线性代数第六章向量空间及向量的正交性讲义

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、n 维向量的定义及运算

一、n 维向量的定义及运算二、向量空间

二、向量空间第一节向量空间

第二节向量的正交性

一、向量空间及其维数和基

一、向量空间及其维数和基

二、向量在基下的坐标

二、向量在基下的坐标

例1

设V 是一些n 维实向量的组成的非空集合,如果V 关

于向量的加法与数乘封闭(线性运算封闭),即

(1) ∀a , b ∈V , 有a +b ∈V .

(2) ∀a ∈V , k ∈R , 有k a ∈V .

则称V 是一个实向量空间.

一、向量空间及其维数和基

定义1全体n 维向量的集合{(x 1, x 2, …, x n )T | x i ∈R ,i=1, 2, …, n }是一个向量空间,记为R n .

特别的

n = 1 时全体实数R 是一个向量空间;

n = 3 时全体三维向量{(x 1, x 2, x 3)T |x i ∈R ,i= 1, 2, 3 } 是一个向量

空间,记为R 3.

n = 2 时全体平面中的向量{(x 1, x 2 )T | x i ∈R ,i=1, 2} 是一个向量空

间,记为R 2.

注:向量空间中必含有零向量。

例3

例2而W = {(a 1, a 2, …, a n )T |}01∑==n

i i a 是一向量空间.

}1|),,,{(1

21∑==…=n

i i T n a a a a S 不是一向量空间, 因为它关于加法与数乘均不封闭,也不含零向量.仅含一个n 维零向量0=(0, 0, …, 0)T 的集合{0}构成一

个向量空间,称为零空间.除零空间之外的所有向量空间均称为非零空间。

设V 是一个向量空间,W V

, W ≠∅. 如果W 关于向量的加法与数乘也封闭,则称W 是V 的子空间.

定义2若W V ,并且V W , 则称两个向量空间相等,记为W=V.

⊆⊆⊆

例5}

1,,2,1,|)0,,,,{(1211−=∈=−n i a a a a W i T n ""R }|),,,,{(2R ∈=a a a a a W T "n 个分量

都是R n 的子空间.

及例6

设a ∈V , 则span {a } = {ka | k ∈R }为V 的子空间,称它为由a 生成的子空间,a 称为这子空间的生成元.

{}}

,,2,1,,|{,,1

1s i k k span i s

i i i s ""=∈==∑=R a a a a a 是V 的由a 1, a 2, …, a s 生成的子空间.

更一般地,设a 1, a 2, …, a s ∈V .例4

V 本身和{0}都是V 的子空间,称它们为V 的平凡子空间.

例7

证明:m×n阶齐次线性方程组Ax=0的解集S组成一个向量空间,称S为齐次方程组Ax=0的解空间.

证明:设u,v为Ax=0的解集S中的任意两个向量,满足

Au=0,Av=0. 设k为任一实数。

那么A(u+v)=Au+Av=0. 并且A(ku)=kAu=0。

因此u+v∈S, ku∈S. 从而S为一个向量空间。

定义3

称向量组V 的极大无关组为向量空间V的一组基底(基),而V 的秩称为向量空间V 的维数,记为dim(V).

规定:零空间的维数为0, 它没有基.

向量空间的任何一个极大无关组都是一组基,存在而不唯一。

例9

例8

设R n 为全体n 维向量构成的向量空间,证明n 维向量组e 1= ( 1, 0, 0, …, 0 )T , e 2= ( 0, 1, 0, …, 0 )T , …, e n = ( 0, 0, 0, …, 1 )T 是R n 的基, 且dim(R n )=n.

由矩阵判别法知e 1, e 2, …, e n 线性无关. 设 a = (a 1, a 2, …, a n )T

为任一n 维向量, 显然有

a = a 1 e 1+ a 2 e 2+…+ a n e n .

所以a 可由e 1, e 2, …,e n 线性表出,即e 1, e 2, …, e n 是R n 的基,从而dim(R n )= n.

证设V 为一向量空间,且dim V = r , 而a 1, a 2, …, a r 为V 中r 个线性无关的向量,则a 1, a 2, …, a r 必为向量空间V 的一组基.

上一页

例10

证明向量组

a 1 = (1, 2, 1)T , a 2 = (3, 0, −1)T , a 3 = (2, −3, 5)T

为空间R 3的一组基.

由于dim R 3 = 3, 故只要证明a 1, a 2 , a 3 线性无关即可.由于

123132

,, 203

0115

=−≠−a a a 因此a 1, a 2 , a 3 线性无关,从而a 1, a 2 , a 3 可构成空间R 3 的一组基。证上一页

例11的一组基,则

为若生成的向量空间表示。

的结构可用它的一组基维向量空间V V r r v v ,,1"{}{}111,,|,,1,,.

r r r i V span c c c R i r ===++∈=v v v v v v """从而R 3=span{a 1, a 2, a 3}。

的一组基。

都可扩充为个线性无关向量中的任意维向量空间V n m m V n m v v ,,)(1"<定理1

.

,,

,1,111线性无关个向量使得,因此必存在向量证明:由于+++∈

,这与已知的极大无关组,因此为向量空间线性表示,那么可知必可由向量相关,则都线性个向量使得否则,对任意向量m n V m V V m V m m m >==+∈)dim()dim(,,,,,,,1,111v v v v v v v v v """的一组基,定理证毕。

的一组极大无关组,即为则如果V V n m m m 11,,,,1+=+v v v "组基,定理证毕。

的一的一组极大无关组,即为,

使得,,向量按照如上方法,必存在如果V V V n m n m m n m v v v v v v ,,,,,

,1112"""++∈<+

相关文档
最新文档