某人从小山坡下的B点走了15米到达坡顶的A, 已知点A到坡脚的垂直距离为9m,求坡的坡度.
A
坡角
B
C
练 如图:求tanC=( C
(A) 1 (B) 5 (C) 4
6
3
B
) (D) 5
3
5
5
4
构造直角三角形
A 3 D6 3 C
在非直角三角形中求角的正切值,要作辅助 线构造直角三角形来解决问题.
小组活动3:
探索30°,45°,60 ° 角的正切值.
小组活动4:
如图,△ABC是等腰直角三角形,
∠C=90°. 若 AD是BC边上的角平
分线, 求∠BAD的正切值.
B
D
A
C
将本堂课记录的角度及 它的正切值填入表格
(按角的度数从小到大排列)
1、谈谈本节课的收获. 2、说说团队合作的感受.
作业布置:
邻边的比值改变吗?
B
B1
A
C1

1.1锐角三角函数(第一课时)课件(共17张PPT)浙教版数学九年级下册

1.1锐角三角函数(第一课时)课件(共17张PPT)浙教版数学九年级下册


cosA=
=

∠的邻边
温馨提醒:以正弦为例
sinA(省去角的符号),
30°的正弦表示为sin30°,比值 叫做∠A的正切值,记做tanA,即
斜边

∠BAC的正弦表示为sin∠BAC

,∠1的正弦表示为:sin∠1.
tanA=
∠的对边
∠的邻边
=

概念运用
①BC=8,AC=6
概念



cosA=

= ,

tanA=

4
3
sinA=
4
5
3
= ,
5
= .
解后反思:在直角三角
形中,已知什么条件可
以求三角函数值?
课堂练习
1.如图,在Rt△ABC中,∠ACB=90°,作CD⊥AB于
点D,若BC=5,BD=4,求sin∠A.
C
A
B
思路1:求AB的长
思路2:等角转化
△BCD∽△BAC
B"
P
C" Q
图(1)
图(2)
角为30°
’’ 1
""
=
= =
’’ 2
"
’’
3 "
=
=
=
’’
2
"
’’
3 ""
=
=
=
’’
3
"
请先按暂停键!
思考完成后
再按回播放键!
边的比值为定值
探索规律
当∠PAQ发生改变时,刚才所获得的发现是否还成立呢?
解:设AB=5k,AC=3k,

锐角三角函数PPT比赛课市公开课一等奖省优质课获奖课件.pptx

锐角三角函数PPT比赛课市公开课一等奖省优质课获奖课件.pptx
第10页
【针对练一】
1.计算: (1)2 cos45°;
解: 2 2 2
2
(2)1-2sin30°cos30°. 解: 1 2 1 3 22 1 3 2 2 3 2
第11页
合作探究 达成目标
例4:如图(1),在RtABC中,C 900 ,
AB 6, BC 3, 求A的度数。
(2)如图(2),已知圆锥的高AO等于
第13页
总结梳理 内化目标
熟记特殊三角函数表:
30°
45°
60°
sinα
1
2
3
2
2
2
cosα
3
2
1
2
2
2
tanα
3
3
1
3
要熟记上表,灵活利用
第14页
达标检测 反思目标
1、已知α为锐角,且 1 <cosα< 2 ,则α取
2
2
值范围是( )C
A.0°<α<30°
B.60°<α<90
C.45°<α<60°
展示点评:问题(1)中,有两个变量t与v,当一个量t 改变时,另一个量v伴随它改变而改变,而且对于t每个 确定值,v都有唯一确定值与其对应.问题(2)(3) 也一样.所以这些变量间含有函数关系,它们
解析式分别为 v 1463 ,y 1000 ,S 1.68104 .
t
x
n
第5页
合作探究 达成目标
第3,4,7题 .
• 课后作业:“学生用书”课 后作业部分.
第18页
∠A邻边
第3页
• 1.了解特殊角三角函数值由来 . • 2.熟记30°,45°,60°三角函数值. • 3.依据一个特殊角三角函数值说出这个角.

28章锐角三角函数全章ppt课件

28章锐角三角函数全章ppt课件

问题(1)当梯子与地面所成的角a为75°时,梯子顶端与地面的 距离是使用这个梯子所能攀到的最大高度.
问题(1)可以归结为:在Rt △ABC中,已知∠A=75°,斜
边AB=6,求∠A的对边BC的长.
B
由 sin A BC 得 AB
BC AB sin A 6sin 75
由计算器求得 sin75°≈0.97
α
A
C
所以 BC≈6×0.97≈5.8
因此使用这个梯子能够安全攀到墙面的最大高度约是5.8m
对于问题(2),当梯子底端距离墙面2.4m时,求梯子与地面所成的 角a的问题,可以归结为:在Rt△ABC中,已知AC=2.4,斜边AB=6, 求锐角a的度数
由于
B
cos a AC 2.4 0.4
AB 6
tan A BC 8k 8 AC 15k 15
例题示范
例3: 如图,在Rt△ABC中,∠C=90° B
1.求证:sinA=cosB,sinB=cosA
2.求证:tan A sin A ;tan A 1
cos A
tan B
3.求证:sin2 A cos2 A 1
A
C
sin2 A sin A sin A
如图,Rt△ABC中,直角边AC、BC小于斜边AB,
sin A BC <1
AB
sin B AC AB
<1
A
C
所以0<sinA <1, 0<sinB <1, 如果∠A < ∠B,则BC<AC , 那么0< sinA <sinB <1
探究
精讲
如图,在Rt△ABC中,∠C= 90°,当锐角A确定时,∠A 的对边与斜边的比就随之确 定,此时,其他边之间的比 是否也确定了呢?为什么?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
斜边 AB 2
可得AB=2BC=10×2=20m 所以,扶梯的长度是20m.
已知等腰直角三角形ABC,∠C=90 °,计 BC 算∠A的对边与斜边的比 ,你能得出什么结 AB 论? A
C

B
A 解:因为△ABC是等腰直角三角形, ∠C=90 °,所以∠A=45 °. ┓ C 由勾股定理得
B
AB AC BC 2BC
新课导入
操场里有一个旗杆,老师让小明去测量旗 杆高度,小明站在离旗杆底部10米远处,目测 旗杆的顶部,视线与水平线的夹角为30度,并 已知目高为1米.然后他很快就算出旗杆的高 度了. 你想知道小明怎样算
出的吗?
?
30
1米 10米
实际问题
某商场有一自动扶梯,其倾斜角为30°,高为 7m,扶梯的长度是多少? B 7m ┓ C 30° A
1
所以,在Rt△ABC中,在直角三角形中,当锐 角A的度数一定时,不管三角形的大小如何, ∠A 的对边与斜边的比是一个固定值.
直角三角形ABC可以简记为Rt△ABC,直 角∠C所对的边AB称为斜边,用c表示,另两 条直角边分别叫∠A的对边与邻边,用a、b表 示. A c 邻边
斜边

C
b
B
对边 a
知识要点
2 2
┓ C
( 6 )2 ( 10 )2 4
10
(2)
B
BC 10 , 因此 sin A AB 4 AC 6 sin B . AB 4
小练习
如图,求sinA和sinB的值. A A 26 10 9 ┓ C ┓ B C (1)
12 5 sin A ,sin B . 13 13
可以大于1吗?
知识要点
锐角三角函数
锐角A的正弦、余弦、正切、余切都 叫做∠A的锐角三角函数(trigonometric function of acute angle)
归纳
1.sinA、cosA、tanA 、 cotA是在直角三角 形中定义的,∠A是锐角(注意数形结合,构造直 角三角形). 2.sinA、 cosA、tanA 、 cotA是一个比值 (数值). 3.sinA、 cosA、 tanA 、 cotA的大小只与 ∠A的大小有关,而与直角三角形的边长无关.
知识要点
余切
在Rt△ABC中, ∠C=90 °,我们把 锐角A的邻边与对边的比叫做∠ A的余切, 记作cotA,即
A的邻边 b cotA A的对边 a
一个角的余切 表示定值、比 值、正值.
3 tan30°= ? 3
tan 45°= 1 ?
B
tan 60°= ? 3
A
┌ C
锐角A的正切值可以等 于1吗?为什么?
A的邻边 b cos A 斜边 c
一个角的余弦 表示定值、比 值、正值.
知识要点
正切
在Rt△ABC中, ∠C=90 °,我们把 锐角A的对边与邻边的比叫做∠ A的正切 (tangent),记作tanA,即
A的对边 a tanA A的邻边 b
一个角的余切 表示定值、比 值、正值.
解:这个问题可以归结为,在Rt△ABC中, ∠C=90 °,∠A=30 °,BC=7m,求AB.
∵在直角三角形中, 由于∠A=30 °,
所以 A的对边 BC 1
斜边 AB 2
可得AB=2BC=7×2=14m
所以,扶梯的长度是14m.
想一想
在上面的问题中,如果高为10m , 那么需要准备多长的水管? 解:这个问题可以归结为,在Rt△ABC中, ∠C=90 °,∠A=30 °,BC=10m,求AB. ∵在直角三角形中, 由于∠A=30 °, 所以 A的对边 BC 1
40 (2)
B
40 9 sin A ,sin B . 41 41
想一想
对于锐角A的每一个确定的值,其邻 边与斜边、邻边与对边的比值也是惟一确 定的吗?
观察右图中的 Rt△AB1C1、Rt△AB2C2和 Rt△AB3C3,∠A的邻边与 斜边、 ∠A的对边与邻边之 间有什么关系?
Rt△AB1C1∽Rt△AB2C2∽Rt△AB3C3 所以
B2C2 AC2
AC 3 AC 2 AC1 AB3 . =__________ AB2 AB1 =__________
B3C3 B1C1 =__________=__________ . AC3 AC1
在Rt△ABC中,在直角三角形中,当锐角A的 度数一定时,不管三角形的大小如何, ∠A的∠A 的邻边与斜边的比、 ∠A的对边与邻边的比都是 一个固定值.
固定值
想一想
对于锐角A的每一个确定的值,其对 边与斜边的比值也是惟一确定的 吗?
观察右图中的 Rt△AB1C1、Rt△AB2C2和 Rt△AB3C3,∠A的对边与 斜边有什么关系?
Rt△AB1C1∽Rt△AB2C2∽Rt△AB3C3 B C B3C3 2 2 B1C1 AB2 所以 AB =__________ =__________ . AB3
2 2 2
2
BC BC 1 2 因此 AB 2 2BC 2 即直角三角形中,当一个角等于 45°时,这个角的对边与斜边的比 都等于 2 .2ຫໍສະໝຸດ AB 2BC归纳
在Rt△ABC中, ∠C=90°. 当∠A=30°时, A的对边 BC 1
斜边 AB 2
固定值
A的对边 BC 2 当∠A=45°时, 斜边 AB 2
B
┓ C
10
(2)
B
A
解:设如图所示,在Rt△ABC中,
AB AC 2 BC 2 62 82 10
6
因此
┓ C
8
B
BC 8 4 sin A , AB 10 5 AC 6 3 sin B . AB 10 5
(1)
A
6
解:设如图所示,在Rt△ABC中,
AB AC BC
正弦
在Rt△ABC中, ∠C=90 °,我们把 锐角A的对边与斜边的比叫做∠ A的正弦 (sine),记作sinA,即 A的对边 a sin A 斜边 c 一个角的正弦
表示定值、比 值、正值.
【例1】如图,在Rt△ABC中, ∠C=90 °, 求sinA和sinB的值. A A
6
6
┓ C 8 (1)
归纳
在Rt△ABC中,在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何, ∠A的对边边与斜边的比、 ∠A的邻边与斜边的比、 ∠A的对边与邻边的比都是一个固定值.
知识要点
余弦
在Rt△ABC中, ∠C=90 °,我们把 锐角A的邻边与斜边的比叫做∠ A的余弦 (cosine),记作cosA,即
相关文档
最新文档