微积分第一章

合集下载

《微积分》讲义

《微积分》讲义

《微积分》讲义第一章极限一、函数极限的概念:f=A要点:⑴x 为变量;⑵A 为一常量。

二、函数极限存在的充分必要条件:f=A f=A,f=A 例:判定是否存在?三、极限的四则运算法则⑴=f±g⑵=f·g⑶=……g≠0⑷k·f=k·f四、例:⑴⑵⑶⑷五、两个重要极限⑴=1 =1⑵=e =e ………型理论依据:⑴两边夹法则:若f≤g≤h,且limf=limh=A,则:limg=A⑵单调有界数列必有极限。

例题:⑴=⑵=⑶=⑷=⑸=六、无穷小量及其比较1、无穷小量定义:在某个变化过程中趋向于零的变量。

2、无穷大量定义:在某个变化过程中绝对值无限增大的变量。

3、高阶无穷小,低阶无穷小,同阶无穷小,等价无穷小。

4、定理:f=A f=A+a (a=0)七、函数的连续性1、定义:函数y=f在点处连续……在点处给自变量x一改变量x:⑴x0时,y0。

即:y=0⑵f=f⑶左连续:f=f右连续:f=f2、函数y=f在区间上连续。

3、连续函数的性质:⑴若函数f和g都有在点处连续,则:f±g、f·g、(g()≠0)在点处连续。

⑵若函数u=j在点处连续,而函数y=f在点=j()处连续,则复合函数f(j(x)) 在点处连续。

例:===4、函数的间断点:⑴可去间断点:f=A,但f不存在。

⑵跳跃间断点:f=A ,f=B,但A≠B。

⑶无穷间断点:函数在此区间上没有定义。

5、闭区间上连续函数的性质:若函数f在闭区间上连续,则:⑴f在闭区间上必有最大值和最小值。

⑵若f与f异号,则方程f=0 在内至少有一根。

例:证明方程式-4+1=0在区间内至少有一个根。

第二章一元函数微分学一、导数1、函数y=f在点处导数的定义:x y=f-f=A f'=A ……y',,。

2、函数y=f在区间上可导的定义:f',y',,。

3、基本初等函数的导数公式:⑴=0⑵=n·⑶=,=⑷=·lnɑ,=⑸=cosx,=-sinx=x,=-=secx·tanx,=-cscx·cotx⑹=-=-4、导数的运算:⑴、四则运算法则:=±=·g(x)+f(x)·=例:求下列函数的导数y=2-5+3x-7f(x)=+4cosx-siny=⑵、复合函数的求导法则:y u,u v,v w,w x y x'=''''例:y=lntanxy=lny=arcsin⑶、隐函数的求导法则:把y看成是x的复合函数,即遇到含有y 的式子,先对y求导,然后y再对x求导。

大学微积分第一章 函数

大学微积分第一章  函数

X
f
Y f (X )
①满射 若 f ( X ) Y ,则称 f 为满射;
②单射


X
Y
则称f 为单射; ③双射 若f 既是满射又是单射, 则称 f 为双射 或一一映射.
2.【逆映射与复合映射】
⑴【逆映射】 设
f :X Y
是单射
记作
1
定义
称映射
g
g : f (X ) X
为映射
f
的逆映射
周期为
【注】 周期函数不一定存在最小正周期 . 【例如】 常量函数 f ( x ) C
狄里克雷函数
1, 0,
x 为有理数 x 为无理数
五、复合函数
1【定义】 设有函数链
y f ( u), u D1
且 g( D ) D 1
① ②
则 称为由①, ②确定的复合函数, u 称为中间变量. 【说明】通常 f 称为外层函数,g 称为内层函数.
y 与之对应则称这个对应 D 上的一个一元函数,简
因变量
y f ( x ) , x D, 函数值
定义域
函数
自变量
x 0 处的
当 x 0 D 时 , 称 f ( x 0 )为函数在点
函数值 值域
函数值全体组成的数集 R f { y y f ( x ), x D } 称为函数的
2.【函数的两要素】定义域与对应法则.
第一章
函数
一. 区间和邻域 二. 映射 三. 函数概念 四. 函数的特性 五. 复合函数 六. 基本初等函数
七. 初等函数
八. 经济学中常用的函数
预备知识
一.区间和邻域
⑴【区间】 是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.

微积分第一章第一节课件

微积分第一章第一节课件
微积分的重要性
微积分作为数学的基础学科,对于理解数学的高级概念和解决复杂问题具有重要意义。同时,它在物理学、工程 学、经济学等多个领域都有广泛的应用。
教学目标
知识与技能
情感态度与价值观
通过本课程的学习,学生应掌握微积 分的基本概念、基本理论和基本方法, 具备运用微积分知识解决实际问题的 能力。
培养学生严谨的数学思维习惯,激发 学生对数学的兴趣和热爱,树立正确 的数学价值观。
广义积分与含参变量积分
广义积分
广义积分是对定积分的扩展,包括无穷 限广义积分和无界函数广义积分两种类 型。广义积分的计算需要借助极限的思 想和方法。
VS
含参变量积分
含参变量积分是一种特殊的定积分,其被 积函数中含有参数。含参变量积分的计算 方法和性质与定积分类似,但需要注意参 数的影响。同时,含参变量积分在实际问 题中有着广泛的应用,如概率论、统计学 等领域。
定积分性质
定积分具有线性性、可加性、保号性、 绝对值不等式、积分中值定理等基本 性质。
不定积分概念及计算法则
不定积分概念
不定积分是微分学的逆运算,其结果是一个函数族。不定积分的定义包括被积函数、积分变量和常数 C等要素。
不定积分计算法则
不定积分的计算法则包括基本积分公式、换元积分法、分部积分法等。其中,基本积分公式是计算不 定积分的基础,换元积分法和分部积分法是常用的计算技巧。
微积分在实际问题中的应用
探讨微积分在物理、经济、工程等领域的实际应 用,如求解最值问题、分析物理现象等。
3
微积分的数值计算方法
研究微积分的数值计算方法,如有限差分法、有 限元法等,为实际应用提供有效的数值求解工具。
课后作业布置
01
02

《微积分》教材目录

《微积分》教材目录

《微积分》教材目录 第一章 函数、极限与连续1.1 函数1.2 数列的极限1.3 函数的极限1.4 极限的运算法则1.5 极限存在准则、两个重要极限1.6 无穷小、无穷大及无穷小的比较1.7 函数的连续性与间断点1.8 闭区间上连续函数的性质第二章 导数与微分2.1 导数概念2.2 函数的求导法则2.3 高阶导数2.4 隐函数的导数 由参数方程所确定的函数的导数 2.5 函数的微分第三章 中值定理与导数的应用3.1 中值定理3.2 洛必达法则3.3 函数单调性的判别法3.4 函数的极值及其求法3.5 最大值、最小值问题3.6 曲线的凹凸性与拐点3.7 函数图形的描绘3.8 导数与微分在经济分析中的简单应用第四章 不定积分4.1 不定积分的概念与性质4.2 换元积分法4.3 分部积分法4.4 有理函数的积分第五章 定积分及其应用5.1 定积分的概念与性质5.2 微积分基本公式5.3 定积分的换元积分法与分部积分法5.4 定积分在几何学及经济学上的应用5.5 反常积分第六章 多元函数微积分6.1 空间解析几何简介6.2 多元函数的基本概念6.3 偏导数6.4 全微分6.5多元复合函数的导数6.6 隐函数的求导公式6.7 多元函数的极值6.8 二重积分第七章 无穷级数7.1 常数项级数的概念和性质7.2 常数项级数的审敛法7.3 函数项级数的概念与幂级数7.4函数展开成幂级数第八章 微分方程与差分方程初步8.1 微分方程的基本概念8.2 一阶微分方程及解法8.3 一阶微分方程在经济学中的应用8.4 可降阶的高阶微分方程8.5 二阶常系数线性微分方程8.6差分方程的基本概念及常系数线性差分方程解的结构 8.7 一阶常系数线性差分方程及应用举例第九章 Matlab在微积分中的应用9.1 MATLAB的基本操作9.2 MATLAB在一元微积分中的应用9.3 MATLAB在二元微积分中的应用 9.4 MATLAB在级数中的应用附录参考答案参考文献。

微积分知识点总结(期末考研笔记)

微积分知识点总结(期末考研笔记)

微积分知识点总结(期末考研笔记)一、第一章:极限与连续第一节:函数1.什么是函数?未知变量x通过某种固定的对应关系确定唯一变量y,称y是x的函数2.什么是复合函数?内层变量导出中间函数的值域,中间函数的值域满足外层函数的定义域,则外层变量是内层变量的复合函数。

3.什么是反函数?能“反”的函数,正函数能由x确定唯一的y与之对应,反函数则要求由y能确定唯一的x与之对应!4.什么是基本初等函数?幂函数,指数函数,对数函数,三角函数,反三角函数通过四则运算把基本初等函数组合构成初等函数5.特殊函数特殊定义的函数:高斯函数,符号函数,狄利克雷函数第二节:极限1.极限定义是什么?●数列极限定义(ε--N),函数极限定义(ε--δ)、(ε--X)\large \epsilon:任意小的正数,可以是是函数值与极限值之差;也可以是数列项与极限值之差。

\large δ:是邻域半径。

2.极限的性质是什么?●唯一性极限存在必唯一。

从左从右逼近相同值。

●保号性极限两侧正负相同●有界性数列极限收敛,必有界,反之不成立;连续函数闭区间有界。

●列与子列同极限数列有极限,子列也存在相同极限;反之不成立。

●极限运算性质1、满足四则运算。

2、满足复合函数嵌套极限。

3、极限存在则左右极限相等。

●极限存在性质迫(夹)敛(逼)定理。

●两个重要极限x\to0 时,\frac{sinx}{x}=1;(1+x)^{1/x} 的1/x次方极限为e●几个特殊关系式●[0,\frac {\pi}{2} ] 时,sinx <x <tanx●x>0 时,\frac{x}{(x+1)} <ln(1+x) <x3.无穷小●什么是无穷小1、定义:自变量趋向某个边界时,f(x)\to 02、无穷小是函数变化极限值,而非确定具体值,即要多小,有多小,但不是0! 3、高阶、同阶、等价无穷小●常用的等价无穷小第三节:连续与间隔1.连续的定义1、该点有定义,且该点极限值等于函数值,则该处连续2、闭区间连续,左边界函数值等于右极限,区间内各点连续,右边界函数值等于左极限2.间断定义第一类间断点:可去间断点,跳跃间断点。

微积分第一章

微积分第一章

y log a x
(1,0)

(a 1)
y log 1 x
a
29
5. 三角函数
正弦函数
y sin x
y sin x
余弦函数
y cos x
y cos x
30
正切函数
y tan x
y tan x
余切函数
y cot x
y cot x
31
正割函数
y sec x
3
1-1 函数的概念及其基本特性 一、集合及其运算
概念(集合与元素)、分类、表示法. 特殊集合表示法: N----自然数集 Q----有理数集 Z----整数集 R----实数集
4
二、区间与邻域
区间是指介于某两个实数之间的全体实数,这两
个实数叫做区间的端点.
a, b R, a b.
{ x a x b} 称为开区间, 记作 (a, b)
素的情况下,这些经济变量都只与产品的产量或
销量x有关,可以看成是x的函数。
38
1. 成本函数TC(x)
生产既定产量的总成本 (TC)由固定成
本( FC )和可变成本 (VC )两部分构成 .即
TC ( x ) FC VC ( x )
其中x表示产量 . 相应地 ,有
平均成本 ( AC )、平均固定成本 ( AFC )和 平均可变成本 ( AVC )
9
四、复合函数和反函数
1. 复合函数
设 y u, u 1 x 2 ,
y 1 x2
定义: 设函数 y f (u) 的定义域 D f , 而函数
称函数 y f ( x ) 为 x 的复合函数 .

大学微积分总复习提纲

大学微积分总复习提纲

2
微积分(一) calculus
第二章 极限与连续
极限的描述性定义与左右极限
极限四则运算
未定式求极限(因式分解/有理化/同除最高次项)
求极限
夹逼定理 两个重要极限
无穷小量X有界函数(注意无穷小量性质)
等价代换(加减不能代换,乘除可以代换)
洛必达法则(注意运用条件,与上述方法结合)
必考:先分清极限类型,选择相应方法
微积分(一) calculus
第一章 函数
初等函数 分段函数
定义域、值域 奇偶性 周期性 有界性 反函数
选择题或填空题:与换元法结合考察上述知识点
1
微积分(一) calculus
第一章 函数
经济学函数
需求与供给函数 成本函数 收益函数 利润函数 库存函数
边际与弹性 最优化问题
应用题必考:与求导、求极值、最值知识点结合
5
微积分(一) calculus
第三章 导数与微分
导数的定义与左右导数 (求分段点导数,判断可导性与连续性,求极限)
必考:判断分段函数分段点可导性,与连续性、可微 结合考察;与求极限及无穷小量基本性质结合考察。
6
微积分(一) calculus
第三章 导数与微分
基本公式
求导数
四则运算 链式法则 反函数求导
9
微积分(一) calculus
第五章 多元函数微分学
ห้องสมุดไป่ตู้
求极限
极限定义与不同方向的极限 极限四则运算 未定式求极限(因式分解/有理化) 夹逼定理 无穷小量X有界函数(注意无穷小量性质) 等价代换(加减不能代换,乘除可以代换) 换元法后,使用洛必达法则
必考:先分清极限类型,选择相应方法

微积分第一章

微积分第一章

高等数学教案、第一章 函数、极限与与连续本章将在分别研究数列的极限与函数的极限的基础上,讨论极限的一些重要性质以及运算法则,函数的连续性,闭区间上连续函数的性质。

具体的要求如下:1. 理解极限的概念(理解极限的描述性定义,对极限的N -ε、δε-定义可在学习过程中逐步加深理解,对于给出ε求N 或δ不作过高要求)。

2. 掌握极限四则运算法则。

3. 了解极限存在准则(夹逼准则和单调有界准则),会用两个重要极限求极限。

4. 了解无穷小、无穷大及无穷小的阶的概念.能够正确运用等价无穷小求极限。

5。

理解函数在一点连续的概念,理解区间内(上)连续函数的概念。

6. 了解间断点的概念,会求函数的间断点并判别间断点的类型。

7. 了解初等函数的连续性和闭区间上连续函数的性质(最大、最小值定理、零点定理、介值定理)。

第一章共12学时,课时安排如下绪论 §1.1、函数 §1.2初等函数 2课时 §1。

4数列极限及其运算法则 2课时 §1.4函数极限及其运算法则 2课时 §1。

4两个重要极限 无穷小与无穷大 2课时 §1.4函数的连续性 2课时 第一章 习题课 2课时绪论数学:数学是研究空间形式和数量关系的一门学科,数学是研究抽象结构及其规律、特性的学科.数学具有高度的抽象性、严密的逻辑性和应用的广泛性。

关于数学应用和关于微积分的评价:恩格斯:在一切理论成就中,未必再有像17世纪下叶微积分的微积分的发现那样被看作人类精神的最高胜利了。

如果在某个地方我们看到人类精神的纯粹的和唯一的功绩,那就正是这里.华罗庚:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之迷,日用之繁,无处不用数学。

张顺燕:微积分是人类的伟大结晶,它给出了一整套科学方法,开创了科学的新纪元,并因此加强和加深了数学的作用。

……有了微积分,人类才有能力把握运动和过程;有了微积分,就有了工业革命,有了大工业生产,也就有了现代的社会。

经济数学基础微积分第一篇第一章--函数

经济数学基础微积分第一篇第一章--函数
关键是对函数f 记 x的号理解 : (1)f x0表示函f数 x在xx0处的值 ;
(2)自变量可以取一, 个还 数可 值以取 一个表达式。
例 31: . 给定 fx 函 x2数 x2,试计 f0,f(x2),f1x.
解: f(0)02022
f(x 2 ) (x 2 )2 (x 2 ) 2 x 4 x 2 2
给定 r2, 就有 S4;
给定 r3, 就有 S9;
例 y 如 fx x 2 : x 1
给定 x1, 就y有 f11;
给定 x1, 就y 有 f1 3 ;
【注y 意 f】 x
二. 求定义域
函数的定义域:是使函数有意义的 自变量x取值的全体。 也就是自变 量x允 许取值的范围。
确定函数定义域的三条基本要求: (1) 分式的分母不能为零。即若 y 1
【公 ln x式 kkln 】 x, lo : ax g kkloax g
【解】 1 fx lx n 2 2 lx n(x 0 ) g x 2 ln x(x 0 )
表达式不同,定义域不同 所以它们是不同的函数。
2 fx lx n 3 3 lx n ( x 0 )
g x 3 ln x(x 0 )
-3 -2
2
x
【练习1】
求函 f(x数 )lo2g (x1)
1 的定.义 x21
【解】 要使f(x) 有意义,必须有
x 1 0
x
2
1
0
xx11x10
xx
1 1

x
1
即: x1
公共部分
写成区间 (1, : )
【练习2】
求函f(x数 ) 1 3x的定.义 lnx(3)
【解】 要使f(x) 有意义,必须有

微积分(第一章)

微积分(第一章)

f ( x) g ( x) h( x)
函数的积 f g : ( f g )(x) f ( x) g ( x), x D f f f ( x) , x D, g ( x) 0 函数的商 : ( )(x) g g ( x) g 例 设函数 f ( x) 的定义域为 (l , l ),证明必存在 (l , l ) 上的偶函数 g ( x) 和奇函数 h( x) ,使得
构成了 R f 到 X 上的一个映射,称为 f 的逆映射,记为 f 1 1 其定义域为 D ,值域为 R Rf X 。 f f
1
第一章 函数
§2 映射与函数
设有如下两个映射
g : X U1 , x u g ( x) f : U 2 Y , u y f (u)


g f f g ( ,称 f g )(x) f [ g ( x)] 对复合函数 为中间变量,其中
为自变量。 f g
u g ( x)
x Df g
第一章 函数
§3 复合函数与反函数
初等函数
把函数 F ( x) 3arcsin 分成几个简单函数的复合。 例2
例1
1 x 2
则称 f 为单射 ,如果映射 f 满足 R f Y ,则称 f 为满 射;如果映射 f 既是单射,又是满射,则称 f 为双射(又 称一一对应)。
第一章 函数
§2 映射与函数
二 、 逆映射与复合映射
设 f : A B 是单射,对应关系 g : R f X y x( f ( x) y )
和 F ( x) lg sin tan x
设有函数 y f (u) u 和 u ( x) a x , 考察 a 1 , a 1 时 y f [ ( x)] 是否为复合函数。

微积分第一章 函数与极限

微积分第一章   函数与极限
设 A、B 两个集合,若集合A 的元素都是集合B 的元
素,则称A是B 的子集.记作 A B 或 B A 若集合A 与集合B 互为子集,即A B 且 B A,
则称A与B 相等.记作A = B .
不含任何元素的集合称为空集,记作 .
3
2.集合的运算
并、交、差 全集、余集(补集)
集合的并、交、余运算满足如下运算律:
welcome 微积分Ⅰ
1
第一章 函数与极限
集合与函数 数列的极限 函数的极限 无穷小与无穷大 极限的运算法则 极限存在准则与两个重要极限 无穷小的比较 函数的连续性
2
§1.1 集合与函数
1.集合的概念
所谓集合就是按照某些规定能够识别的一些确定对象 或事物的全体.
构成集合的每一个对象或事物称为集合的元素. 若一个集合只含有限个元素,则称为有限集,否则称 为无限集.
其中 C0 ---固定成本,C1 ---可变成本,x---产量 5. 利润函数:销售产品所获得的全部利润。
L(x) = R(x) - C(x) , 其中 x---产量
12
注意 有的隐函数能转化为显函数;
有的隐函数不能转化为显函数。
8
9、反函数
注意 1. 反函数的定义;会求反函数。 1. 只有单调函数才有反函数; 2. 直接函数与反函数是互为的;
3. 直接函数与反函数的图象关于直线 y x 对称.
4. 直接函数与反函数的定义域、值域之间的关系;
10、复合函数
(1)复合函数的复合 (2)复合函数的分拆
y arcsin x, y arccos x, y arctan x, y arc cot x.
10
12、初等函数
由基本初等函数经有限次四则运算和有限次复合而成的函数 称为初等函数.

微积分第一章PDF

微积分第一章PDF
y
3 2



2

3
y [ x]
3 2
1
1 O 1 1
2 3
x


取整函数 [ x ] 的一个重要性质 :
对任何实数 x , 存在绝对不等式 [ x ] x [ x ] 1.
例如, [0.99] 0.99 [0.99] 1 为 0 0.99 1.
e x e x 解方程 y ( x 0) : 2 (e x ) 2 2 y e x 1 0, ex y x ln( y y 2 1, y 2 1)
O
y ln( x x 2 1)
y
x
y arch x ln( x x 2 1)
x x y u , u cot v , v 2 复合成函数 y cot 2 ; 函数 y arcsin u, u 2 x 2 不能复合 , 前者的定义域与
后者的值域的交集是空的, 即 arcsin(2 x 2 ) 无意义.
8. 初等函数
由常数和基本初等函数经过有限次四则运算和有 限次复合所得到的有意义的函数, 称为 初等函数.
1
y
x
O
1
x
y 1 x
(2) 指数函数:
y a (a 0, a 1)
x
y
1 y ( a )x
a1
y ax
1
x
O
(3) 对数函数: y log a x (a 0, a 1)
y
a1
y log a x
x
O
1
y log a 1 x
(4) 三角函数

微积分第1章函数重点及要点汇总

微积分第1章函数重点及要点汇总
2

定义域 x n , n Z 值域 ( , ).
20
第一章 函数
6) 反三角函数
y
y sin x , x [ , ] 2 2
y arcsin x, x [1,1]

2
——反正弦函数
O

1
1 x

2
2 x 1 定义域. 例: 1. 求 y arcsin 3
第一章 函数 13
三、复合函数
定义 设 u=g(x), y=f(u), 若 Z ( g )
D( f ) , 则称 y f [ g( x)], x { x | x D( g )且g( x) D( f )}
为 f 与 g 的复合函数.
例: 1. 已知 y u , u 2 v 2 , v cos x , 将 y 表示成 x 的函数.
O
1
2
x
微积分讨论的数 仅限于 实数!
第一章 函数 5
二、区间
(a , b) { x a x b} 称作开区间 [a , b] { x a x b} 称作闭区间
[a, b), (a, b]
称作半开半闭区间
无 限 区 间
有 限 区 间
(a , ) { x a x } , [a, ) ( , b) { x x b} , (, b]

(0,1)
O
x
定义域为 ( , ), 值域为 ( 0, ).
第一章 函数 17
4) 对数函数 y log a x
y
(a 0, a 1)
y log a x
(a 1)
定义域为 ( 0, ),

经济数学基础--微积分第一章

经济数学基础--微积分第一章

解 u , v 分别是中间变量,故 y u2 tan 2v tan 2x2 .
经济应用数学基础——微积分
第一章 第二节 第 12 页
极 限 的 概 念
极限的概念
• 1.2.1 数列的极限 • 1.2.2 函数的极限
经济应用数学基础——微积分
第一章 第二节


1 数列的极限
的 概

先给出数列的定义:在某一对应规则下,当 n(n N ) 依次取 1, 2, 3, , n, 时,对应的实
函数的自变量 x 是指 x 的绝对值无限增大,它包含以下两种情况: (1) x 取正值,无限增大,记作 x ; (2) x 取负值,它的绝对值无限增大(即 x 无限减小),记作 x .
定义1.2.3 : 如果当 x 无限增大(即 x )时,函数 f (x) 无限趋近于一个确定
的常数 A ,那么就称 f (x) 当 x 时存在极限 A ,称数 A为当 x 时函数 f (x) 的极限,
径.在上述领域中除去领域的中心点 a
称为点 a
的去心
领域,记为
0
U(a,
),
0
即 U(a,) x 0 x a , 如右图所示.
第 19 页
经济应用数学基础——微积分
第一章 第二节 极 限 的 概 念
注意:
在定义中,“设函数 f (x) 在点 x0 的某个去心领域内有定义”反映我们关心的 是函数 f (x) 在点 x0 附近的变化趋势,而不是 f (x) 在 x0 这一孤立点的情况.在定义 极限lim f (x) 时, f (x) 有没有极限,与f (x) 在点 x0 是否有定义并无关系.
例1.1.3 求函数 y 4x 1 的反函数. 解 由v 4x 1 ,可解得 x y 14 . 交换 x 和 y 的次序,得 y 14(x 1) ,

高等数学(微积分学)教学课件

高等数学(微积分学)教学课件

三、两个重要极限
重要极限Ⅰ lim sin x 1 x0 x
它可以拓展为 lim sin[ f (x)] 1 f (x)0 f (x)
sin 2x
例:lim x 2x
1
1 cos x
lim
x0
x2
lim
x0
2 sin 2 x 2
4 x2 4
lim
1
sin
x 2
x0 2 x
2
2
1 2
判断:lim sin x 1
叫做因变量.
数集 D 称为这个函数的定义域.
全体函数值的集合称为函数的值域.
2. 函数的表示法
解析法(公式法):用解析表达式(或公式)表示函数关系.
y x 1
表格法:用列表的方法来表示函数关系.
x123456789 y 1 4 9 16 25 36 49 64 81
图示法:用平面直角坐标系 xoy 上的曲线来表示函数关系.
x
x
1 0
x
x
1
1
1 lim( x0 1
x
)
1 x
x
lim
x0
(1 (1
x) x
1
x) x
lim x0
(1 x) x
1 (1)
[1 (x)] x
e e1
e2
一类特殊极限
若f
(x)
a0 xm a1xm1 a2 xm2 b0 xn b1xn1 b2 xn2
am1x am bn1x bn
x 果对于定义区间的任意点 , 恒有 f (x) f (x) , 则称f (x)
为 D 内的偶函数;如果恒有 f (x) f (x) , 则称 f (x)为D

最新微积分第1章函数、极限与连续3

最新微积分第1章函数、极限与连续3
x 的变化过程
lim
f [φ(x)]
过程代换 令u=φ ( x) :
=
lim f (u) = A.
u→a
前页
后页
结束
例13 求极限
1 (1) lim ln 2 x →∞ x
y= =
1 x2
y→0+0 +
lim lny
= −∞.
y
(2) lim e +
x→0
− x
y=- x =
lim e = 1. y →0−
x→0 x
lim (x - 1) ⋅ lim (x + 2)
0 +1 1 =− = (−1)⋅ 2 2

只要极限运算与四则运算交换顺序后的算式有意 义 (包括出现∞),就可交换顺序。
前页 后页 结束
sin
例2
π
求 lim
n→∞
n 。 1 +1 n

π limsin n→∞ n = 0 =0 原式= 。 1 0 +1 lim + 1 n→∞ n
x2 − 1 例4 求 lim 2 . x→1 x + 2x − 3
0 消去零因子法) 解 ( 型 ) (消去零因子法) 0
2
因子 先约去不为零的无穷小 x − 1后再求极限 。
x −1 ( x + 1)( x − 1) x +1 1 = . lim 2 = lim = lim x→1 x + 2x − 3 x→1 ( x + 3)( x − 1) x→1 x + 3 2
前页 后页 结束
• 思考:你能否根据函数的极限运算法则,写出数 思考:你能否根据函数的极限运算法则, 列的极限运算法则? 列的极限运算法则?

高数微积分第一章

高数微积分第一章

U (a, ) { x a x a }.


a
a
a
x
点a的去心的邻域, 记作U 0 (a, ).
U 0 (a, ) { x 0 x a }.
a的右邻域U (a, ) { x | 0 x a };
a的左邻域U (a, ) { x | x a 0}.
x
o
x
在自变量的不同变化范围中,对应法则用不同 的式子来表示的函数,称为分段函数。
例如, 2 x 1, x 0 f ( x) 2 x 1, x 0
y x2 1
y 2x 1
1, 0 x 1 例5:设f ( x ) , 求函数 f ( x 3)的定义域. 2, 1 x 2
(3) 狄利克雷函数
1 当x是有理数时 y D( x ) 0 当x是无理数时
y
1
• o 无理数点 有理数点
x
(4) 取最值函数
y max{f ( x ), g( x )}
y
f ( x) g( x )
y min{f ( x ), g( x )}
y
f ( x) g( x )
o
例4:求函数y log ( x 1) (16 x 2 )的定义域.
解:16 x 2 0,
x 1 0, x 1 1,
x 4 x 1 x 2
1 x 2及2 x 4,
即定义域为 1,2) (2,4). (
2、函数表示法 解析法(公式法),表格法,图示法 3、几个特殊函数 (1) 符号函数
A
AB
B
(4)并集:A B x | x A或x B 。

高中微积分教材

高中微积分教材

高中微积分教材第一章:极限与连续1.1 极限极限是微积分的基本概念之一,它描述了一个函数在某个点处的变化趋势。

通过学习极限,我们可以理解函数在某一点处的值是如何变化的,以及如何通过极限来求函数的值。

1.2 连续连续是微积分的基本概念之一,它描述了一个函数在某个区间内的变化情况。

通过学习连续,我们可以理解函数在区间内的变化趋势和性质,以及如何判断一个函数在某一点处是否连续。

第二章:导数与微分2.1 导数导数是微积分中重要的概念之一,它表示了函数在某一点处的变化率。

通过学习导数,我们可以理解函数在某一点处的变化快慢和方向,以及如何求函数的导数。

2.2 微分微分是微积分中重要的概念之一,它表示了函数在某一点处的局部变化量。

通过学习微分,我们可以理解函数在某一点处的变化量是多少,以及如何求函数的微分。

第三章:积分及其应用3.1 不定积分不定积分是微积分中重要的概念之一,它表示了函数在某个区间内的定积分。

通过学习不定积分,我们可以理解如何求解函数的定积分,以及不定积分的性质和计算方法。

3.2 定积分定积分是微积分中重要的概念之一,它表示了函数在某个区间内的积分。

通过学习定积分,我们可以理解如何求解函数的定积分,以及定积分的性质和计算方法。

同时,我们还可以了解到定积分在实际问题中的应用。

3.3 应用通过学习积分的应用,我们可以了解到积分在几何、物理、经济等领域中的应用。

例如,在几何中可以用定积分求曲线的面积;在物理中可以用定积分求质点的位移;在经济中可以用定积分求总成本等。

第四章:微分方程4.1 微分方程的基本概念微分方程是描述一个未知函数及其导数之间关系的方程。

通过学习微分方程的基本概念,我们可以了解微分方程的类型和特点,以及如何建立微分方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章习题1-11.用区间表示下列不等式的解.2(1)9;(2)1;1(3)(1)(2)0;(4)00.011x x x x x ≤>--+<<<+解 (1)原不等式可化为(3)(3)0x x -+≤,其解为33x -≤≤,用区间表示是[-3,3].(2)原不等式可化为11x ->或11x -<-,其解为2x >或0x <,用区间表示是(-∞,0)∪(2,+ ∞).(3)原不等式的解为21x -<<,用区间表示是(-2,1).(4)原不等式可化为0.0110.0110x x -<+<⎧⎨+≠⎩即 1.010.991x x -<<-⎧⎨≠⎩用区间表示是(-1.01,-1)∪(-1,-0.99).2.用区间表示下列函数的定义域:1(1)(2)arcsin(1)lg(lg );1(3).ln(2) y y x x xy x ==-+=-解 (1)要使函数有意义,必须2010x x ≠⎧⎨-≥⎩即011x x ≠⎧⎨-≤≤⎩ 所以函数的定义域为[-1,0)∪(0,1].(2)要使函数有意义,必须111lg 00x x x -≤-≤⎧⎪>⎨⎪>⎩即0210x x x ≤≤⎧⎪>⎨⎪>⎩所以函数的定义域是12x <≤,用区间表示就是(1,2].(3)要使函数有意义,必须2650ln(2)020x x x x ⎧--≥⎪-≠⎨⎪->⎩即6112x x x -≤≤⎧⎪≠⎨⎪<⎩所以函数的定义域是-6≤x <1,用区间表示就是[-6,1).3.确定下列函数的定义域及求函数值f (0),f),f (a )(a 为实数),并作出图形(1)1,0, 2,01 1,12xxyx xx⎧<⎪⎪=⎨≤<⎪⎪<≤⎩;(2)y=221,11,12x xx x⎧-≤⎪⎨-<<⎪⎩解(1)函数的定义域(){|0}{|01}{|12}{|112}(,1)(1,2]或D f x x x x x xx x x=<≤<<≤=<<≤=-∞()1(0)200,1,()2201112aaf f f aa aa⎧<⎪⎪=⨯===⎨≤<⎪⎪<≤⎩,图1-1 图1-2(2)函数的定义域(){|1}{|12}{|2}(2,2)D f x x xx x x=≤<<=<=-222211(0)101,11,()22112a af f f aa a⎧⎪-≤=-==-==⎨-<<⎪⎩4※.设1,1()1,1xf xx⎧≤⎪=⎨->⎪⎩,求f(f(x)).解当|x|≤1时, f(x)=1, f(f(x))= f(1)=1;当|x|>1时, f(x)=-1, f(f(x))= f(-1)=1,综上所述f(f(x))=1(x∈R).5.判定下列函数的奇偶性:(1) f(x)=21cosxx-;(2)f(x)=(x2+x)sin x;(3)※f(x)=1e,0e1,0xxxx-⎧-≤⎨->⎩解 (1) ∵221()1()()cos()cos x x f x f x x x----===- ∴f (x )是偶函数.(2)∵222()[()()]sin()()(sin )()sin ()f x x x x x x x x x x f x -=-+--=--=--≠ 且()()f x f x -≠-, ∴f (x )是非奇非偶函数. (3) ※当x <0时,-x >0, ()1(1)()ee xx f x f x ---=-=--=-; 当x ≥0时,-x ≤0, ()()11(1)()ee e x x xf x f x ---=-=-=--=-,综上所述, x ∀∈R ,有f (-x )=-f (x ),所以f (x )是奇函数. 6.设f (x )在区间(-l ,l )内有定义,试证明:(1) f (-x )+f (x )为偶函数; (2) f (-x ) -f (x )为奇函数. 证 (1)令()()()F x f x f x =-+(,)x l l ∀∈-有()[()]()()()()F x f x f x f x f x F x -=--+-=+-=所以()()()F x f x f x =-+是偶函数;(2)令()()()F x f x f x =--,(,)x l l ∀∈-有()[()]()()()[()()]()F x f x f x f x f x f x f x F x -=----=--=---=-所以()()()F x f x f x =--是奇函数.7. 试证:(1) 两个偶函数的代数和仍为偶函数; (2) 奇函数与偶函数的积是奇函数. 证 (1)设f (x ),g (x )均为偶函数,令()()()F x f x g x =±则 ()()()()()()F x f x g x f x g x F x -=-±-=±=, 所以()()f x g x ±是偶函数,即两个偶函数的代数和仍为偶函数.(2)设f (x )为奇函数,g (x )为偶函数,令()()()F x f x g x =⋅, 则 ()()()()()()F x f x g x f x g x F x -=-⋅-=-=-, 所以()()f x g x ⋅是奇函数,即奇函数与偶函数之积是奇函数. 8. 求下列函数的反函数:*22(1)2sin 3,,;(2);66212101,(3)()2(2)1 2.x x y x x y x x f x x x ππ⎡⎤=∈-=⎢⎥+⎣⎦-≤≤⎧=⎨--<≤⎩解 (1)由2sin3y x =得1arcsin 32yx =所以函数2sin3y x =的反函数为1arcsin (22)32xy x =-≤≤.(2)由221x x y =+得21xy y =-,即2log 1y x y =-.所以函数221x x y =+的反函数为2log (01)1xy x x=<<-.(3) ※当01x ≤≤时,由21y x =-得1,112yx y +=-≤≤; 当12x <≤时,由22(2)y x =--得22x y =<≤;于是有1112212y y x y +⎧-≤≤⎪=⎨⎪<≤⎩,所以函数22101()2(2)12x x f x x x -≤≤⎧=⎨--<≤⎩的反函数是1112()212xx f x x +⎧-≤≤⎪=⎨⎪<≤⎩.9. 将y 表示成x 的函数,并求定义域:222(1)10,1;(2)ln ,2,sin ;(3)arctan ,().为实数u v y u x y u u v x y u u v a x a ==+======+解 (1)211010ux y +==,定义域为(-∞,+∞);(2) sin ln ln 2ln 2sin ln 2vxy u x ====⋅定义域为(-∞,+∞);(3) arctan y u ===(a 为实数),定义域为(-∞,+∞).习题1-21.下列初等函数是由哪些基本初等函数复合而成的? (1) y=(2) y =sin 3ln x ;(3) y = tan 2x a ; (4) y =ln [ln 2(ln 3x )].解 (1)令arcsin xu a =,则y =再令x v a =,则arcsin u v =,因此y =本初等函数arcsin ,xy u v v a ===复合而成的.(2)令sinln u x =,则3y u =,再令ln v x =,则sin u v =.因此3sin ln y x =是由基本初等函数3,sin ,ln y u u v v x ===复合而成.(3)令2tan u x =,则uy a =,再令2v x =,则tan u v =,因此2tan x y a =是由基本初等函数2,tan ,u y a u v v x ===复合而成.(4)令23ln (ln )u x =,则ln y u =,再令3ln(ln )v x =则2u v =,再令3ln w x =,则ln v w =,再令ln t x =,则3w t =,因此23ln[ln (ln )]y x =是由基本初等函数2ln ,,ln ,y u u v v w ===3,ln w t t x ==复合而成.2.设f (x )的定义域为[0,1],分别求下列函数的定义域: (1) f (x 2); (2) f (sin x ); (3) f (x +a ),(a >0); (4) f (e x +1).解 (1)由f (x )的定义域为[0,1]得0≤x 2≤1,于是-1≤x ≤1,所以f (x 2)的定义域为[-1,1].(2)由f (x )的定义域为[0,1]得0≤sin x ≤1,于是2k π≤x ≤(2k +1)π,k ∈z ,所以f (sin x )的定义域为[2k π,(2k +1) π], k ∈Z .(3)由f (x )的定义域为[0,1]得0≤x+a ≤1即-a ≤x ≤1-a 所以f (x+a )的定义域为[-a ,1-a ].(4)由f (x )的定义域为[0,1]得0≤e x +1≤1,解此不等式得x ≤-1,所以f (e x +1)的定义域为(-∞,-1]. 3. 求下列函数的表达式:(1) 设ϕ(sin x )=cos 2x +sin x +5,求ϕ(x ); (2) 设g (x -1)=x 2+x +1,求g (x ); (3) 设1()f x x +=x 2+21x,求f (x ). 解 (1)法一:令sin t x =,则222cos 1sin 1x x t =-=-,代入函数式,得:22()156t t t t t ϕ=-++=+-,即 2()6x x x ϕ=+-.法二:将函数的表达式变形得:22(sin )(1sin )sin 56sin sin x x x x x ϕ=-++=+-令sin t x =,得 2()6t t t ϕ=+-, 即 2()6x x x ϕ=+-.(2)法一:令1t x =-,则1x t =+,将其代入函数式,得22()(1)(1)133g t t t t t =++++=++即 2()33g x x x =++.法二:将函数表达式变形,得22(1)(21)(33)3(1)3(1)3g x x x x x x -=-++-+=-+-+令1x t -=,得 2()33g t t t =++, 即 2()33g x x x =++.(3)法一:令1x t x +=,两边平方得22212x t x++= 即22212x t x+=-,将其代入函数式,得2()2f t t =-,即2()2f x x =-. 法二:将函数表达式变形,得222111222f x x x x x x ⎛⎫⎛⎫⎛⎫=-=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令1x t x+=,得2()2f t t =-,即2()2f x x =-.习题1-31.设销售商品的总收入是销售量x 的二次函数,已知x =0,2,4时,总收入分别是0,6,8,试确定总收入函数TR(x ).解 设2()TR x ax bx c =++,由已知(0)0,(2)6,(4)8TR TR TR ===即 04261648c a b c a b c =⎧⎪++=⎨⎪++=⎩ 解得 124a b c ⎧=-⎪⎪⎨=⎪⎪=⎩所以总收入函数21()42TR x x x =-+. 2.设某厂生产某种产品1000吨,定价为130元/吨,当一次售出700吨以内时,按原价出售;若一次成交超过700吨时,超过700吨的部分按原价的9折出售,试将总收入表示成销售量的函数.解 设销售量为x ,实际每吨售价为P 元,由题设可得P 与x 间函数关系为1307001177001000x P x ≤⎧=⎨<≤⎩,总收入 130700()130700(700)1177001000TR x x x x x ≤⎧=⎨⨯+-⨯<≤⎩,即 130700()91001177001000TR xx x x x ≤⎧=⎨+<≤⎩.3. 已知需求函数为105QP =-,成本函数为C =50+2Q ,P 、Q 分别表示价格和销售量.写出利润L 与销售量Q 的关系,并求平均利润.解 由题设知总收入2()105Q R Q PQ Q ==- ,则总利润 ()221()()()8505021055Q L Q R Q C Q Q Q Q Q ⎛⎫=-=-=--+- ⎪⎝⎭, 平均利润 ()150()85L Q AL Q Q Q Q==--. 4. 已知需求函数Q d 和供给函数Q s ,分别为Q d =100233P -,Q s =-20+10P ,求相应的市场均衡价格.解 当d s Q Q =时供需平衡,由d s Q Q =得1002201033P P -=-+,解得5P = 所以市场均衡价格5P =.。

相关文档
最新文档