关于数项级数敛散性的判定

合集下载

数项级数敛散性判别方法

数项级数敛散性判别方法

数项级数敛散性判别方法数项级数是由一系列项相加而得的无穷级数,其中每个项都是一个数字。

判定一个数项级数的敛散性是非常重要的,因为这决定了级数是否收敛(最终总和有一个有限的值)或者发散(最终总和无穷大)。

在数学中,有许多方法用于确定数项级数的敛散性。

下面将介绍一些常用的方法。

1.利用比较判别法:如果一个数项级数的项的绝对值可以比较为另一个已知的收敛级数或发散级数的项的绝对值的大小,那么可以通过比较判别法来判断原数项级数的敛散性。

a)如果一个级数的项的绝对值总是大于一个收敛级数的项的绝对值的大小,那么原级数也发散。

b)如果一个级数的项的绝对值总是小于一个发散级数的项的绝对值的大小,那么原级数也收敛。

c)如果一个级数的项的绝对值与一个收敛级数或发散级数的项的绝对值的大小相同,那么原级数的敛散性不能确定。

2.利用比值判别法:给定一个数项级数A,可计算相邻两项的比值,并观察这个比值的极限。

a) 如果比值极限小于1,即lim,A(n+1)/A(n), < 1,那么级数A收敛。

b) 如果比值极限大于1,即lim,A(n+1)/A(n), > 1,那么级数A发散。

c) 如果比值极限等于1,即lim,A(n+1)/A(n), = 1,那么比值判别法无法确定级数A的敛散性。

3.利用根值判别法:给定一个数项级数A,可计算相邻两项的根值,并观察这个根值的极限。

a) 如果根值极限小于1,即lim√(,A(n),) < 1,那么级数A收敛。

b) 如果根值极限大于1,即lim√(,A(n),) > 1,那么级数A发散。

c) 如果根值极限等于1,即lim√(,A(n),) = 1,那么根值判别法无法确定级数A的敛散性。

4.绝对收敛性和条件收敛性:如果一个级数的各项的绝对值所组成的级数收敛,那么称原级数是绝对收敛的。

否则称为条件收敛的。

5.交错级数的收敛判别法:交错级数是由正项和负项交替出现的级数。

a)如果交错级数的交错项(即正项和负项的绝对值所组成的级数)满足单调递减且趋于零,那么交错级数收敛。

判别数项级数敛散性的一些方法和技巧

判别数项级数敛散性的一些方法和技巧

判别数项级数敛散性的一些方法和技巧要判断数项级数的敛散性,我们可以使用一些方法和技巧。

以下是一些常见的方法和技巧:1.非负项级数的比较判别法:-比较判别法:如果一个数项级数的绝对值项与一个已知级数的绝对值项相比,可以发现后者收敛,则前者也收敛;如果后者发散,则前者也发散。

-极限判别法:如果一个数项级数的绝对值项的极限为零,而另一个已知级数的绝对值项发散,则前者也发散;如果后者收敛,则前者也收敛。

-比值判别法:如果一个数项级数的绝对值项的比值极限存在且小于1,那么级数收敛;如果比值极限大于1,那么级数发散;如果比值极限等于1,判定不确定。

2.收敛级数的性质:-绝对收敛和条件收敛:如果一个数项级数的绝对值级数收敛,那么原级数也收敛;如果绝对值级数发散,但原级数收敛,则称为条件收敛。

-级数的加减法和乘法:只要两个级数中有一个收敛,那么它们的和、差和乘积也收敛。

3.交错级数的收敛性:-莱布尼茨判别法:对于一个交错级数,如果该级数的绝对值项递减趋于零,则级数收敛;如果绝对值项不满足这个条件,则级数发散。

4.幂级数的收敛性:- 幂级数的收敛半径:对于一个幂级数∑an(x-a)^n,可以通过求其收敛半径来判断其在收敛范围内是否收敛。

收敛半径可以使用根值判别法或比值判别法进行计算。

5.特殊级数的敛散性:-调和级数:调和级数∑1/n发散,但调和级数∑1/n^p,其中p>1,收敛。

- 几何级数:几何级数∑ar^n,在,r,<1时收敛,否则发散。

6.柯西收敛准则:-柯西收敛准则:一个数项级数收敛当且仅当对于任意给定的正数ε,存在正整数N,当n>N时,级数的部分和之差的绝对值小于ε。

7.级数的整体性质:-典型例子:级数的敛散性常常可以通过和或平方根的形式来判断。

例如,级数∑1/n^2收敛,而级数∑1/n发散。

通过以上这些方法和技巧,我们可以判断数项级数的敛散性并进行求和计算。

但需要注意的是,并非所有的数项级数都可以通过这些方法和技巧来判断其敛散性,有些级数可能需要更复杂的方法来求解。

关于数项级数敛散性的判定(可编辑修改word版)

关于数项级数敛散性的判定(可编辑修改word版)

n 3 5 n2 353关于数项级数敛散性的判定1、问题的提出数项级数敛散性的判别问题,是数学分析的一个重要部分.数项级数,从形式上看,就是无穷多个项的代数和,它是有限项代数和的延伸,因而级数的敛散性直接与数列极限联系在一起,其判别方法多样,技巧性也强,有时也需要多种方法结合使用,同时,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的工具,所以研究数项级数的判定问题是很重要的.2、熟练掌握并准确应用级数的概念、性质和判定定理2.1 数项级数收敛的定义∞ ∞数项级数∑un 收敛⇔ 数项级数∑u n 的部分和数列{S n }收敛于 S .n =1n =1这样数项级数的敛散性问题就可以转化为部分和数列{S }的极限是否存在的问题的讨论,但由于求数列前 n 项和的问题比较困难,甚至可能不可求,因此,在实际问题中,应用定义判别的情况较少.2.2 数项级数的性质∞ ∞∞( 1) 若级数∑un 与∑vn 都收敛, 则对任意常数 c,d, 级数∑(cun+ dv n ) 亦收敛, 且n =1 n =1n =1∞∞∞ ∞∞∑(cun+ dv n ) = c ∑u n + d ∑v n ;相反的,若级数∑(cu n + dv n ) 收敛,则不能够推出级数∑u n 与n =1 n =1n =1n =1n =1∑vn 都收敛.n =1∞∞∞注:特殊的,对于级数∑un 与∑vn ,当两个级数都收敛时,∑(un± v n ) 必收敛;当其中一个n =1 n =1n =1∞∞收敛,另一个发散时,∑(un± v n ) 一定发散;当两个都发散时, ∑(u n ± v n ) 可能收敛也可能发散.n =1n =1∞1 1 ∞1 1例 1 判定级数∑( n n =1 + n ) 与级数∑( + n ) 的敛散性.n =1∞1∞1∞11解:因为级数∑ nn =1与级数∑ nn =1收敛,故级数∑( nn =1∞1 2 -1 n - 1 n + 1n - 1 n =1 ⎢ ∞∞1∞1∞1 1因为级数∑ n 发散,级数∑ 2n 收敛,故级数∑( n + 2n ) 发散.n =1 n =1 n =1(2) 改变、增加或去掉级数的有限个项不会改变原级数的敛散性.(3) 在收敛级数的项中任意加括号,既不改变级数的敛散性,也不改变它的和.即收敛的级数在不改变各项顺序的情况下,对它的各项任意加括号后,得到的新级数还是收敛的;加括号后得到的新级数发散,那么原级数也是发散的.例 2 判定级数-+ + 1 - 1+ 的敛散性.∞ ⎛11 ⎫ 1 1 2∞ 2 解:先考察级数∑ n =1 ⎝ - ⎪ ,因为u n = - n + 1⎭= n - 1 ,而级数∑ n - 1 发散,由于加括号后得到得新级数发散,则原级数发散.∞∞(4) 级数收敛的必要条件 若级数∑un 收敛,则lim u n = 0 .若lim u n ≠ 0 ,则级数∑u n 发散.n =1n →∞n →∞n =12.3 判定定理2.3.1 级数收敛的柯西准则级 数∑un 收 敛n =1⇔ ∀> 0 , ∃N ∈ N *, 使 得 当 m > N 以 及∀p ∈ N * ,都 有u m +1 + u m +2 + + u m + p < .例 1 用柯西准则判别级数∑ sin 2n 2n的敛散性.证明:由于u m +1 + u m +2 + + u m + p =+ sin 2m +22m +2+ +< 1 2m +1+ 1 2m +2+ + 1 2m + p = 1- 2m 1 < 1 2m + p 2m因此, 对于任意的 > 0 .取 N = ⎡log⎣1 ⎤ 使得当 m > N 及任意的2⎥⎦p ∈ N * ,由上式就有u m +1 + u m +2 + + u m + p < 成立,故由柯西准则可推出原级数收敛.2.3.2 正项级数判别法(1) 正项∑un 收敛⇔ 它的部分和数列{S n }有界.∞ 1 2 + 1 n - 1 n + 1 sin 2m +12m +1 sin 2m + p2m + pn 4(n +1) n 4• nn ∞∞∞∞∞ ∞(2) 比较判别法 如果∑un 和∑vn 是正项级数,若存在某整数N ,对一切 n > N 都有u n ≤ v nn =1n =1∞∞∞∞(i) 若级数∑vn 收敛,则级数∑un 也收敛;(ii )若级数∑un 发散,则级数∑vn 也发散.n =1n =1n =1n =1等比级数和 P-级数的敛散性①等比级数∑ a q n = a + aq + aq 2 + + aq n + ,当 q < 1 时,级数收敛;当 q ≥ 1 时,级数n =1发散.∞1②P -级数∑ p,当 p ≤ 1时,发散;当 p > 1时,收敛.n =1例 2 判别级数∑1解:因为u n =敛.的敛散性.<1 =1n2,而且 P-级数∑1收敛,由比较判别法知该级数收5 n2∞∞u n (3) 比较判别法的极限形式 如果∑un 和∑vn 是正项级数(v n ≠ 0) ,如果lim= l ,则n =1 n =1 n →∞v n∞∞∞(i )当0 < l < +∞ 时,∑un 和∑vn 同时收敛或发散;(ii )当l = 0 时, ∑v n 收敛时,n =1n =1 n =1∞∞∞∑un也收敛;(iii )当l = +∞ 时,∑vn 发散时,∑un 也发散.n =1n =1n =1例 3 判别级数∑(na - 1)(a > 1)的敛散性.解:因为lim 令t = 1 lim a t - 1 = lim a tln a = ln a ,而正项级数∑ 1 发散,由比较原则 n →∞ 1 nn t →0 t t →0 1 n的极限形式知原级数发散.(4) 比式判别法 如果∑u n 为正项级数,且 n =1u n +1u n= ,∞∞(i )若0 < < 1,则∑un 收敛;(ii )若≥ 1, ∑u n 发散.n =1n =1n 4(n + 1)na - 1 1 5∑∞1例 4 判别级数 (n + 1)! 的敛散性.10n解:因为limu n +1= lim (n + 2)! • 10n = lim n + 2= +∞ ,所以由比式判别法知原级数发散. n →∞u nn →∞ 10n +1 (n + 1)! ∞n →∞ 10u n +1(5) 比式判别法的极限形式 如果∑un 为正项级数,且lim=,则n =1n →∞ u n∞∞(i )若< 1,则∑un 收敛;(ii )若> 1或= +∞ 时, ∑u n 发散.n =1n =1例 5 判别级数∑ 解:因为lim u n +1 3n • n ! nn= lim的敛散性.3n +1(n + 1)! • n n = lim 3= 3 > 1 ,所以由比式判别法的极限形n →∞ u nn →∞ (n + 1)n +1 3n n ! n →∞ ⎛1 + ⎝ 1 ⎫ne ⎪ ⎭式知原级数发散.∞∞(6)根式判别法 如果∑un 为正项级数,(i )如果 n u nn =1≤ < 1,则∑u n 收敛;(ii )若 n =1≥ 1 ,则级数∑un 发散.n =1(7) 根式判别法的极限形式 如果∑un 为正项级数,还有lim n u n =,n =1n →∞∞∞(i )当< 1时,则∑un 收敛;(ii )当> 1时,则∑u n 发散.n =1n =1⎛ n ⎫n例 6 判别级数∑ 2n + 1⎪ 的敛散性.⎝解:因为lim ⎭= lim n = 1 < 1,所以由比式判别法极限形式知原级数收敛. n →∞ n →∞ 2n + 1 2 +∞(8) 积分判别法 若 f (x ) 为[1,+∞) 上的非负减函数,那么正项级数∑ f (n ) 与反常积分 ⎰1收敛或同时发散.例 7 判别级数∑n 2 + 1的敛散性.f (x )dx 同时解:设 f (x ) = 1 ,则 f (x ) 在[1,+∞) 上为非负单调递减函数,而 +∞ dx =x 2 + 1故由积分判别法知原级数收敛.⎰11 + x 24∞ n u n n ⎛ n ⎫n ⎝ 2n + 1⎭⎪ n∞∞nn∞∞ ⎛ u n⎫(9) Raabe 判别法 设u n > 0 , R n = n un +1 - 1⎪, n = 1,2, .⎭(i) 若存在 q > 1 及正整数 N ,使得当 n ≥ N 时有 R n ≥ q ,则级数∑un 收敛;n =1(ii )若存在正整数 N ,使得当 n ≥ N 时有 R n ≤ 1,则级数∑un 发散.n =1(10) Raabe 判别法的极限形式 设∑un 是正项级数,且有lim R n = r ,n =1n →∞(i ) 若 r > 1 ,则级数∑un 收敛;n =1(ii ) 若 r < 1,则级数∑un 发散.n =1例 8 判别级数∑ (2n - 1)!! (2n )!! ⋅ 1 的敛散性.2n + 1解:容易验证,因为→ 1(n → ∞)这个级数用比式判别法和根式判别法都失效,这时可以用 Raabe⎛ u n⎫ ⎧(2n + 2)(2n + 3) ⎫ (6n + 5)n 3判别法.此时, R n = n u- 1⎪ = n ⎨ (2n + 2)2 - 1⎬ = (2n + 1)2 → (n → ∞).由 Raabe 判别 2 ⎝ n +1 ⎭ ⎩ ⎭法知原级数收敛.正项级数的判别方法有很多种,下面总结一下这几种方法的选择顺序:①若lim u 易于求的,考察 n →∞lim u n 的值: lim u n ≠ 0 ,则依据级数收敛的必要条件,知级数发散;②若lim u n = 0 ,不能直接判断n →∞n →∞n →∞级数是收敛还是发散,此时用比式判别法或根式判别法,当< 1时,级数收敛;若> 1或= +∞ 时,级数发散;③当= 1时,级数可能收敛也可能发散,此时用比较判别法,找出一个已知敛散性的级数与之比较,然后根据比较判别法或其极限形式判定级数的敛散性,当然,对于一些具体问题,我们应该根据其特点分析,找到更简便的判别方法.2.3.3 一般项级数的判别方法(1) 交错级数判别法∞Leibniz 判别法 若交错级数 ∑(-1)n +1u n =1n( u n > 0 ),满足下述两个条件:(i )数列{u n}单调递减; (ii ) lim u = 0 ,则级数收敛. n →∞∞ ∞ ⎝∞∞n →∞n →∞n →∞注:用 Leibniz 判别法判定u n > u n +1 u 时,可以用以下几种方法:①比值法:考察是否有 u > 1 ;②差值法: 考察是否有 u n - u n +1 > 0 ; ③ 导数法: 即建立一个连续可导的函数f (n ) = u n (n = 1,2, ) ,考察是否有 f '(n ) < 0 .n +1f (x ) , 使例 9 判定级数∑(-1)n =1n -1n + 1 (n + 1) ln (n + 1)的敛散性.n + 1n + 1解:因为此级数为交错级数 ,设u n =(n + 1)ln (n + 1) ,易证lim u n = lim(n + 1)ln (n + 1) = 0 ,下面判定u n > u n +1 ,下面我们用导数的知识判定数列{u n }单调递减.设 f (n ) = u n =(n + 1,则 f '(n ) = (un + 1)ln (n + 1))' = ln (n + 1) - n ,又设 g (n ) = ln (n + 1) - n ,则 g '(n ) = 1 - 1 < 0 ,∴ g (n ) 单 n(n + 1)2 ln 2 (n + 1)n + 1调递减, g (n ) < g (0) ,∴ f '(n ) < 0 , f (n ) 单调递减, u n > u n +1 ,由 Leibniz 判别法,知原级数发散.(2) 绝对收敛∞ ∞若级数∑un 各项绝对值组成的级数∑ un收敛,则原级数绝对收敛.n =1n =1∞∞性质:绝对收敛的级数一定收敛.此定理的逆命题不成立,即:若∑un 收敛,不能判定∑ un 也 n =1n =1收敛.(3) Abel 判别法若{a n }为单调有界数列,且级数∑bn 收敛,则级数∑ a n bn 收敛.∑( )n 1 ⎛ 1 ⎫n( ) 例 10 判定级数- 1 ln (n ) 1 + n ⎪ 4 - arctan n 的收敛性. n =2⎝ ⎭ ∞ ( )n 1⎧⎪⎛1 ⎫n⎫⎪ 解:根据 Leibniz 判别法知级数∑ -1 ln n 收敛.因为⎨ 1 + n ⎪ ⎬ 递增有界,故由 Abel 判别法n ∑( )n 1 ⎛ 1 ⎫ n =2 ⎪⎩⎝ ⎭ ⎪⎭{ } 知级数 - 1 ln (n ) 1 + n ⎪收敛,又因 4 - arctan n 递减有界,再由 Abel 判别法知原级数收敛. n =2⎝ ⎭(4)Dirichlet 判别法若数列{a n }单调递减,且lim a n = 0 ,又级数∑bn 的部分和数列有界,则级数∑ a n bn 收敛.∞ nx 2 -1 ln 1 +⎪ (4n - 2)(4n + 1)⎝ n ⎭(4n - 2)(4n + 1) (- 1 ) ln 1 + n⎛ 1 ⎫ n ⎪ (4n - 2)(4n + 1) ⎝ ⎭ 3n n∞例 11 判定级数∑n =1sin nx , x ∈ (0,2) (> 0)的敛散性.n解: 由于当 x ∈ (0,2)时, 有 ∑ s in kx ≤ 1, 即 ∑∞ sin nx 的部分和数列有界, 而数列 k =1 sin n =1⎧ 1 ⎫(> 0) 单调递减,且lim 1= 0 ,故由 Dirichlet 判别法知,原级数收敛.⎨ ⎬⎩ n ⎭n →∞ n对于交错级数敛散性判定问题,应先判定其是否绝对收敛,即若∑ unn =1收敛,则∑un 收敛;若不n =1是绝对收敛,则根据 Leibniz 判别法,Abel 判别法,Dirichlet 判别法判定其是否条件收敛.3、巧妙判别数项级数敛散性以上介绍了一些判别数项级数敛散性的基本方法,但是在实际的应用中往往需要多种方法结合,且有时还有一定的技巧性,下面结合一些实例列举一些常用的判别方法和技巧.3.1 等价无穷小替换的方法判断级数敛散性∞ ∞应用定理:设∑un 和∑vn 是两个正项级数,且当n → ∞ 时, u n 和 v n 为等价的无穷小量,则n =1n =1∞∞∑un 和∑vn 的敛散性保持一致.n =1n =1证明:由于当 n → ∞ 时, u n 和v n为等价的无穷小量,即lim u n n →∞ v= 1 ≠ 0 ,由比较判别法的极限形 n∞∞式可知级数∑un 和级数∑vn 同时收敛或同时发散.n =1例 1 判定级数∑n =1( )n n =1⎛1 ⎫的敛散性.(- )n⎛ + 1 ⎫ 1 解: 设 u n = 1 ln 1 ⎝ ⎪ ⎭ , 则 u =~ n = 4n 1 4n 2, (n → ∞), 而级数∞1∑ 2收敛,所以原级数绝对收敛.n =13.2 运用常用不等式判断级数的敛散性∞ ∞ ∞ ∞ na n n 2 + ∑ n∞∞⎝∑ 常用的不等式有: ln n < n , ln (1 + x ) < x , e x > 1 + x∞ ⎛ 1n + 1⎫ 例 2 判定级数 - ln n =1 ⎝ ⎪ 的敛散性. n ⎭ 解:此题我们可以利用不等式ln ( 1 + x ) < x ,1n + 1 1 n 1 ⎛1 ⎫ 1 1 有u n = n - ln n = + ln = + ln 1 - ⎪ < - n n + 1 n n + 1 n n + 1 ⎝ ⎭∞ ⎛ 11 ⎫ 因为级数∑ n - n + 1⎪ 收敛,故原级数收敛.n =1 ⎝ ⎭ 3.3 运用平均不等式ab ≤1 (a2 + b 2 )判断级数敛散性2∞ ∞∞应用定理:若级数∑ a 2和级数∑b 2都收敛,则级数∑ a b绝对收敛.nn =1∞a 2nn =1∞b 2n nn =1∞ 1(a 2 + b 2 )证明:已知级数∑n =1n和级数∑n =1n 都收敛,根据级数收敛的性质,则级数∑ 2n n 收敛,由于有不等式 a b ≤1(a 2 + b 2 ),再根据比较判别法,知级数∑ a b∞收敛,所以级数∑ a b 绝对n n2nnn nn =1n nn =1收敛.∑2∑( )nn例 3 设常数> 0 ,级数 n =1 a n 收敛,判断级数- 1n =1 的敛散性.n 2 +∞ 2∞ 1 ∞ ⎛ 2 1 ⎫ 解:因为级数∑ a n 收敛,并且级数∑ n 2 + 1 也收敛,所以级数∑ a n + n2 ⎪ 收敛,n =1 n =11 1 ⎛2 1 ⎫ ⎝ + ⎭∞又因为 = a n n 2 + ≤ 2 a n + n 2 ⎪ ,由比较判别法可知,级数 收 + ⎭敛,故原级数绝对收敛.3.4 拉格朗日微分中值定理判断级数敛散性∞ ⎡ ⎛ 1 ⎫⎛ 1 ⎫⎤应用定理:设 f (x ) 在(0,1)内可导,且其导函数有界,则级数∑ ⎢ fn + k ⎪ - f n + k ⎪⎥ 绝对收 n =1 ⎣ ⎝ 1 ⎭ ⎝ 2 ⎭⎦敛.证明:因为 f (x ) 在(0,1)内可导,且其导函数有界,所以存在 M f '(x ) ≤ M ,于是由拉格朗日中值定理得> 0 ,对于一切 x ∈ (0,1) ,都有a nn 2 + ∞n n ∞lim ln 2 ⎪ u⎛ 1 ⎫ ⎛ 1 ⎫ '⎛ 1 1 ⎫ M (k 2 - k 1 ) f n + k ⎪ - f n + k ⎪ = f() n + k- n + k ⎪ ≤ (n + k )(n + k ) , ⎝ 1 ⎭ ∞ ⎝ 2 ⎭ 1 ⎝ 12 ⎭ ∞ ⎡ ⎛1 1 ⎫ ⎛2 1 ⎫⎤ 由于级数∑ (n + k )(n + k ) 收敛,所以级数∑⎢ f n + k ⎪ - f n + k ⎪⎥ 绝对收敛.n =1 1 2 ∞ ⎛ 1n =1 ⎣ ⎝ 1 ⎫ 1 ⎭ ⎝ 2 ⎭⎦ 例 4 判定级数∑ sin n + 10 - s in n + 1⎪ 的敛散性.n =1 ⎝⎭ 解:设函数 f (x ) = sin 1 ,则 f '(x ) = - 1x x 2⋅ cos 1 ,知 f '(x ) 有界,令 k x 1= 10, k 2 = 1,由于满足 ∞ ⎛ 1 1 ⎫上述定理条件,故级数∑ sin n + 10 - s in n + 1⎪ 收敛.n =1 ⎝ ⎭ 3.5 对数判别法判断级数敛散性∞ln 1u n∞应用定理:若级数∑un 为正项级数,若有> 0 ,使得当 n ≥ n 0 时,n =1ln n ≥ 1 +,则级数∑u nn =1ln 1u n∞收敛,若有 n ≥ n 0 时,ln n ≤ 1 ,则级数∑u n 发散. n =1ln 1u n 1∞ 1证明:如果 n ≥ n 0 时,不等式ln n ≥ 1 +成立,则有u n ≥1+ .由于级数∑ 1+ 收敛,所以 n =11∞ln ∞n由比较判别法知级数∑u n 收敛.同理可证,当不等式 n =1 ln n ≤ 1 成立时,则级数∑u n 发散. n =1∑ a ln n ( > )例 5 判定级数 a n =1 2n1 的敛散性.ln 1 u 2nln a ln n n ln 2 - ln n • ln a n 解:由于 n= ln n = ln n ln n = ln 2 ln n- ln a ,由洛必达法则可知:⎛ n - ln a ⎫ = ln 2 lim x - ln a = ln 2 lim 1 - ln a = +∞ n →+∞⎝ ln n ⎭n →+∞ ln x nn ←∞ 1 x所以,对> 0 ,存在 n 0 ,使得当 n ≥ n 0 时, ln 2 ln n- ln a ≥ 1 +,因而根据以上定理原级数发散.⎭⎦ ∞n n+ O , ∞ 例 7 判别级数的敛散性.⎝ n3.6 泰勒展开式判断级数的敛散性∞ ⎡ ⎛ 1 ⎫n⎤例 6 判别级数∑⎢ e - 1 + n ⎪ ⎥ 的敛散性.n =1 ⎢⎣ ⎝ ⎭ ⎥⎦ n⎛ 1 ⎫⎛ 1 1⎛ 1 ⎫ ⎫⎛ 1 ⎫n ln 1+ ⎪n n n - 2n2 +o n 2 ⎪ ⎪ ⎡ ⎛ 1 ⎛ 1 ⎫⎫⎤解:因为u = e - 1 + ⎪ = e - e ⎝⎭ = e - e ⎝⎝ ⎭ ⎭ ~ e ⎢1 - 1 - + o ⎪⎪⎥n ⎝ n ⎭⎣2n ⎝ n ⎭⎪ ~e (n → ∞).由于级数∑∞e 发散,所以原级数发散.2nn =1 2n3.7 拆项法判断级数的敛散性将级数的一般项运用等价变形、三角基本公式、有理化等方法拆成几项之差也是判别级数收敛的一种常用方法.∑sin (n )2 - n sinn =1 n 2sin (n)2 - n sinsin (n )2sin1 ∞ 1解:因为=n 2n 2∞sin (n )2-,而且n∞ sin≤ 2 ,由于级数∑ 2 收敛,n =1 根据比较判别法知级数∑2n =1收敛;而且∑n =1,当= k时,该级数收敛;当≠ k时,该级数发散.由此可知,当= k时,原级数收敛;当≠ k时,原级数发散.3.8 Gauss 判别法判断级数的敛散性若 a n > 0(n = 1,2, ) ,且 a n a = + n ⎛ 1 ⎫ n1+ ⎪ > 0 ,则级数 ∑ a n 当>1 时收敛;当n +1 ⎝ ⎭ n =1< 1时发散;而当= 1 时,对> 1收敛,对≤ 1发散.∞p (p + 1) (p + n - 1) 1例 8 判别级数∑ n =1( p > 0, q > 0) 的敛散性. n ! n q解:对于这个级数来说,an + 1 ⎛ n + 1⎫q ⎛ p ⎫-1⎛ 1 ⎫q +1 q - p + 1 ⎛ 1 ⎫n = ⎪ = 1 + ⎪ 1 + ⎪ = 1 + + O ⎪ , a n +1 p + n ⎝ n ⎭ ⎝ n ⎭ ⎝ n ⎭ n ⎝ n 2⎭所以它在 q > p 时收敛,在 q ≤ p 时发散.3.9 运用函数判定数项级数的敛散性以前讨论的方法判定级数敛散性都与数列极限紧密联系,这种方法利用函数来研究数项级数.给出了利用函数的导数和极限判别数项级数敛散性的的方法.sin (n )2n 2 n∞∞∞ ∞⎨ f (x ) ∞⎪ 收敛,则 应用定理 2 如果 存在, ⎪ 绝对收敛,则 . 应用定理 4 如果 存在,而且,则 ⎪ 绝对收敛. 由于已知 存在,即 存在,对 满足定理 3 条件,所以⎪ 绝对收敛. ∑ f ⎛ 1 ⎫ lim f (x ) = 0 n =1 ⎝ n⎭∞⎛ 1 ⎫ x →0⎛ 1 ⎫证 明 : 已 知 级 数 ∑ f ⎪ 收 敛 , 有 级 数 收 敛 的 必 要 条 件 得 lim f ⎪ = 0 , 因 而n =1lim f (x ) = lim f ⎛ 1 ⎫= 0 .⎝ n ⎭ x →∞ ⎝ n ⎭⎪x →0n →∞ ⎝ n ⎭∞ ⎛ 1 ⎫例 9 判别级数∑ n e n - 1⎪cos n 的敛散性.n =1 ⎛ 1 ⎫ ⎪ ⎝ ⎭ e x - 1 ⎛ 1 ⎫ 解:由于lim n e n - 1⎪ = lim = 1 ,又由于 limcos 不存在,所以lim f ⎪ 不存在,由定理 1 的n →∞ ⎝ ⎪ x →0 ⎭x →0 2 x →∞ ⎝ n ⎭ 逆否命题可知,级数不收敛.lim f '(x ) ∑ f ⎛ 1 ⎫ lim f '(x ) = 0 x →0 = n =1 ⎝ n ⎭x →0 f (0) = f '(0) = 0 ∑ f ⎛ 1 ⎫ 应用定理 3 如果函数在 x 0 存在二阶导数,且 ,则n ⎪ 绝对收敛. n =1 ⎝ ⎭ lim f ' (x ) lim f (x ) = lim f '(x ) = 0 ∑ f ⎛ 1 ⎫ x →0x →0x →0n =1⎝ n ⎭ 证明:首先作辅助函数G (x ) = ⎧0⎩ x = 0 x ≠ 0考察G (x ),有G (0) = 0G '(0) = limf (x ) = lim f '(x ) = 0 x →0 x x →0G ' (0) = lim G '(x ) - G '(0) = lim f (x ) = lim f ' (x )x →0 xx →0 x x →0 lim f ' (x ) G ' (0) = 0 G (x ) ∑ f ⎛ 1 ⎫ x →0⎡1 - 1 ⎤ 2n =1 ⎝ n ⎭例 10 判别级数∑ ⎢ a n+ an- 2 ⎥ 的敛散性.⎢ n =1 ⎢⎣ 1 ⎥ a n- 1 ⎥⎦⎛ a x + a -x - 2 ⎫22 ln a (a x + a -x - 2)2解:不妨设 f (x ) = ⎝ a x- 1 ⎪ ,则 f '(x ) = ⎭ (a x - 1)3∞ 应用定理 1 若级数x= f ' (x ) =2 l n 2 (- a 3x + 6a 2x - 14a x + 2a -2x - 9a -x + 16)(a x - 1)4求极限得lim f (x ) = 0x →0应用洛必达法则,得lim f x →0'(x ) =8 ln a (2a 2x + 2a -2x - a x + a -x ) 27a 3x - 24a x + 3a x 0lim f x →0' (x )= lim x →0 ln 2 (81a 3x + 96a 2x - 14a x + 32a -2x - 9a -x ) 64a 4x - 81a 3x + 24a 2x - a x= 4 ln 2 a⎡ 1 - 1 ⎤ 2所以lim f ' (x ) 存在,根据定理 4 知级数∑ ⎢ a n + a n- 2 ⎥ 绝对收敛.x →0 ⎢ n =1 ⎢⎣ 1 ⎥ a n - 1 ⎥⎦从以上分析和各例子可以看出,判定数项级数敛散性方法众多,我们应深刻体会各个定义、性质、定理的条件及结论,同时也要善于观察和总结,正确且灵活地使用各定理.∞。

数项级数敛散性判别法

数项级数敛散性判别法

数项级数敛散性判别法数项级数是由一系列数值相加而得到的无穷级数。

在数学中,我们经常需要判断一个数项级数的敛散性,即判断它是否会无限逼近一个有限值(收敛)或者永远无法收敛(发散)。

下面将介绍一些常见的判断数项级数敛散性的方法。

1.正项级数判别法(比较判别法):对于一个数项级数∑an,如果对于所有的n,都有an≥0,并且an+1≤an,那么我们可以使用正项级数判别法来判断敛散性。

即如果极限值lim(n→∞)an=0,则级数收敛;如果极限值lim(n→∞)an>0,则级数发散。

2.比值判别法:如果存在一个正数r,使得lim(n→∞)an+1/an=r,那么根据r的大小,可以判断原级数的敛散性。

具体判别如下:-如果r<1,那么级数收敛;-如果r>1,那么级数发散;-如果r=1,判别不出来,需要使用其他方法进行判断。

3.根值判别法:如果存在一个正数r,使得lim(n→∞)√(n)(an) = r,那么根据r 的大小,可以判断原级数的敛散性。

具体判别如下:-如果r<1,那么级数收敛;-如果r>1,那么级数发散;-如果r=1,判别不出来,需要使用其他方法进行判断。

4.绝对收敛与条件收敛:如果一个级数的各项都是正数,并且该级数收敛,那么称该级数是绝对收敛的。

如果一个级数是收敛的,但其对应的绝对值级数是发散的,则称该级数是条件收敛的。

5.莱布尼茨判别法:对于一个交替级数∑((-1)^(n+1)*bn),如果满足以下条件,那么该级数收敛:- bn>0,即各项都是正数;- bn≥bn+1(递减趋势);- lim(n→∞)bn=0。

6.积分判别法:如果能够找到一个函数f(x),使得f(x)在[1,∞)上连续且单调递减,并且∑an与∫f(x)dx之间有关系,那么可以使用积分判别法来判断敛散性。

具体判别如下:- 如果∫f(x)dx收敛,那么∑an也收敛;- 如果∫f(x)dx发散,那么∑an也发散。

关于数项级数敛散性的判定

关于数项级数敛散性的判定

关于数项级数敛散性的判定摘要:就数项级数敛散性的判定进行了深入细致的分析、探究与总结,重点论述了正项级数及一般项级数的敛散性判别方法,提出了数项级数敛散性判定的一般步骤,以及判定过程中需要注意的一些问题。

使得对数项级数敛散性的知识有了更深的认识,提高了解题能力。

关键词:数项级数;正项级数;交错级数;一般项级数;敛散性 引言:无穷级数是高等数学的一个重要组成部分,是研究“ 无穷项相加” 的理论 ,它是表示函数、研究函数的性质以及进行数值计算的一种工具。

如今,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的有力工具,而应用的前提是级数收敛,所以其收敛性的判别就显得十分重要,判断级数敛散的理论和方法很多,本文的根本目的是对数项级数敛散性的判定进行深入的研究与总结。

1.预备知识: 1.1级数的定义及性质定义1:给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式......21++++n u u u称为数项级数。

其中n u 称为该数项级数的通项。

数项级数的前n 项之和记为:∑=+++==nk n k n u u u u S 121...。

称为数项级数第n 个部分和。

定义2:若数项级数的部分和数列{}n S 收敛于S (即S S n n =∞→lim ),则称数项级数收敛。

若{}n S 是发散数列,则称数项级数发散。

即:n n S ∞→lim 不存在或为∞。

性质:(1)级数收敛的柯西准则:级数收敛的充要条件:0>∀ε,0>∃N ,使得当N m >以及对任意正整数P ,都有 ε<++++++p m m m u u u (21)推论:级数收敛的必要条件:若级数收敛,则0lim =∞→n n u 。

(2)设有两收敛级数n u s ∑=,n v ∑=σ,则其和与差)(n n v u ±∑也收敛,并且σ±=±∑s v un n)(。

判别数项级数敛散性的常用方法与技巧

判别数项级数敛散性的常用方法与技巧

判别数项级数敛散性的常用方法与技巧判断数项级数的敛散性是数学分析中的一个重要问题。

对于数项级数a₁+a₂+a₃+⋯,判断它的敛散性可以使用多种方法和技巧。

以下是判别数项级数敛散性的常用方法和技巧:1.部分和序列法(也称柯西收敛准则):数项级数收敛的必要条件是它的部分和序列收敛。

即,如果部分和序列Sₙ=a₁+a₂+⋯+aₙ收敛,则数项级数也收敛。

这个方法常用于证明一些级数的发散。

2.比较判别法:将待判别的级数与已知级数进行比较,从而确定待判别级数的敛散性。

-比较判别法一:如果对于所有n,都有0≤bₙ≤aₙ,且∑aₙ收敛,则∑bₙ也收敛。

如果∑aₙ发散,则∑bₙ也发散。

-比较判别法二:如果对于所有n,都有aₙ≤bₙ≥0,且∑aₙ发散,则∑bₙ也发散。

如果∑aₙ收敛,则∑bₙ也收敛。

比较判别法常见的应用有比较无穷大级数、比较一致收敛级数和比较正项级数等。

3. 极限判别法(拉阿贝尔判别法):对于正项级数(非负数列构成的级数),如果存在极限lim(n→∞)(aₙ/aₙ₊₁),则:-若极限存在且大于1,则级数发散;-若极限存在且小于1,则级数绝对收敛;-若极限等于1,则不能确定级数的敛散性。

极限判别法适用于有常数项的级数以及指数函数和幂函数构成的级数。

4. 积分判别法:对于正项级数∑aₙ,如果存在连续函数f(x),满足aₙ = f(n)且f(x)在x≥1上单调递减,则∑aₙ和∫f(x)dx同敛散。

即,级数与积分的敛散性相同。

积分判别法适用于正项级数,特别适用于有幂函数构成的级数。

5.序列收敛法:将待判别级数的项化为序列的形式,然后判断这个序列是否收敛。

如果序列收敛,则级数收敛;如果序列发散或趋于正无穷,则级数发散。

序列收敛法适用于特定结构的级数,如差分级数。

以上是常用的判别数项级数敛散性的方法和技巧。

在具体问题中,可以结合使用不同的方法确定级数的敛散性。

需要注意的是,判别数项级数敛散性的方法与技巧是基于数学分析中的定理和推理的,需要熟练掌握并灵活运用。

无穷级数第二节数项级数的敛散性

无穷级数第二节数项级数的敛散性

函数与极限
30
4
(2) 设 sn (n ) 且 un vn ,
则 n sn
不是有界数列
vn发散.
定理证毕.
n1
推论: 若 un 收敛(发散)
n1
且vn kun (n N )(kun vn ), 则 vn 收敛(发散).
n1
比较审敛法的不便: 须有参考级数.
函数与极限
5
例 1 讨论 P-级数
1时级数发散; 1时失效.
例如, 设级数
1,
nn
n1
n
un
n
1 nn
1 n
0 (n )
级数收敛.
函数与极限
16
二、交错级数及其审敛法
定义: 正、负项相间的级数称为交错级数.
(1)n1un或 (1)nun (其中un 0)
n1
n1
莱布尼茨定理 如果交错级数满足条件:
(ⅰ)un
un1
lim n
s2n
s
u1 .
lim
nห้องสมุดไป่ตู้
u2n1
0,
函数与极限
18
lim n
s2n1
lim(
n
s2n
u2n1 )
s,
级数收敛于和 s, 且s u1. 余项 rn (un1 un2 ), rn un1 un2 ,
满足收敛的两个条件, rn un1 .
定理证毕.
函数与极限
19
例 5 判别级数 (1)n n 的收敛性.
10
例 3 判定下列级数的敛散性:
1
(1) sin ; n1 n
sin 1
解 (1) lim n
n 1

10.3数项级数的收敛性判别法(1)

10.3数项级数的收敛性判别法(1)
∞ 1 1 由于级数∑ 和∑ 具有相同的敛散性, n =1 n + 1 n =1 n ∞ ∞ 1 1 调和级数∑ 发散,从而∑ 也发散. n =1 n n =1 n + 1 ∞
1+ n 由比较判别法知,级数∑ un = ∑ 发散. 2 n =1 n =1 1 + n
12


n! 例5 判断级数 ∑ n 的敛散性. n =1 n

p ≤ 1, 级数发散 .
21

例12 讨论级数
∑n x
n =1
n −1
( x > 0 ) 的敛散性 .
u n +1 (n + 1) x n = lim =x 解: ∵ lim n − 1 n →∞ u n n →∞ n x
根据定理4可知:
当0 < x < 1 时, 级数收 敛 ; 当 x > 1时, 级数发散 ;
n− N
u N +1
k ( ρ + ε ) 收敛 , 由比较判别法可知 ∑
∑ un 收敛 .
20
(2) 当ρ > 1 或 ρ = ∞ 时,必存在 N ∈ Z + , u N ≠ 0, 当n ≥ N
u n +1 > 1, 从而 时 un u n +1 > u n > u n −1 > ⋯ > u N
(1) 当0 < l <∞时, 取 ε < l , 由定理 2 可知
∑ u n 与 ∑ vn
n =1 n =1


(2) 当l = 0时, 利用 u n < ( l + ε ) vn (n > N ), 由定理2 知 若 ∑ vn 收敛 , 则 ∑ u n 也收敛 ;

级数的敛散性

级数的敛散性

学士学位论文题目有关级数的敛散性学生指导教师年级 2008级专业数学与应用数学系别数学系学院数学科学学院2011年5月目录摘要 (1)关键词 (1)引言 (1)1 基本概念和相关理论 (1)1.1 有关级数的定义 (1)2 级数敛散性的判定方法 (3)2.1 级数的相关定理及证明 (3)3 级数敛散性的应用 (7)3.1 级数敛散性的相关结论 (7)3.2 级数敛散性判定的应用 (10)结束语 (14)参考文献 (14)外文摘要 (14)有关级数的敛散性(哈尔滨师范大学数学科学学院)摘 要: 级数是高等数学中的一个重要内容,而正项级数又是级数的重要组成部分,判别正项级数的敛散性方法很多,本文主要讨论了正项级数判别法的一些特性,及判别正项级数敛散性的一般步骤关 键 词 数项级数 收敛 发散 判别法引言数项级数敛散性判定研究是一个重要而有趣的课题,关于数项级数的敛散性判定尽管有不少经典性判别法,然而对数项级数判断收敛的方法的研究至今还在继续与深入,并且获得了一些新的知识和发现.本文打算对数项级数各项重要的敛散性判别方法作简单、系统的归纳,在已有判断收敛的一般程序基础上,进行进一步探讨,使解题更简便、更直接,从而找到判断收敛更完美的一般程序及最优方法选择.1基本概念和相关理论1.1有关级数的定义定义1.1.1 给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式12......n u u u ++++ (1)称为数项级数或无穷项级数(也简称为级数),其中n u 称为数项级数(1)的通项.数项级数(1)也常写作:∑∞=1k n u 或简称写作∑n u .数项级数(1)的前n 项之和,记为n nk k n u u u u S +++==∑=...211, (2)称为数项级数(1)的第n 个部分和,也简称为部分和.定义1.1.2 若数项级数(1)的部分和数列{}n S 收敛于S(即S S n n =∞→lim ),则称数项级数(1)收敛,称S 为数项级数(1)的和,记作12......n u u u ++++ 或∑=n u S .若{}n S 是发散数列,则称数项级数(1)发散.定义1.1.3 若正项级数各项的符号都相同,则称它为同号级数.各项都是由正项组成的级数称为正项级数定义1.1.4若级数的各项符号正负相间,即11234...(1)...(0,1,2,)n n n u u u u u u n +-+-++-+>= ,则上述级数为交错级数2 级数敛散性的判定方法2.1 级数的相关定理及证明定理 2.1.1 由于级数(1)的收敛或发散(简称敛散性),是由它的部分和数列{}n S 来确定的,因而可把级数(1)作为数列{}n S 的另一种表现形式.反之任给一个数列{}n a ,如果把它看作某一数项级数的部分和数列,则这个数项级数就是 +-++-+-+=-∞=∑)()()(1231211n n n n a a a a a a a u (3)这是数列{}n a 与级数(3)具有相同的敛散性,且当{}n a 收敛时,其极限值就是级数(3)的和.定理2.1.2 (级数收敛的柯西准则) 级数(1)收敛的充要条件:任给正数ε,总存在正整数N ,使得当N m >以及对任意正整数p ,都有12m m m p u u u ε++++++< (5) 即有级数(1)发散的充要条件:存在某正整数0ε,对任何正整数N ,总存在整数)(0N m >和0p ,有12m m m p u u u ε++++++<定理2.1.3 若级数(1)收敛,则0lim =∞→n n u (6)定理2.1.4 若级数nu∑和n v ∑都收敛,则对任意常数c ,d ,级数()n n cu dv +∑亦收敛,且()nn n n cudv c u d v +=+∑∑∑定理2.1.5 去掉、增加或改变级数的有限个项不改变级数的敛散性.定理2.1.6 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和.注意:从级数加括号的收敛,不能推断它在未加括号前也收敛.例如(11)(11)(11)000-+-++-+=+++收敛,但级数1111-+-+却是发散的.定理2.1.7 正项级数nu∑收敛的充要条件是:部分和数列{}n S 有界,即存在某正整数N ,对一切正整数n 都有n S M <.定理2.1.8(比较原则) 设nu∑和nv∑是两个正项级数,如果存在某正整数N ,对一切n N >都有n n u v ≤则(i )若级数n v ∑收敛,则级数n u ∑也收敛;(ii )若级数n u ∑发散,则级数n v ∑也发散. 推论 设12......n u u u ++++ (7) 12......n v v v ++++ (8)是两个正项级数,若lim nn nu l v →∞= 则(i ) 当0l <<+∞时,级数(7)、(8)同时收敛或同时发散;(ii ) 当0l =且级数(8)收敛时,级数(7)也收敛; (iii )当l =+∞且级数(8)发散时,级数(7)也发散.定理2.1.9(达朗贝尔判别法,或称比式判别法) 设nu∑为正项级数,且存在某个正整数0N 及常数q (01q <<).(i ) 若对一切0n N >,成立不等式nnu q v ≤ 则级数n u ∑收敛.(ii )若对一切0n N >,成立不等式1nnu v ≥ 则级数n u ∑发散.推论 (比式判别法的极限形式)若n u ∑为正项级数,且1limn n nu q u +→∞= (9)则(i ) 当1q <时,级数n u ∑收敛;(ii )当1q >或q =+∞时,级数n u ∑发散.注 若(9)中1q =,这是用比式判别法对级数的敛散性不能做出判断因而它可能是收敛的,也可能是发散的.例如级数21n ∑和1n∑,它们的比式极限都是11()n nu n u +→→∞ 但21n ∑是收敛的,而1n∑却是发散的. 若某极限(9)式的极限不存在,则可用上、下极限来判别. 推论 设n u ∑为正项级数. (i )若1lim1n n n u q u +→∞=<,则级数收敛;(ii )若1lim1n n nu q u +→∞=>,则级数发散.定理2.1.10 (柯西判别法,或称根式判别法) 设nu∑为正项级数,且存在某正数0N 及正常数l , (i )若对一切0n N >,成立不等式1l ≤<, (10) 则级数n u ∑收敛;(ii )若对一切0n N >,成立不等式1≥ (11)则级数n u ∑发散.定理2.1.11(根式判别法的极限形式) 设n u ∑为正项级数,且n l = (12)则(i )当1l <时,级数n u ∑收敛; (ii )当1l >时,级数n u ∑发散.注 若(12)式中1l =,则根式判别法仍无法对级数的敛散性作出判别. 例如,对21n ∑和1n ∑,都有1()n →→∞但21n ∑是收敛的,而1n∑却是发散的.若(12.定理2.1.12 设nu∑为正项级数,且l =则当(i ) 1l <时级数收敛;(ii )1l >时级数发散.定理2.1.13(莱布尼茨判别法)若交错级数11234...(1)...n n u u u u u +-+-++-+ (13)满足下述两个条件: (i ) 数列{}n u 单调递减; (ii )lim 0n n u →∞=则级数(13)收敛.定理2.1.14 若级数(13)满足莱布尼茨判别法的条件,则收敛级数的余项估计式为1n n R u +≤绝对收敛级数及其性质 若级数12......n u u u ++++ (7) 各项绝对值所组成的级数12......n u u u ++++ (15) 收敛,则称级数(7)为绝对收敛.定理2.1.15 绝对收敛的级数一定收敛.定理2.1.16 设级数12......n u u u ++++ (7)绝对收敛,且其和等于S ,则任意重排后所得到的级数12......n v v v ++++ (8)也绝对收敛亦有相同的和数.注 由条件收敛级数重排列后所得到的新级数,即使收敛,也不一定收敛于原来的和数.而且条件收敛级数适当重排后,可得到发散级数,或收敛于事先指定的数.例如级数11111(1)231n n +-+++-++ 是条件收敛的,设其和为A ,即1111111111(1)12345678n n A n ∞+=-=-+-+-+-+=∑ 乘以常数12后,有 1111111(1)224682n A n +-=-+-+=∑ 将上述两个级数相加,就得到1111131325742A +-++-+= 定理2.1.17 (柯西定理) 若级数12......n u u u ++++ (7) 12......n v v v ++++ (8) 都绝对收敛,则对所有乘积i j u v 按任意顺序排列所得的级数n w ∑也绝对收敛,且其和等于AB .引理 (分部求和公式,也称阿贝尔变换) 设,(123)i i v i n ε= ,,,,为两组实数,若令12(12)k k v v v k n σ=+++= ,,,则有如下分部求和公式成立:121232111()()()ni in n n n n i vεεεσεεσεεσεσ--==-+-++-+∑ (16)推论(阿贝尔引理) 若(i ) 12n εεε ,,,是单调数组;(ii )对任意正整数(1)k k n ≤≤有k A σ≤(这里1k k v v σ=++ ),则记max{}k kεε=时,有13nk ki vk εε=≤∑ (17)定理2.1.18(阿贝尔判别法) 若{}n a 为单调有界数列,且级数nb∑收敛,则级数1122n n n n a b a b a b a b =++++∑ (18) 收敛.定理2.1.19(狄利克雷判别法) 若数列{}n a 单调递减,且lim 0n n a →∞=,又级数n b ∑的部分和数列有界,则级数(18)收敛. 积分判别法定理 2.1.20(积分判别法) 设f 为[1,)+∞上非负减函数,那么正项级数()f n ∑与反常积分1()f x dx +∞⎰同时收敛或同时发散.3 有关级数的敛散性的应用 3.1级数敛散性的相关结论3.1.1判断正项级数一般顺序是先检验通项的极限是否为0,若为0则收敛,若不为0则判断级数的部分和是否有界,有界则收敛,否则发散. 3.1.2若级数的一般项可以进行适当放缩则使用比较判别法,或可以找到其等价式用等价判别法.3.1.3当通项具有一定特点时,则根据其特点选择适用的方法,如比值判别法、跟式判别法。

泰勒公式判断级数敛散性的方法

泰勒公式判断级数敛散性的方法

教学方法课程教育研究学法教法研究 123引言大学数学课程中,级数部分是该课程知识体系中重要的组成部分。

数学专业的后续课程,如《复变函数论》等都和级数有密切的关系,对于工科的学生来讲,傅立叶级数和傅立叶变换主要应用在信号分析领域,包括滤波、数据压缩、电力系统的监控和电子产品的制造等领域,因此级数和这些内容的相应的课程紧密相关。

作为函数项级数基础的数项级数部分自然尤为重要。

判断数项级数敛散性是学习级数的重要环节,关系到后面各类函数项级数的学习。

数项级数敛散性的判断如果掌握了一些特定的技巧,则可以帮助我们巧妙地解决这个问题。

关于数项级数敛散性的判断,有一些基本方法,如:敛散性的定义、级数收敛的必要条件、比较审敛法、比值审敛法、根值审敛法等,这些方法针对一些特定形式的级数敛散性判断都非常有效,该部分在文献[4]中有详细讲解,这里不再赘述。

但是,这里存在的普遍问题是,以上方法只是针对一些特定形式的数项级数能够确定其敛散性,对于一般级数的问题,需要探索新的方法,比如对于交错级数,只有级数满足Leibniz 定理[4]的两个条件时,才能判断它是收敛的,显然这个方法有一定的局限性。

泰勒公式是高等数学课程中一个功能强大的工具,我们熟知的在近似计算、误差估计、极限计算等方面都有广泛的使用[3]。

用泰勒公式判定级数的敛散性在一些文章已有所提及[5],但这些论证没有深入挖掘它的奇妙之处及具体使用方法。

下面,本文将论证用泰勒公式判定级数的敛散性的方法::该等式称为按的幂展开的带有拉格朗日型余项的n 。

2.在几类基本初等函数中,幂函数是形式简单,容易确定极限的一类函数,借助泰勒公式可以把各类函数转化为幂函数的问题。

泰勒公式中,参照点取零,展开式各项都是关于的幂函数,余项是当变量趋向零时的无穷小量,这样无论原始级数什么形式都可以通过幂函数的次数判断该项的敛散性。

以下通过三个实例分别说明用泰勒公式判别交错级数、任意项级数、正项级数的敛散性的方法。

关于数项级数敛散性的判定

关于数项级数敛散性的判定

关于数项级数敛散性的判定1、问题的提出数项级数敛散性的判别问题,是数学分析的一个重要部分.数项级数,从形式上看,就是无穷多个项的代数和,它是有限项代数和的延伸,因而级数的敛散性直接与数列极限联系在一起,其判别方法多样,技巧性也强,有时也需要多种方法结合使用,同时,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的工具,所以研究数项级数的判定问题是很重要的.2、熟练掌握并准确应用级数的概念、性质和判定定理2.1数项级数收敛的定义数项级数∑∞=1n nu收敛⇔数项级数∑∞=1n nu的部分和数列{}n S 收敛于S .这样数项级数的敛散性问题就可以转化为部分和数列{}n S 的极限是否存在的问题的讨论,但由于求数列前n 项和的问题比较困难,甚至可能不可求,因此,在实际问题中,应用定义判别的情况较少.2.2数项级数的性质(1)若级数∑∞=1n nu与∑∞=1n nv都收敛,则对任意常数c,d, 级数∑∞=+1)(n n ndv cu亦收敛,且∑∑∑∞=∞=∞=+=+111)(n n n n n n nv d u c dv cu;相反的,若级数∑∞=+1)(n n n dv cu 收敛,则不能够推出级数∑∞=1n n u 与∑∞=1n nv都收敛.注:特殊的,对于级数∑∞=1n nu与∑∞=1n nv,当两个级数都收敛时,∑∞=±1)(n n nv u必收敛;当其中一个收敛,另一个发散时,∑∞=±1)(n n nv u一定发散;当两个都发散时,∑∞=±1)(n n n v u 可能收敛也可能发散.例1 判定级数∑∞=+1)5131(n n n 与级数∑∞=+1)211(n n n的敛散性.解:因为级数∑∞=131n n 与级数∑∞=151n n 收敛,故级数∑∞=+1)5131(n n n 收敛.因为级数∑∞=11n n 发散,级数∑∞=121n n 收敛,故级数∑∞=+1)211(n n n发散.(2)改变、增加或去掉级数的有限个项不会改变原级数的敛散性.(3)在收敛级数的项中任意加括号,既不改变级数的敛散性,也不改变它的和.即收敛的级数在不改变各项顺序的情况下,对它的各项任意加括号后,得到的新级数还是收敛的;加括号后得到的新级数发散,那么原级数也是发散的.例2 判定级数++--+++1111121-1-21n n 的敛散性.解:先考察级数∑∞=⎪⎪⎭⎫⎝⎛+--11111n n n ,因为121111-=+--=n n n u n ,而级数∑∞=-112n n 发散,由于加括号后得到得新级数发散,则原级数发散. (4)级数收敛的必要条件 若级数∑∞=1n nu收敛,则0lim =∞→n n u .若0lim ≠∞→n n u ,则级数∑∞=1n nu发散.2.3判定定理2.3.1级数收敛的柯西准则级数∑∞=1n nu收敛⇔0>∀ε,*NN ∈∃,使得当m N >以及*Np ∈∀,都有ε<++++++p m m m u u u 21.例1 用柯西准则判别级数∑nn22sin 的敛散性. 证明:由于pm p m m m m m pm m m u u u ++++++++++++=+++22sin 22sin 22sin 221121mp m m p m m m 21212121212121<-=+++<++++ 因此,对于任意的0>ε.取⎥⎦⎤⎢⎣⎡=ε1log 2N 使得当N m >及任意的*∈N p ,由上式就有ε<++++++p m m m u u u 21成立,故由柯西准则可推出原级数收敛. 2.3.2正项级数判别法(1)正项∑∞=1n nu收敛⇔它的部分和数列{}n S 有界.(2)比较判别法 如果∑∞=1n nu和∑∞=1n nv是正项级数,若存在某整数N ,对一切N n >都有n n v u ≤(i)若级数∑∞=1n nv收敛,则级数∑∞=1n nu也收敛;(ii )若级数∑∞=1n nu发散,则级数∑∞=1n nv也发散.等比级数和P-级数的敛散性 ①等比级数∑∞=+++++=12n n naq aq aq a aq,当1<q 时,级数收敛;当1≥q 时,级数发散.②P-级数∑∞=11n p n ,当1≤p 时,发散;当1>p 时,收敛. 例2 判别级数()∑∞+114n n 的敛散性.解:因为()25441111nnn n n u n =∙<+=,而且P-级数∑∞251n收敛,由比较判别法知该级数收敛.(3)比较判别法的极限形式 如果∑∞=1n n u 和∑∞=1n n v 是正项级数)0(≠n v ,如果l v u nnn =∞→lim,则(i )当+∞<<l 0时,∑∞=1n nu和∑∞=1n nv同时收敛或发散;(ii )当0=l 时,∑∞=1n nv收敛时,∑∞=1n nu也收敛;(iii )当+∞=l 时,∑∞=1n nv发散时,∑∞=1n nu也发散.例3 判别级数()()∑>-11a a n的敛散性.解:因为a a a t a n t na t t t t nn ln 1ln lim 1lim 111lim00==-=-→→∞→令,而正项级数∑n1发散,由比较原则的极限形式知原级数发散. (4)比式判别法 如果∑∞=1n n u 为正项级数,且ρ=+nn u u 1, (i )若10<<ρ,则∑∞=1n nu收敛;(ii )若1≥ρ,∑∞=1n nu发散.例4判别级数()∑+nn 10!1的敛散性.解:因为()()+∞=+=+∙+=∞→+∞→+∞→102lim !11010!2lim lim 11n n n u u n n n n nn n ,所以由比式判别法知原级数发散.(5)比式判别法的极限形式 如果∑∞=1n n u 为正项级数,且ρ=+∞→nn n u u 1lim,则(i )若1<ρ,则∑∞=1n nu收敛;(ii )若1>ρ或+∞=ρ时,∑∞=1n nu发散.例5 判别级数∑∙nn n n !3的敛散性.解:因为()()13113lim !31!13lim lim 111>=⎪⎭⎫ ⎝⎛+=∙++=∞→++∞→+∞→e n n n n n u u n n n n n n n nn n ,所以由比式判别法的极限形式知原级数发散. (6)根式判别法 如果∑∞=1n nu为正项级数,(i )如果1<≤ρn n u ,则∑∞=1n n u 收敛;(ii )若1≥n n u ,则级数∑∞=1n nu发散.(7)根式判别法的极限形式 如果∑∞=1n nu为正项级数,还有ρ=∞→n n n u lim ,(i )当1<ρ时,则∑∞=1n nu收敛;(ii )当1>ρ时,则∑∞=1n nu发散.例6 判别级数∑⎪⎭⎫⎝⎛+nn n 12的敛散性.解:因为12112lim 12lim <=+=⎪⎭⎫⎝⎛+∞→∞→n n n n n n nn ,所以由比式判别法极限形式知原级数收敛. (8)积分判别法 若)(x f 为),1[+∞上的非负减函数,那么正项级数∑)(n f 与反常积分⎰+∞1)(dx x f 同时收敛或同时发散.例7 判别级数∑+112n 的敛散性.解:设()112+=x x f ,则()x f 在),1[+∞上为非负单调递减函数,而⎰+∞=+1241πxdx 故由积分判别法知原级数收敛.(9)Raabe 判别法 设0>n u , ,2,1,11=⎪⎪⎭⎫⎝⎛-=+n u u n R n nn .(i)若存在1>q 及正整数N ,使得当N n ≥时有q R ≥n ,则级数∑∞=1n nu收敛;(ii )若存在正整数N ,使得当N n ≥时有1≤n R ,则级数∑∞=1n nu发散.(10) Raabe 判别法的极限形式 设∑∞=1n nu是正项级数,且有r R n n =∞→lim ,(i )若1>r ,则级数∑∞=1n nu收敛;(ii )若1<r ,则级数∑∞=1n nu发散.例8 判别级数()()∑∞+⋅-121!!2!!12n n n 的敛散性. 解:容易验证,因为()∞→→n 1ρ这个级数用比式判别法和根式判别法都失效,这时可以用Raabe判别法.此时,()()()()()()∞→→++=⎭⎬⎫⎩⎨⎧-+++=⎪⎪⎭⎫⎝⎛-=+n n n n n n n n u u n R n n n 23125612232221221.由Raabe 判别法知原级数收敛.正项级数的判别方法有很多种,下面总结一下这几种方法的选择顺序:①若n n u ∞→lim 易于求的,考察n n u ∞→lim 的值:0lim ≠∞→n n u ,则依据级数收敛的必要条件,知级数发散;②若0lim =∞→n n u ,不能直接判断级数是收敛还是发散,此时用比式判别法或根式判别法,当1<ρ时,级数收敛;若1>ρ或+∞=ρ时,级数发散;③当1=ρ时,级数可能收敛也可能发散,此时用比较判别法,找出一个已知敛散性的级数与之比较,然后根据比较判别法或其极限形式判定级数的敛散性,当然,对于一些具体问题,我们应该根据其特点分析,找到更简便的判别方法.2.3.3一般项级数的判别方法(1)交错级数判别法Leibniz 判别法 若交错级数n n n u 11)1(+∞=-∑(0>n u ),满足下述两个条件:(i )数列{}n u 单调递减;(ii )0lim =∞→n n u ,则级数收敛.注:用Leibniz 判别法判定1+>n n u u 时,可以用以下几种方法:①比值法:考察是否有11>+n nu u ;②差值法:考察是否有01>-+n n u u ;③导数法:即建立一个连续可导的函数)(x f ,使),2,1()( ==n u n f n ,考察是否有0)(<'n f .例9 判定级数()∑∞=-+++-111ln )1(1)1(n n n n n 的敛散性.解:因为此级数为交错级数 ,设()()1ln 11+++=n n n u n ,易证()()01ln 11limlim =+++=∞→∞→n n n u n n n ,下面判定1+>n n u u ,下面我们用导数的知识判定数列{}n u 单调递减.设()()1ln 11)(+++==n n n u n f n ,则()()()()()1ln 11ln 22++-+='='n n nn u n f n ,又设()()n n n g -+=1ln ,则()0111<-+='n n g ,()n g ∴单调递减,()()0g n g < ,()0<'∴n f ,()n f 单调递减,1+>n n u u ,由Leibniz 判别法,知原级数发散.(2)绝对收敛 若级数∑∞=1n nu各项绝对值组成的级数∑∞=1n nu收敛,则原级数绝对收敛.性质:绝对收敛的级数一定收敛.此定理的逆命题不成立,即:若∑∞=1n nu收敛,不能判定∑∞=1n nu也收敛.(3)Abel 判别法若{}n a 为单调有界数列,且级数∑nb收敛,则级数∑nn ba 收敛.例10 判定级数()()()∑∞=-⎪⎭⎫ ⎝⎛+-2arctan 411ln 11n nnn n n 的收敛性.解:根据Leibniz 判别法知级数()∑∞=2ln 11-n nn 收敛.因为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11递增有界,故由Abel 判别法知级数()()∑∞=⎪⎭⎫⎝⎛+-211ln 11n nnn n 收敛,又因{}n arctan 4-递减有界,再由Abel 判别法知原级数收敛.(4)Dirichlet 判别法若数列{}n a 单调递减,且0lim =∞→n n a ,又级数∑nb的部分和数列有界,则级数∑nn ba 收敛.例11 判定级数()πα2,0,sin 1∈∑∞=x nnxn ()0>α的敛散性. 解:由于当()π2,0∈x 时,有2s in 1s in 1x kx k ≤∑∞=,即∑∞=1s in n nx 的部分和数列有界,而数列()01>⎭⎬⎫⎩⎨⎧ααn 单调递减,且01lim =∞→αn n ,故由Dirichlet 判别法知,原级数收敛. 对于交错级数敛散性判定问题,应先判定其是否绝对收敛,即若∑∞=1n nu收敛,则∑∞=1n nu收敛;若不是绝对收敛,则根据Leibniz 判别法,Abel 判别法,Dirichlet 判别法判定其是否条件收敛.3、巧妙判别数项级数敛散性以上介绍了一些判别数项级数敛散性的基本方法,但是在实际的应用中往往需要多种方法结合,且有时还有一定的技巧性,下面结合一些实例列举一些常用的判别方法和技巧.3.1等价无穷小替换的方法判断级数敛散性应用定理:设∑∞=1n nu和∑∞=1n nv是两个正项级数,且当∞→n 时,n u 和n v 为等价的无穷小量,则∑∞=1n nu和∑∞=1n nv的敛散性保持一致.证明:由于当∞→n 时,n u 和n v 为等价的无穷小量,即01lim≠=∞→nnn v u ,由比较判别法的极限形式可知级数∑∞=1n nu和级数∑∞=1n nv同时收敛或同时发散.例1 判定级数()()()∑∞=+-⎪⎭⎫⎝⎛+1142411ln 1-n n n n n 的敛散性. 解:设()()()142411ln 1+-⎪⎭⎫⎝⎛+-=n n n u n n ,则()()()142411ln 1+-⎪⎭⎫⎝⎛+-=n n n u n n~()∞→=n n n n ,41412,而级数∑∞=1231n n 收敛,所以原级数绝对收敛. 3.2运用常用不等式判断级数的敛散性常用的不等式有:n n <ln , ()x x <+1ln , x e x+>1例2 判定级数∑∞=⎪⎭⎫ ⎝⎛+-11ln 1n n n n 的敛散性. 解:此题我们可以利用不等式()x x <+1ln , 有111111ln 11ln 11ln 1+-<⎪⎭⎫ ⎝⎛+-+=++=+-=n n n n n n n n n n u n 因为级数∑∞=⎪⎭⎫⎝⎛+-1111n n n 收敛,故原级数收敛. 3.3运用平均不等式()2221b a ab +≤判断级数敛散性 应用定理:若级数∑∞=12n na和级数∑∞=12n nb都收敛,则级数∑∞=1n nn ba 绝对收敛.证明:已知级数∑∞=12n na 和级数∑∞=12n nb 都收敛,根据级数收敛的性质,则级数()∑∞+2221nn b a 收敛,由于有不等式()2221n n n n b a b a +≤,再根据比较判别法,知级数∑∞=1n n n b a 收敛,所以级数∑∞=1n n n b a 绝对收敛.例3 设常数0>λ,级数∑∞=12n n a 收敛,判断级数()∑∞=+-121n n nn a λ的敛散性.解:因为级数∑∞=12n na 收敛,并且级数∑∞=+1211n n 也收敛,所以级数∑∞⎪⎭⎫ ⎝⎛++λ221n a n 收敛,又因为⎪⎭⎫⎝⎛++≤+=+λλλ22221211n a n a n a n nn ,由比较判别法可知,级数∑∞+λ2n a n 收敛,故原级数绝对收敛.3.4拉格朗日微分中值定理判断级数敛散性应用定理:设()x f 在()1,0内可导,且其导函数有界,则级数∑∞=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫⎝⎛+12111n kn f k n f 绝对收敛.证明:因为()x f 在()1,0内可导,且其导函数有界,所以存在0>M ,对于一切()1,0∈x ,都有()M x f ≤',于是由拉格朗日中值定理得()()()()211221211111k n k n k k M kn k n f kn f k n f ++-≤⎪⎪⎭⎫ ⎝⎛+-+'=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+ξ,由于级数()()∑∞=++1211n k n k n 收敛,所以级数∑∞=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫⎝⎛+12111n kn f k n f 绝对收敛. 例4 判定级数∑∞=⎪⎭⎫ ⎝⎛+-+111s 101sin n n in n 的敛散性. 解:设函数()x x f 1sin=,则()x xx f 1cos 12⋅-=',知()x f '有界,令1,1021==k k ,由于满足上述定理条件,故级数∑∞=⎪⎭⎫⎝⎛+-+111s 101sin n n in n 收敛. 3.5对数判别法判断级数敛散性应用定理:若级数∑∞=1n n u 为正项级数,若有0>α,使得当0n n ≥时,α+≥1ln 1lnn u n,则级数∑∞=1n nu 收敛,若有0n n ≥时,1ln 1ln≤n u n,则级数∑∞=1n n u 发散. 证明:如果0n n ≥时,不等式α+≥1ln 1lnn u n 成立,则有α+≥11n u n .由于级数∑∞=+111n nα收敛,所以由比较判别法知级数∑∞=1n n u 收敛.同理可证,当不等式1ln 1ln≤n u n成立时,则级数∑∞=1n n u 发散. 例5 判定级数()∑∞=>1ln 12n n na a 的敛散性.解:由于a nn n a n n n a n u nn n ln ln 2ln ln ln ln 2ln ln 2ln ln 1ln ln -=∙-==, 由洛必达法则可知:+∞=-=-=⎪⎭⎫⎝⎛-∞←+∞→+∞→a xa x x a n n n n n ln 11lim 2ln ln ln lim 2ln ln ln 2ln lim所以,对0>α,存在0n ,使得当0n n ≥时,α+≥-1ln ln 2ln a nn,因而根据以上定理原级数发散.3.6 泰勒展开式判断级数的敛散性例6 判别级数∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n n n e 的敛散性.解:因为⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛+-=-=⎪⎭⎫ ⎝⎛+-=22121111ln 11n o n n n n n n n e e e e n e u ~⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+--n o ne 12111 ~()∞→n n e2.由于级数∑∞=12n ne 发散,所以原级数发散. 3.7拆项法判断级数的敛散性将级数的一般项运用等价变形、三角基本公式、有理化等方法拆成几项之差也是判别级数收敛的一种常用方法.例7 判别级数()∑∞=-122sin sin n n n n αα的敛散性. 解:因为()()n sin -sin sin sin 2222ααααn n n n n =-,而且()2221sin n n n ≤α,由于级数∑∞=121n n收敛,根据比较判别法知级数()∑∞=122sin n n n α收敛;而且∑∞=1sin n n α,当παk =时,该级数收敛;当παk ≠时,该级数发散.由此可知,当παk =时,原级数收敛;当παk ≠时,原级数发散.3.8 Gauss 判别法判断级数的敛散性若() ,2,10=>n a n ,且⎪⎭⎫⎝⎛++=++εμλ111n O n a a n n ,0>ε,则级数∑∞=1n n a 当1>λ时收敛;当1<λ时发散;而当1=λ时,对1>μ收敛,对1≤μ发散.例8 判别级数()()∑∞=>>-++1)0,0(1!11n qq p nn n p p p 的敛散性. 解:对于这个级数来说,⎪⎭⎫⎝⎛++-+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+++=+-+211111111111n O n p q n n p n n n p n a a q q n n , 所以它在p q >时收敛,在p q ≤时发散.3.9运用函数判定数项级数的敛散性以前讨论的方法判定级数敛散性都与数列极限紧密联系,这种方法利用函数来研究数项级数.给出了利用函数的导数和极限判别数项级数敛散性的的方法.应用定理1 若级数∑∞=⎪⎭⎫⎝⎛11n n f 收敛,则()0lim 0=→x f x证明:已知级数∑∞=⎪⎭⎫ ⎝⎛11n n f 收敛,有级数收敛的必要条件得01lim =⎪⎭⎫⎝⎛∞→n f x ,因而()01l i m l i m 0=⎪⎭⎫⎝⎛=∞→→n f x f n x . 例9 判别级数∑∞=⎪⎪⎭⎫ ⎝⎛-11cos 1n n n e n π的敛散性. 解:由于11lim 1lim 01=-=⎪⎪⎭⎫ ⎝⎛-→∞→x e e n xx nn ,又由于 2cos lim 0π→x 不存在,所以⎪⎭⎫⎝⎛∞→n f x 1lim 不存在,由定理1的逆否命题可知,级数不收敛. 应用定理2 如果()x f x '→0lim 存在,∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛,则()0lim 0='→x f x .应用定理3 如果函数在0=x 存在二阶导数,且()()000='=f f ,则∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛. 应用定理4 如果()x f x ''→0lim 存在,而且()()0lim lim 0='=→→x f x f x x ,则∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛. 证明:首先作辅助函数 ⎩⎨⎧≠==0)(00)(x x f x x G考察()x G ,有()00=G ()()()0lim lim 000='=='→→x f xx f G x x()()()()()x f xx f x G x G G x x x ''=='-'=''→→→000lim lim 0lim0 由于已知()x f x ''→0lim 存在,即()00=''G 存在,对()x G 满足定理3条件,所以∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛.例10 判别级数2111112∑∞=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+n n nn a a a 的敛散性.解:不妨设()212⎪⎪⎭⎫ ⎝⎛--+=-x x x a a a x f ,则()()()3212ln 2--+='-x x x a a a a x f()()()4223211692146ln 2-+-+-+-=''--xx x x x x aa a a a a x f求极限得()0lim 0=→x f x应用洛必达法则,得()()03242722ln 8lim 3220=+-+-+='--→x x x xx x x x a a a a a a a a x f ()()a aa a a a a a a a x f x x x x x x x x x x x 2234223200ln 4248164932149681ln lim lim =-+--+-+=''--→→ 所以()x f x ''→0lim 存在,根据定理4知级数2111112∑∞=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+n n nn a a a 绝对收敛.从以上分析和各例子可以看出,判定数项级数敛散性方法众多,我们应深刻体会各个定义、性质、定理的条件及结论,同时也要善于观察和总结,正确且灵活地使用各定理.。

(完整版)关于数项级数敛散性的判定

(完整版)关于数项级数敛散性的判定

关于数项级数敛散性的判定1、问题的提出数项级数敛散性的判别问题,是数学分析的一个重要部分.数项级数,从形式上看,就是无穷多个项的代数和,它是有限项代数和的延伸,因而级数的敛散性直接与数列极限联系在一起,其判别方法多样,技巧性也强,有时也需要多种方法结合使用,同时,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的工具,所以研究数项级数的判定问题是很重要的.2、熟练掌握并准确应用级数的概念、性质和判定定理2.1数项级数收敛的定义数项级数∑∞=1n nu收敛⇔数项级数∑∞=1n nu的部分和数列{}n S 收敛于S .这样数项级数的敛散性问题就可以转化为部分和数列{}n S 的极限是否存在的问题的讨论,但由于求数列前n 项和的问题比较困难,甚至可能不可求,因此,在实际问题中,应用定义判别的情况较少.2.2数项级数的性质(1)若级数∑∞=1n nu与∑∞=1n nv都收敛,则对任意常数c,d, 级数∑∞=+1)(n n ndv cu亦收敛,且∑∑∑∞=∞=∞=+=+111)(n n n n n n nv d u c dv cu;相反的,若级数∑∞=+1)(n n n dv cu 收敛,则不能够推出级数∑∞=1n n u 与∑∞=1n nv都收敛.注:特殊的,对于级数∑∞=1n nu与∑∞=1n nv,当两个级数都收敛时,∑∞=±1)(n n nv u必收敛;当其中一个收敛,另一个发散时,∑∞=±1)(n n nv u一定发散;当两个都发散时,∑∞=±1)(n n n v u 可能收敛也可能发散.例1 判定级数∑∞=+1)5131(n n n 与级数∑∞=+1)211(n n n的敛散性.解:因为级数∑∞=131n n 与级数∑∞=151n n 收敛,故级数∑∞=+1)5131(n n n 收敛.因为级数∑∞=11n n 发散,级数∑∞=121n n 收敛,故级数∑∞=+1)211(n n n发散.(2)改变、增加或去掉级数的有限个项不会改变原级数的敛散性.(3)在收敛级数的项中任意加括号,既不改变级数的敛散性,也不改变它的和.即收敛的级数在不改变各项顺序的情况下,对它的各项任意加括号后,得到的新级数还是收敛的;加括号后得到的新级数发散,那么原级数也是发散的.例2 判定级数++--+++1111121-1-21n n 的敛散性.解:先考察级数∑∞=⎪⎪⎭⎫⎝⎛+--11111n n n ,因为121111-=+--=n n n u n ,而级数∑∞=-112n n 发散,由于加括号后得到得新级数发散,则原级数发散. (4)级数收敛的必要条件 若级数∑∞=1n nu收敛,则0lim =∞→n n u .若0lim ≠∞→n n u ,则级数∑∞=1n nu发散.2.3判定定理2.3.1级数收敛的柯西准则级数∑∞=1n nu收敛⇔0>∀ε,*NN ∈∃,使得当m N >以及*Np ∈∀,都有ε<++++++p m m m u u u 21.例1 用柯西准则判别级数∑nn22sin 的敛散性. 证明:由于pm p m m m m m pm m m u u u ++++++++++++=+++22sin 22sin 22sin 221121mp m m p m m m 21212121212121<-=+++<++++ 因此,对于任意的0>ε.取⎥⎦⎤⎢⎣⎡=ε1log 2N 使得当N m >及任意的*∈N p ,由上式就有ε<++++++p m m m u u u 21成立,故由柯西准则可推出原级数收敛. 2.3.2正项级数判别法(1)正项∑∞=1n nu收敛⇔它的部分和数列{}n S 有界.(2)比较判别法 如果∑∞=1n nu和∑∞=1n nv是正项级数,若存在某整数N ,对一切N n >都有n n v u ≤(i)若级数∑∞=1n nv收敛,则级数∑∞=1n nu也收敛;(ii )若级数∑∞=1n nu发散,则级数∑∞=1n nv也发散.等比级数和P-级数的敛散性 ①等比级数∑∞=+++++=12n nn aq aq aq a aq ,当1<q 时,级数收敛;当1≥q 时,级数发散.②P-级数∑∞=11n p n ,当1≤p 时,发散;当1>p 时,收敛. 例2 判别级数()∑∞+114n n 的敛散性.解:因为()25441111nnn n n u n =•<+=,而且P-级数∑∞251n收敛,由比较判别法知该级数收敛.(3)比较判别法的极限形式 如果∑∞=1n n u 和∑∞=1n n v 是正项级数)0(≠n v ,如果l v u nnn =∞→lim,则(i )当+∞<<l 0时,∑∞=1n nu和∑∞=1n nv同时收敛或发散;(ii )当0=l 时,∑∞=1n nv收敛时,∑∞=1n nu也收敛;(iii )当+∞=l 时,∑∞=1n nv发散时,∑∞=1n nu也发散.例3 判别级数()()∑>-11a a n的敛散性.解:因为a a a t a n t na t t t t nn ln 1ln lim 1lim 111lim00==-=-→→∞→令,而正项级数∑n1发散,由比较原则的极限形式知原级数发散. (4)比式判别法 如果∑∞=1n n u 为正项级数,且ρ=+nn u u 1, (i )若10<<ρ,则∑∞=1n nu收敛;(ii )若1≥ρ,∑∞=1n nu发散.例4判别级数()∑+nn 10!1的敛散性.解:因为()()+∞=+=+•+=∞→+∞→+∞→102lim !11010!2lim lim 11n n n u u n n n n nn n ,所以由比式判别法知原级数发散.(5)比式判别法的极限形式 如果∑∞=1n n u 为正项级数,且ρ=+∞→nn n u u 1lim,则(i )若1<ρ,则∑∞=1n nu收敛;(ii )若1>ρ或+∞=ρ时,∑∞=1n nu发散.例5 判别级数∑•nn n n !3的敛散性.解:因为()()13113lim !31!13lim lim 111>=⎪⎭⎫ ⎝⎛+=•++=∞→++∞→+∞→e n n n n n u u n n n n n n n nn n ,所以由比式判别法的极限形式知原级数发散. (6)根式判别法 如果∑∞=1n nu为正项级数,(i )如果1<≤ρn n u ,则∑∞=1n n u 收敛;(ii )若1≥n n u ,则级数∑∞=1n nu发散.(7)根式判别法的极限形式 如果∑∞=1n nu为正项级数,还有ρ=∞→n n n u lim ,(i )当1<ρ时,则∑∞=1n nu收敛;(ii )当1>ρ时,则∑∞=1n nu发散.例6 判别级数∑⎪⎭⎫⎝⎛+nn n 12的敛散性.解:因为12112lim 12lim <=+=⎪⎭⎫⎝⎛+∞→∞→n n n n n n nn ,所以由比式判别法极限形式知原级数收敛. (8)积分判别法 若)(x f 为),1[+∞上的非负减函数,那么正项级数∑)(n f 与反常积分⎰+∞1)(dx x f 同时收敛或同时发散.例7 判别级数∑+112n 的敛散性.解:设()112+=x x f ,则()x f 在),1[+∞上为非负单调递减函数,而⎰+∞=+1241πxdx 故由积分判别法知原级数收敛.(9)Raabe 判别法 设0>n u , ,2,1,11=⎪⎪⎭⎫⎝⎛-=+n u u n R n nn .(i)若存在1>q 及正整数N ,使得当N n ≥时有q R ≥n ,则级数∑∞=1n nu收敛;(ii )若存在正整数N ,使得当N n ≥时有1≤n R ,则级数∑∞=1n nu发散.(10) Raabe 判别法的极限形式 设∑∞=1n nu是正项级数,且有r R n n =∞→lim ,(i )若1>r ,则级数∑∞=1n nu收敛;(ii )若1<r ,则级数∑∞=1n nu发散.例8 判别级数()()∑∞+⋅-121!!2!!12n n n 的敛散性. 解:容易验证,因为()∞→→n 1ρ这个级数用比式判别法和根式判别法都失效,这时可以用Raabe判别法.此时,()()()()()()∞→→++=⎭⎬⎫⎩⎨⎧-+++=⎪⎪⎭⎫⎝⎛-=+n n n n n n n n u u n R n n n 23125612232221221.由Raabe 判别法知原级数收敛.正项级数的判别方法有很多种,下面总结一下这几种方法的选择顺序:①若n n u ∞→lim 易于求的,考察n n u ∞→lim 的值:0lim ≠∞→n n u ,则依据级数收敛的必要条件,知级数发散;②若0lim =∞→n n u ,不能直接判断级数是收敛还是发散,此时用比式判别法或根式判别法,当1<ρ时,级数收敛;若1>ρ或+∞=ρ时,级数发散;③当1=ρ时,级数可能收敛也可能发散,此时用比较判别法,找出一个已知敛散性的级数与之比较,然后根据比较判别法或其极限形式判定级数的敛散性,当然,对于一些具体问题,我们应该根据其特点分析,找到更简便的判别方法.2.3.3一般项级数的判别方法(1)交错级数判别法Leibniz 判别法 若交错级数n n n u 11)1(+∞=-∑(0>n u ),满足下述两个条件:(i )数列{}n u 单调递减;(ii )0lim =∞→n n u ,则级数收敛.注:用Leibniz 判别法判定1+>n n u u 时,可以用以下几种方法:①比值法:考察是否有11>+n nu u ;②差值法:考察是否有01>-+n n u u ;③导数法:即建立一个连续可导的函数)(x f ,使),2,1()( ==n u n f n ,考察是否有0)(<'n f .例9 判定级数()∑∞=-+++-111ln )1(1)1(n n n n n 的敛散性.解:因为此级数为交错级数 ,设()()1ln 11+++=n n n u n ,易证()()01ln 11limlim =+++=∞→∞→n n n u n n n ,下面判定1+>n n u u ,下面我们用导数的知识判定数列{}n u 单调递减.设()()1ln 11)(+++==n n n u n f n ,则()()()()()1ln 11ln 22++-+='='n n nn u n f n ,又设()()n n n g -+=1ln ,则()0111<-+='n n g ,()n g ∴单调递减,()()0g n g < ,()0<'∴n f ,()n f 单调递减,1+>n n u u ,由Leibniz 判别法,知原级数发散.(2)绝对收敛 若级数∑∞=1n nu各项绝对值组成的级数∑∞=1n nu收敛,则原级数绝对收敛.性质:绝对收敛的级数一定收敛.此定理的逆命题不成立,即:若∑∞=1n nu收敛,不能判定∑∞=1n nu也收敛.(3)Abel 判别法若{}n a 为单调有界数列,且级数∑nb收敛,则级数∑nn ba 收敛.例10 判定级数()()()∑∞=-⎪⎭⎫ ⎝⎛+-2arctan 411ln 11n nnn n n 的收敛性.解:根据Leibniz 判别法知级数()∑∞=2ln 11-n nn 收敛.因为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11递增有界,故由Abel 判别法知级数()()∑∞=⎪⎭⎫⎝⎛+-211ln 11n nnn n 收敛,又因{}n arctan 4-递减有界,再由Abel 判别法知原级数收敛.(4)Dirichlet 判别法若数列{}n a 单调递减,且0lim =∞→n n a ,又级数∑nb的部分和数列有界,则级数∑nn ba 收敛.例11 判定级数()πα2,0,sin 1∈∑∞=x nnxn ()0>α的敛散性. 解:由于当()π2,0∈x 时,有2sin 1sin 1x kx k ≤∑∞=,即∑∞=1sin n nx 的部分和数列有界,而数列()01>⎭⎬⎫⎩⎨⎧ααn 单调递减,且01lim =∞→αn n ,故由Dirichlet 判别法知,原级数收敛. 对于交错级数敛散性判定问题,应先判定其是否绝对收敛,即若∑∞=1n nu收敛,则∑∞=1n nu收敛;若不是绝对收敛,则根据Leibniz 判别法,Abel 判别法,Dirichlet 判别法判定其是否条件收敛.3、巧妙判别数项级数敛散性以上介绍了一些判别数项级数敛散性的基本方法,但是在实际的应用中往往需要多种方法结合,且有时还有一定的技巧性,下面结合一些实例列举一些常用的判别方法和技巧.3.1等价无穷小替换的方法判断级数敛散性应用定理:设∑∞=1n nu和∑∞=1n nv是两个正项级数,且当∞→n 时,n u 和n v 为等价的无穷小量,则∑∞=1n nu和∑∞=1n nv的敛散性保持一致.证明:由于当∞→n 时,n u 和n v 为等价的无穷小量,即01lim≠=∞→nnn v u ,由比较判别法的极限形式可知级数∑∞=1n nu和级数∑∞=1n nv同时收敛或同时发散.例1 判定级数()()()∑∞=+-⎪⎭⎫⎝⎛+1142411ln 1-n n n n n 的敛散性. 解:设()()()142411ln 1+-⎪⎭⎫⎝⎛+-=n n n u n n ,则()()()142411ln 1+-⎪⎭⎫⎝⎛+-=n n n u n n~()∞→=n n n n ,41412,而级数∑∞=1231n n 收敛,所以原级数绝对收敛. 3.2运用常用不等式判断级数的敛散性常用的不等式有:n n <ln , ()x x <+1ln , x e x+>1例2 判定级数∑∞=⎪⎭⎫ ⎝⎛+-11ln 1n n n n 的敛散性. 解:此题我们可以利用不等式()x x <+1ln , 有111111ln 11ln 11ln 1+-<⎪⎭⎫ ⎝⎛+-+=++=+-=n n n n n n n n n n u n 因为级数∑∞=⎪⎭⎫⎝⎛+-1111n n n 收敛,故原级数收敛. 3.3运用平均不等式()2221b a ab +≤判断级数敛散性 应用定理:若级数∑∞=12n na和级数∑∞=12n nb都收敛,则级数∑∞=1n nn ba 绝对收敛.证明:已知级数∑∞=12n na 和级数∑∞=12n nb 都收敛,根据级数收敛的性质,则级数()∑∞+2221nn b a 收敛,由于有不等式()2221n n n n b a b a +≤,再根据比较判别法,知级数∑∞=1n n n b a 收敛,所以级数∑∞=1n n n b a 绝对收敛.例3 设常数0>λ,级数∑∞=12n n a 收敛,判断级数()∑∞=+-121n n nn a λ的敛散性.解:因为级数∑∞=12n na 收敛,并且级数∑∞=+1211n n 也收敛,所以级数∑∞⎪⎭⎫ ⎝⎛++λ221n a n 收敛,又因为⎪⎭⎫⎝⎛++≤+=+λλλ22221211n a n a n a n nn ,由比较判别法可知,级数∑∞+λ2n a n 收敛,故原级数绝对收敛.3.4拉格朗日微分中值定理判断级数敛散性应用定理:设()x f 在()1,0内可导,且其导函数有界,则级数∑∞=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫⎝⎛+12111n kn f k n f 绝对收敛.证明:因为()x f 在()1,0内可导,且其导函数有界,所以存在0>M ,对于一切()1,0∈x ,都有()M x f ≤',于是由拉格朗日中值定理得()()()()211221211111k n k n k k M kn k n f kn f k n f ++-≤⎪⎪⎭⎫ ⎝⎛+-+'=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+ξ,由于级数()()∑∞=++1211n k n k n 收敛,所以级数∑∞=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫⎝⎛+12111n kn f k n f 绝对收敛. 例4 判定级数∑∞=⎪⎭⎫ ⎝⎛+-+111s 101sin n n in n 的敛散性. 解:设函数()x x f 1sin=,则()x xx f 1cos 12⋅-=',知()x f '有界,令1,1021==k k ,由于满足上述定理条件,故级数∑∞=⎪⎭⎫⎝⎛+-+111s 101sin n n in n 收敛. 3.5对数判别法判断级数敛散性应用定理:若级数∑∞=1n n u 为正项级数,若有0>α,使得当0n n ≥时,α+≥1ln 1lnn u n,则级数∑∞=1n nu 收敛,若有0n n ≥时,1ln 1ln≤n u n,则级数∑∞=1n n u 发散. 证明:如果0n n ≥时,不等式α+≥1ln 1lnn u n 成立,则有α+≥11n u n .由于级数∑∞=+111n nα收敛,所以由比较判别法知级数∑∞=1n n u 收敛.同理可证,当不等式1ln 1ln≤n u n成立时,则级数∑∞=1n n u 发散. 例5 判定级数()∑∞=>1ln 12n n na a 的敛散性.解:由于a nn n a n n n a n u nn n ln ln 2ln ln ln ln 2ln ln 2ln ln 1ln ln -=•-==, 由洛必达法则可知:+∞=-=-=⎪⎭⎫⎝⎛-∞←+∞→+∞→a xa x x a n n n n n ln 11lim 2ln ln ln lim 2ln ln ln 2ln lim所以,对0>α,存在0n ,使得当0n n ≥时,α+≥-1ln ln 2ln a nn,因而根据以上定理原级数发散.3.6 泰勒展开式判断级数的敛散性例6 判别级数∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n n n e 的敛散性.解:因为⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-=-=⎪⎭⎫ ⎝⎛+-=22121111ln 11n o n n n n n n n e e e e n e u ~⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+--n o ne 12111 ~()∞→n n e 2.由于级数∑∞=12n ne 发散,所以原级数发散. 3.7拆项法判断级数的敛散性将级数的一般项运用等价变形、三角基本公式、有理化等方法拆成几项之差也是判别级数收敛的一种常用方法.例7 判别级数()∑∞=-122sin sin n n n n αα的敛散性. 解:因为()()n sin -sin sin sin 2222ααααn n n n n =-,而且()2221sin n n n ≤α,由于级数∑∞=121n n收敛,根据比较判别法知级数()∑∞=122sin n n n α收敛;而且∑∞=1sin n n α,当παk =时,该级数收敛;当παk ≠时,该级数发散.由此可知,当παk =时,原级数收敛;当παk ≠时,原级数发散.3.8 Gauss 判别法判断级数的敛散性若() ,2,10=>n a n ,且⎪⎭⎫⎝⎛++=++εμλ111n O n a a n n ,0>ε,则级数∑∞=1n n a 当1>λ时收敛;当1<λ时发散;而当1=λ时,对1>μ收敛,对1≤μ发散.例8 判别级数()()∑∞=>>-++1)0,0(1!11n qq p nn n p p p 的敛散性. 解:对于这个级数来说,⎪⎭⎫⎝⎛++-+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+++=+-+211111111111n O n p q n n p n n n p n a a q q n n , 所以它在p q >时收敛,在p q ≤时发散.3.9运用函数判定数项级数的敛散性以前讨论的方法判定级数敛散性都与数列极限紧密联系,这种方法利用函数来研究数项级数.给出了利用函数的导数和极限判别数项级数敛散性的的方法.应用定理1 若级数∑∞=⎪⎭⎫⎝⎛11n n f 收敛,则()0lim 0=→x f x证明:已知级数∑∞=⎪⎭⎫ ⎝⎛11n n f 收敛,有级数收敛的必要条件得01lim =⎪⎭⎫⎝⎛∞→n f x ,因而()01lim lim 0=⎪⎭⎫⎝⎛=∞→→n f x f n x . 例9 判别级数∑∞=⎪⎪⎭⎫ ⎝⎛-11cos 1n n n e n π的敛散性. 解:由于11lim 1lim 01=-=⎪⎪⎭⎫ ⎝⎛-→∞→x e e n xx nn ,又由于 2cos lim 0π→x 不存在,所以⎪⎭⎫⎝⎛∞→n f x 1lim 不存在,由定理1的逆否命题可知,级数不收敛. 应用定理2 如果()x f x '→0lim 存在,∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛,则()0lim 0='→x f x .应用定理3 如果函数在0=x 存在二阶导数,且()()000='=f f ,则∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛. 应用定理4 如果()x f x ''→0lim 存在,而且()()0lim lim 0='=→→x f x f x x ,则∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛. 证明:首先作辅助函数 ⎩⎨⎧≠==0)(00)(x x f x x G考察()x G ,有()00=G ()()()0lim lim 000='=='→→x f xx f G x x()()()()()x f xx f x G x G G x x x ''=='-'=''→→→000lim lim 0lim0 由于已知()x f x ''→0lim 存在,即()00=''G 存在,对()x G 满足定理3条件,所以∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛.例10 判别级数2111112∑∞=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+n n nn a a a 的敛散性.解:不妨设()212⎪⎪⎭⎫ ⎝⎛--+=-x x x a a a x f ,则()()()3212ln 2--+='-x x x a a a a x f()()()4223211692146ln 2-+-+-+-=''--xx x x x x aa a a a a x f求极限得()0lim 0=→x f x应用洛必达法则,得()()03242722ln 8lim 3220=+-+-+='--→x x x xx x x x a a a a a a a a x f ()()a aa a a a a a a a x f x x x x x x x x x x x 2234223200ln 4248164932149681ln lim lim =-+--+-+=''--→→ 所以()x f x ''→0lim 存在,根据定理4知级数2111112∑∞=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+n n nn a a a 绝对收敛.从以上分析和各例子可以看出,判定数项级数敛散性方法众多,我们应深刻体会各个定义、性质、定理的条件及结论,同时也要善于观察和总结,正确且灵活地使用各定理.。

数列与级数敛散性判定定理

数列与级数敛散性判定定理

数列与级数敛散性判定定理
级数敛散性判定定理是数学中著名的一条定理,它涉及到级数的敛散性,它可以帮助我们判断一个级数是不是收敛的。

首先,我们需要了解什么是级数。

级数是一种数学表达式,可以用来表示一系列不断增加的数的序列,其中包括有限的数和无限的数。

比如,第一种级数为1+2+3+4+5+6+…,它包括
有限的数1,2,3,4,5,6,…,以及无限的数,它的最后
一项是无限的。

级数敛散性判定定理是指,如果一个级数的前n项之和收敛到一个固定的值,则该级数是收敛的;而如果一个级数的前
n项之和仍在不断增加或减少,则该级数是散的。

比如,第一种级数1+2+3+4+5+6+…,它的前n项之和为:1+2+3+…+n=n(n+1)/2。

可以看出,当n趋于无穷时,它的
前n项之和也趋于一个固定值,即无穷大,所以这个级数是收敛的。

另外,第二种级数1-2+3-4+5-6+…,它的前n项之和为:
1-2+3-4+…+(-1)n-1+n=(-1)n+1。

可以看出,当n趋于无穷时,
它的前n项之和也是不断变化的,所以这个级数是散的。

以上就是级数敛散性判定定理,它可以帮助我们判断一个级数是不是收敛的。

它是数学中一条重要的定理,它可以帮助我们更好地理解级数的性质,从而掌握更多的数学知识。

数项级数敛散性判别法。(总结)

数项级数敛散性判别法。(总结)

n 1
u
n
绝对
收敛;若级数 n1 un
收敛,而级数 n1
un
发散,则称级数
n 1
u
n
条件收敛.易
(1)n1 1
(1) n1 1
知 n1
n2 是绝对收敛级数,而 n1
n 是条件收敛级数.
定理八、 若 n1 un 收敛,则 n1 un 必收敛.
对于有些特殊级数,既不是正项级数也不是交错级数,可以通过
an a1 a2 a3 a4 ...............
常见的几类重要的常数项级数 正项级数:级数中所有项均大于等于零。 交错级数:级数中的项正负相间的级数。 等比级数
a aq aq2 aq3 ....... aqn ...... aqn
调和级数
1 1 1 1
23
n
1
n1 ,则对任何正数 A, f (x) 在
[1,A]上可积,从而有
n
f (n)
f (x)dx
n1
f (n 1) , n 2,3,
依次相加,得
m
m
m
m1
f (n) f (x)dx f (n 1) f (n)
1
n2
n2
n1
若反常积分收敛,则对m ,有
关键词:数项级数,敛散性,判断,方法。
英文题目 Abstract:Single out examples to learn a number of series, we all know which
way to go. But wait until all of the methods after completing their studies are given topics, everyone seems confused and do not know what kind of way. Some students even one by one swab of each method, although it is also feasible. But for one series, using different methods to determine the convergence and divergence of the degree of difficulty, if the appropriate choice of the way to a multiplier effect, but if the hanging has chosen the wrong way, may have spent nine cattle tigers after the power, the result is wrong. So we need to sum up to determine the convergence and divergence, and to understand their characteristics, in order to make better use of them.

数项级的敛散性判别法

数项级的敛散性判别法

第六讲 数项级数的敛散性判别法§1 柯西判别法及其推广比较原理适用于正项级数,高等数学中讲过正项级数的比较原理: 比较原理I :设1n n u ∞=∑,1nn v∞=∑都是正项级数,存在0c >,使(i ) 若1nn v∞=∑收敛,则1nn u∞=∑也收敛;(ii ) 若1nn u∞=∑发散,则1nn v∞=∑也发散.比较原理II (极限形式)设1n n u ∞=∑,1nn v∞=∑均为正项级数,若则1n n u ∞=∑、1nn v∞=∑同敛散.根据比较原理,可以利用已知其敛散性的级数作为比较对象来判别其它级数的敛散性.柯西判别法和达朗贝尔判别法是以几何级数作为比较对象而 得到的审敛法.下面用比较判别法推出更宽泛的柯西判别法. 定理1(柯西判别法1)设1nn u∞=∑为正项级数,(i )若从某一项起(即存在N ,当n N >1q ≤<(q 为常数), 则1nn u∞=∑收敛;(ii1≥,则1n n u ∞=∑发散.证(i )若当n N >1q ≤<,即nn u q≤,而级数1nn q∞=∑收敛,根据比较原理I 知级数1nn u∞=∑也收敛.(ii )1≥,则1n u ≥,故lim 0n n u →∞≠,由级数收敛的必要条件知1nn u ∞=∑发散.定理证毕.定理2(柯西判别法2) 设1nn u∞=∑为正项级数,n r =,则:(i )当1r <时,1nn u ∞=∑收敛;(ii ) 当1r>(或r =+∞)时,1n n u ∞=∑发散;(iii )当1r =时,法则失效. 例1 判别下列正项级数的敛散性23123(1)()()()35721nn n ++++++;n nn e∞-∑n=1(2)n n x α∞∑n=1(3)(α为任何实数,0x >).解 (1) 因为112n r==<,所以原级数收敛.(2) 因为lim n n nre→∞===∞,所以原级数发散.(3) 对任意α,n rx ==.当01x <<时收敛;当1x >时发散;当1x =时,此时级数是p -级数,要对p α=-进行讨论,当1α->,即1α<-时收敛;当1α-≤时,即1α≥-时发散.例2 判别级数11[(1)]3n nnn ∞=+-∑的敛散性. 解 由于不存在,故应用定理2无法判别级数的敛散性.又因为 由定理1(柯西判别法1)知原级数收敛.例3(98考研)设正项数列{}n a 单调减少,且1(1)nn n a ∞=-∑发散,试问级数111nn n a ∞=⎛⎫ ⎪+⎝⎭∑是否收敛?并说明理由.解 答案:级数111nn n a ∞=⎛⎫⎪+⎝⎭∑收敛,证明如下:由于{}n a 单调减少且0,n a ≥根据单调有界准则知极限lim n n a →∞存在.设lim ,n n a a →∞=则0a ≥.如果0,a =则由莱布尼兹判别法知1(1)nnn a∞=-∑收敛,这与1(1)nnn a∞=-∑发散矛盾,故0a >.再由{}n a 单调减少,故0,n a a >>取111q a =<+, 根据柯西判别法1知111nn n a ∞=⎛⎫⎪+⎝⎭∑收敛.下面介绍柯西判别法的两个推广,称它们为广义柯西判别法. 定理3(广义柯西判别法1) 设1nn u∞=∑为正项级数,如果它的通项n u 的()0an b a +>次根的极限等于r,即lim an n r →∞=.则当1r <时,级数收敛;当1r >时,级数发散;当1r =级数可能收敛也可能发散.证因为lim an n r →∞=,即对任给正数ε,存在正整数1N ,当1n N >时,有()()an r r εε-<<+ (1)对于任给常数b ,总存在2N ,当有2n N >时有0an b +> (2)取{}12max ,N N N =,当n N >时,式(1)和式(2)同时成立.当1r <时,取ε足够小,使1r q ε+=<.由上述讨论,存在N ,当n N >时,式(1)和式(2)同时成立,那么有an bn u q+<,正项级数11()an bba nn n qqq∞∞+===∑∑收敛(因为其为等比级数且公比01nq <<),由比较审敛法知,级数1nn u∞=∑收敛.当1r >时,取ε足够小,使1r q ε-=>,由上面的讨论,存在N ,当n N >时,式(1)和式(2)同时成立,则an bn u q+>,正项级数11()an bba nn n qqq∞∞+===∑∑发散,由比较审敛法知,级数1nn u∞=∑发散.当1r =时,取1n pu n =,那么,对任何0,a b >为常数,有/()1lim lim 1an p an b n n n +→∞→∞==.而11n n ∞=∑发散,211n n∞=∑收敛.说明此时级数可能收敛也可能发散.定理证毕. 例4 判别级数211131n n n -∞=⎛⎫ ⎪-⎝⎭∑的收敛性.解因为21lim lim01,31n n n →∞→∞==<-由广义柯西判别法1知,级数211131n n n -∞=⎛⎫ ⎪-⎝⎭∑收敛.注 例4也可用柯西判别法2(定理2),但比较麻烦,而用广义柯西判别法1要简单得多. 定理4(广义柯西判别法2) 设1nn u∞=∑为正项级数,如果它的一般项n u 的m n (m 是大于1的正整数)次根的极限等于r,即lim n r →∞=.则当1r <时,级数收敛;当1r >时,级数发散;当1r =时,级数可能收敛也可能发散.证因为lim n r →∞=,即对任给的正数ε,存在正整数N ,当n N >时有当1r <时,取ε足够小,使1r q ε+=<.由上面的讨论,存在N ,当n N >时, 有m n n u q <.因为mn nqq <,又正项级数1nn q ∞=∑收敛(因(0,1)q ∈),由比较审敛法知1mnn q ∞=∑收敛 ,所以1nn u∞=∑收敛.当1r >时,取ε足够小,使1r q ε-=>.由上面的讨论,存在N ,当n N >时,有1mn n u q>>,那么lim 0n n u →∞≠,所以级数1n n u ∞=∑发散.当1r =时,同样取()10n p u p n=>,那么 这说明1r =时,级数可能收敛也可能发散.定理证毕.注 广义柯西判别法是柯西判别法2(定理2)的推广[1].事实上,在广义柯西判别法1中,取1,0a b ==,在广义柯西判别法2中,取1m =便得定理2(柯西判别法2).例5 判断级数2121n n n n ∞=⎛⎫⎪+⎝⎭∑的收敛性. 解因为1lim lim lim1212n n n n n →∞→∞→∞===<+,由广义柯西判别法2知原级数收敛.定理5(广义柯西判别法3) 设,0,0,(1,2,)n n n n n w u v u v n =≥≥=,若n u =,1limnn n v v v →∞-=.则当1uv <时,级数1n n w ∞=∑收敛;当1uv >时,级数1n n w ∞=∑发散[2].为证明定理5,需要一些预备知识:Stolz 定理 设{}n a 、{}n b 为两个数列,数列{}n b 在某顶之后单调递增,且lim n n b →∞=+∞,若11limn n n n n a a l b b -→∞--=-,(或+∞),则lim n n nal b →∞=(或+∞).命题1 设数列{}n x .若lim n n x l →∞=,则12lim lim nn n n x x x l x n→∞→∞+++==。

高职高专数学中利用函数单调性判定数项级数敛散性

高职高专数学中利用函数单调性判定数项级数敛散性

关 于交 错级 数有 结论 :
定理2 ( 莱布尼茨定理) 如果交错级数 ∑ ( 1 ~)
( 0 满 足 条件 : Ⅱ> ) ( ) l n=1 2 3 … ) 1 u ≥“ + ( ,,, ; ( )l = . 2 i u 0 a r 则级数收敛.
数学 学 习与 研 究 2 1. 0 03
敛 的 一 种 可 行 的 方 法. 二、 函数 单 调 性 在 级 数 敛 散 性 判 定 中 的应 用



由定理 1知 - , 厂 ( )=I( ) 当 > n 1+ , 0时 单 调 上 升 .
5 __ L 1
・ .. 1 来自 n=1,2, … ) 3, ,
( ÷ >( . )h +
) “ , 即
( , n ,
3, ) … .
由 尼茨 莱布 定理, ∑ ( 1 1 +n 件 敛 得 一) 1 1 收 . f 、 , 条
上 例 这 种 情 况 比 较 简 单 , 已 表 明 了 函 数 的 单 调 性 主 但 要 用 于证 明判 定 交 错 级 数 条 件 收 敛 的莱 布 尼 茨 定 理 中 条 件 ( ) 对 于 比 较 简 单 的 级 数 表 达 式 , 件 ( ) 以 较 简 单 地 1. 条 1可
看出 , 当级 数 表 达式 比较 复 杂 时 , 函 数 单 调 性 的 判 定 方 法 用 会比较容易地证明条件 ( ) 1 的成 立 .
关于函数单调性 , : 有
定 理 1 设 函数 , ) 区间 , 导. ( 在 可 函数 _ ) 区 间 , 厂 在 ( 单 调 增加 ( 单调 减少 ) 对 任意 的 E,有 _( ) ) 0 . 铮 , 厂 ≥0 ≤ ) 由此定理 , 设 ) — n 1 , : I( + ) 易证 > n 1 ) 0 . i( + ( > )

数项级数敛散性判别法。(总结)

数项级数敛散性判别法。(总结)

数项级数敛散性判别法。

(总结)数项级数是一类由无穷多个项组成的数列,它们的和是一个数。

在数学中,我们通常利用一些方法来判断数项级数的收敛性和发散性。

以下是数项级数敛散性判别法的总结:1. 正项级数收敛判别法:如果数列中的每一项都是非负数,且后一项大于等于前一项,那么这个数项级数收敛。

2. 比较判别法:如果一个数项级数的绝对值序列能够被一个已知的收敛数项级数和一个已知的发散数项级数所夹逼,那么这个数项级数与已知的收敛数项级数具有相同的收敛情况,与已知的发散数项级数具有相同的发散情况。

3. 极限比值判别法:对于一个数项级数,如果存在一个常数$q$,使得 $0\leq q<1$,并且对于充分大的 $n$,有$|\frac{a_{n+1}}{a_n}|<q$,那么数项级数收敛。

如果存在一个常数 $r>1$,并且对于充分大的 $n$,有$|\frac{a_{n+1}}{a_n}|>r$,那么数项级数发散。

如果 $q=1$,那么该方法不确定。

4. 根号(拉阔)判别法:对于一个数项级数,如果$\limsup\sqrt[n]{|a_n|}<1$,那么数项级数收敛;如果$\limsup\sqrt[n]{|a_n|}>1$,那么数项级数发散;如果$\limsup\sqrt[n]{|a_n|}=1$,那么该方法不确定。

5. 积分判别法:对于一个递减的正项函数 $f(x)$,如果数项级数 $\sum_{n=1}^{\infty} a_n$ 可以表示成积分$\int_{1}^{\infty}f(x)dx$ 的形式,且该积分收敛,那么数项级数也收敛。

如果积分发散,那么数项级数也发散。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于数项级数敛散性的判定1、问题的提出数项级数敛散性的判别问题,是数学分析的一个重要部分.数项级数,从形式上看,就是无穷多个项的代数和,它是有限项代数和的延伸,因而级数的敛散性直接与数列极限联系在一起,其判别方法多样,技巧性也强,有时也需要多种方法结合使用,同时,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的工具,所以研究数项级数的判定问题是很重要的.2、熟练掌握并准确应用级数的概念、性质和判定定理2.1数项级数收敛的定义数项级数∑∞=1n nu收敛⇔数项级数∑∞=1n nu的部分和数列{}n S 收敛于S .这样数项级数的敛散性问题就可以转化为部分和数列{}n S 的极限是否存在的问题的讨论,但由于求数列前n 项和的问题比较困难,甚至可能不可求,因此,在实际问题中,应用定义判别的情况较少.2.2数项级数的性质(1)若级数∑∞=1n nu与∑∞=1n nv都收敛,则对任意常数c,d, 级数∑∞=+1)(n n ndv cu亦收敛,且∑∑∑∞=∞=∞=+=+111)(n n n n n n nv d u c dv cu;相反的,若级数∑∞=+1)(n n n dv cu 收敛,则不能够推出级数∑∞=1n n u 与∑∞=1n nv都收敛.注:特殊的,对于级数∑∞=1n nu与∑∞=1n nv,当两个级数都收敛时,∑∞=±1)(n n nv u必收敛;当其中一个收敛,另一个发散时,∑∞=±1)(n n nv u一定发散;当两个都发散时,∑∞=±1)(n n n v u 可能收敛也可能发散.例1 判定级数∑∞=+1)5131(n n n 与级数∑∞=+1)211(n n n的敛散性.解:因为级数∑∞=131n n 与级数∑∞=151n n 收敛,故级数∑∞=+1)5131(n n n 收敛.因为级数∑∞=11n n 发散,级数∑∞=121n n 收敛,故级数∑∞=+1)211(n n n 发散.(2)改变、增加或去掉级数的有限个项不会改变原级数的敛散性.(3)在收敛级数的项中任意加括号,既不改变级数的敛散性,也不改变它的和.即收敛的级数在不改变各项顺序的情况下,对它的各项任意加括号后,得到的新级数还是收敛的;加括号后得到的新级数发散,那么原级数也是发散的.例2 判定级数ΛΛ++--+++1111121-1-21n n 的敛散性.解:先考察级数∑∞=⎪⎪⎭⎫⎝⎛+--11111n n n ,因为121111-=+--=n n n u n ,而级数∑∞=-112n n 发散,由于加括号后得到得新级数发散,则原级数发散. (4)级数收敛的必要条件 若级数∑∞=1n nu收敛,则0lim =∞→n n u .若0lim ≠∞→n n u ,则级数∑∞=1n nu发散.2.3判定定理2.3.1级数收敛的柯西准则级数∑∞=1n nu收敛⇔0>∀ε,*NN ∈∃,使得当m N >以及*Np ∈∀,都有ε<++++++p m m m u u u Λ21.例1 用柯西准则判别级数∑nn22sin 的敛散性. 证明:由于pm p m m m m m pm m m u u u ++++++++++++=+++22sin 22sin 22sin 221121ΛΛmp m m p m m m 21212121212121<-=+++<++++Λ 因此,对于任意的0>ε.取⎥⎦⎤⎢⎣⎡=ε1log 2N 使得当N m >及任意的*∈N p ,由上式就有ε<++++++p m m m u u u Λ21成立,故由柯西准则可推出原级数收敛. 2.3.2正项级数判别法(1)正项∑∞=1n nu收敛⇔它的部分和数列{}n S 有界.(2)比较判别法 如果∑∞=1n nu和∑∞=1n nv是正项级数,若存在某整数N ,对一切N n >都有n n v u ≤(i)若级数∑∞=1n nv收敛,则级数∑∞=1n nu也收敛;(ii )若级数∑∞=1n nu发散,则级数∑∞=1n nv也发散.等比级数和P-级数的敛散性 ①等比级数∑∞=+++++=12n nn aq aq aq a aq ΛΛ,当1<q 时,级数收敛;当1≥q 时,级数发散.②P-级数∑∞=11n p n ,当1≤p 时,发散;当1>p 时,收敛. 例2 判别级数()∑∞+114n n 的敛散性.解:因为()25441111nnn n n u n =•<+=,而且P-级数∑∞251n收敛,由比较判别法知该级数收敛.(3)比较判别法的极限形式 如果∑∞=1n n u 和∑∞=1n n v 是正项级数)0(≠n v ,如果l v u nnn =∞→lim,则(i )当+∞<<l 0时,∑∞=1n nu和∑∞=1n nv同时收敛或发散;(ii )当0=l 时,∑∞=1n nv收敛时,∑∞=1n nu也收敛;(iii )当+∞=l 时,∑∞=1n nv发散时,∑∞=1n nu也发散.例3 判别级数()()∑>-11a a n的敛散性.解:因为a a a t a n t na t t t t nn ln 1ln lim 1lim 111lim00==-=-→→∞→令,而正项级数∑n1发散,由比较原则的极限形式知原级数发散. (4)比式判别法 如果∑∞=1n n u 为正项级数,且ρ=+nn u u 1, (i )若10<<ρ,则∑∞=1n nu收敛;(ii )若1≥ρ,∑∞=1n nu发散.例4判别级数()∑+nn 10!1的敛散性.解:因为()()+∞=+=+•+=∞→+∞→+∞→102lim !11010!2lim lim 11n n n u u n n n n nn n ,所以由比式判别法知原级数发散.(5)比式判别法的极限形式 如果∑∞=1n n u 为正项级数,且ρ=+∞→nn n u u 1lim,则(i )若1<ρ,则∑∞=1n nu收敛;(ii )若1>ρ或+∞=ρ时,∑∞=1n nu发散.例5 判别级数∑•nn n n !3的敛散性.解:因为()()13113lim !31!13lim lim 111>=⎪⎭⎫ ⎝⎛+=•++=∞→++∞→+∞→e n n n n n u u n n n n n n n nn n ,所以由比式判别法的极限形式知原级数发散. (6)根式判别法 如果∑∞=1n nu为正项级数,(i )如果1<≤ρn n u ,则∑∞=1n n u 收敛;(ii )若1≥n n u ,则级数∑∞=1n nu发散.(7)根式判别法的极限形式 如果∑∞=1n nu为正项级数,还有ρ=∞→n n n u lim ,(i )当1<ρ时,则∑∞=1n nu收敛;(ii )当1>ρ时,则∑∞=1n nu发散.例6 判别级数∑⎪⎭⎫⎝⎛+nn n 12的敛散性.解:因为12112lim 12lim <=+=⎪⎭⎫⎝⎛+∞→∞→n n n n n n nn ,所以由比式判别法极限形式知原级数收敛. (8)积分判别法 若)(x f 为),1[+∞上的非负减函数,那么正项级数∑)(n f 与反常积分⎰+∞1)(dx x f 同时收敛或同时发散.例7 判别级数∑+112n 的敛散性.解:设()112+=x x f ,则()x f 在),1[+∞上为非负单调递减函数,而⎰+∞=+1241πxdx 故由积分判别法知原级数收敛.(9)Raabe 判别法 设0>n u ,Λ,2,1,11=⎪⎪⎭⎫ ⎝⎛-=+n u u n R n n n . (i)若存在1>q 及正整数N ,使得当N n ≥时有q R ≥n ,则级数∑∞=1n nu收敛;(ii )若存在正整数N ,使得当N n ≥时有1≤n R ,则级数∑∞=1n nu发散.(10) Raabe 判别法的极限形式 设∑∞=1n nu是正项级数,且有r R n n =∞→lim ,(i )若1>r ,则级数∑∞=1n nu收敛;(ii )若1<r ,则级数∑∞=1n nu发散.例8 判别级数()()∑∞+⋅-121!!2!!12n n n 的敛散性.解:容易验证,因为()∞→→n 1ρ这个级数用比式判别法和根式判别法都失效,这时可以用Raabe判别法.此时,()()()()()()∞→→++=⎭⎬⎫⎩⎨⎧-+++=⎪⎪⎭⎫⎝⎛-=+n n n n n n n n u u n R n n n 23125612232221221.由Raabe 判别法知原级数收敛.正项级数的判别方法有很多种,下面总结一下这几种方法的选择顺序:①若n n u ∞→lim 易于求的,考察n n u ∞→lim 的值:0lim ≠∞→n n u ,则依据级数收敛的必要条件,知级数发散;②若0lim =∞→n n u ,不能直接判断级数是收敛还是发散,此时用比式判别法或根式判别法,当1<ρ时,级数收敛;若1>ρ或+∞=ρ时,级数发散;③当1=ρ时,级数可能收敛也可能发散,此时用比较判别法,找出一个已知敛散性的级数与之比较,然后根据比较判别法或其极限形式判定级数的敛散性,当然,对于一些具体问题,我们应该根据其特点分析,找到更简便的判别方法.2.3.3一般项级数的判别方法(1)交错级数判别法Leibniz 判别法 若交错级数n n n u 11)1(+∞=-∑(0>n u ),满足下述两个条件:(i )数列{}n u 单调递减;(ii )0lim =∞→n n u ,则级数收敛.注:用Leibniz 判别法判定1+>n n u u 时,可以用以下几种方法:①比值法:考察是否有11>+n nu u ;②差值法:考察是否有01>-+n n u u ;③导数法:即建立一个连续可导的函数)(x f ,使),2,1()(K ==n u n f n ,考察是否有0)(<'n f .例9 判定级数()∑∞=-+++-111ln )1(1)1(n n n n n 的敛散性.解:因为此级数为交错级数 ,设()()1ln 11+++=n n n u n ,易证()()01ln 11limlim =+++=∞→∞→n n n u n n n ,下面判定1+>n n u u ,下面我们用导数的知识判定数列{}n u 单调递减.设()()1ln 11)(+++==n n n u n f n ,则()()()()()1ln 11ln 22++-+='='n n nn u n f n ,又设()()n n n g -+=1ln ,则()0111<-+='n n g ,()n g ∴单调递减,()()0g n g < ,()0<'∴n f ,()n f 单调递减,1+>n n u u ,由Leibniz 判别法,知原级数发散.(2)绝对收敛 若级数∑∞=1n nu各项绝对值组成的级数∑∞=1n nu收敛,则原级数绝对收敛.性质:绝对收敛的级数一定收敛.此定理的逆命题不成立,即:若∑∞=1n nu收敛,不能判定∑∞=1n nu也收敛.(3)Abel 判别法若{}n a 为单调有界数列,且级数∑nb收敛,则级数∑nn ba 收敛.例10 判定级数()()()∑∞=-⎪⎭⎫ ⎝⎛+-2arctan 411ln 11n nnn n n 的收敛性.解:根据Leibniz 判别法知级数()∑∞=2ln 11-n nn 收敛.因为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11递增有界,故由Abel 判别法知级数()()∑∞=⎪⎭⎫⎝⎛+-211ln 11n nnn n 收敛,又因{}n arctan 4-递减有界,再由Abel 判别法知原级数收敛.(4)Dirichlet 判别法若数列{}n a 单调递减,且0lim =∞→n n a ,又级数∑nb的部分和数列有界,则级数∑nn ba 收敛.例11 判定级数()πα2,0,sin 1∈∑∞=x nnxn ()0>α的敛散性. 解:由于当()π2,0∈x 时,有2sin 1sin 1x kx k ≤∑∞=,即∑∞=1sin n nx 的部分和数列有界,而数列()01>⎭⎬⎫⎩⎨⎧ααn 单调递减,且01lim =∞→αn n ,故由Dirichlet 判别法知,原级数收敛. 对于交错级数敛散性判定问题,应先判定其是否绝对收敛,即若∑∞=1n nu收敛,则∑∞=1n nu收敛;若不是绝对收敛,则根据Leibniz 判别法,Abel 判别法,Dirichlet 判别法判定其是否条件收敛.3、巧妙判别数项级数敛散性以上介绍了一些判别数项级数敛散性的基本方法,但是在实际的应用中往往需要多种方法结合,且有时还有一定的技巧性,下面结合一些实例列举一些常用的判别方法和技巧.3.1等价无穷小替换的方法判断级数敛散性应用定理:设∑∞=1n nu和∑∞=1n nv是两个正项级数,且当∞→n 时,n u 和n v 为等价的无穷小量,则∑∞=1n nu和∑∞=1n nv的敛散性保持一致.证明:由于当∞→n 时,n u 和n v 为等价的无穷小量,即01lim≠=∞→nnn v u ,由比较判别法的极限形式可知级数∑∞=1n nu和级数∑∞=1n nv同时收敛或同时发散.例1 判定级数()()()∑∞=+-⎪⎭⎫⎝⎛+1142411ln 1-n n n n n 的敛散性. 解:设()()()142411ln 1+-⎪⎭⎫⎝⎛+-=n n n u n n ,则()()()142411ln 1+-⎪⎭⎫⎝⎛+-=n n n u n n~()∞→=n n n n ,41412,而级数∑∞=1231n n收敛,所以原级数绝对收敛.3.2运用常用不等式判断级数的敛散性常用的不等式有:n n <ln , ()x x <+1ln , x e x+>1例2 判定级数∑∞=⎪⎭⎫ ⎝⎛+-11ln 1n n n n的敛散性. 解:此题我们可以利用不等式()x x <+1ln , 有111111ln 11ln 11ln 1+-<⎪⎭⎫ ⎝⎛+-+=++=+-=n n n n n n n n n n u n 因为级数∑∞=⎪⎭⎫ ⎝⎛+-1111n n n 收敛,故原级数收敛. 3.3运用平均不等式()2221b a ab +≤判断级数敛散性 应用定理:若级数∑∞=12n na和级数∑∞=12n nb都收敛,则级数∑∞=1n nn ba 绝对收敛.证明:已知级数∑∞=12n na和级数∑∞=12n nb都收敛,根据级数收敛的性质,则级数()∑∞+2221nn b a收敛,由于有不等式()2221n n n n b a b a +≤,再根据比较判别法,知级数∑∞=1n n n b a 收敛,所以级数∑∞=1n n n b a 绝对收敛.例3 设常数0>λ,级数∑∞=12n na收敛,判断级数()∑∞=+-121n n nn a λ的敛散性.解:因为级数∑∞=12n na 收敛,并且级数∑∞=+1211n n 也收敛,所以级数∑∞⎪⎭⎫ ⎝⎛++λ221n a n 收敛,又因为⎪⎭⎫⎝⎛++≤+=+λλλ22221211n a n a n a n nn ,由比较判别法可知,级数∑∞+λ2n a n 收敛,故原级数绝对收敛.3.4拉格朗日微分中值定理判断级数敛散性应用定理:设()x f 在()1,0内可导,且其导函数有界,则级数∑∞=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫⎝⎛+12111n kn f k n f 绝对收敛.证明:因为()x f 在()1,0内可导,且其导函数有界,所以存在0>M ,对于一切()1,0∈x ,都有()M x f ≤',于是由拉格朗日中值定理得()()()()211221211111k n k n k k M kn k n f kn f k n f ++-≤⎪⎪⎭⎫ ⎝⎛+-+'=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+ξ,由于级数()()∑∞=++1211n k n k n 收敛,所以级数∑∞=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫⎝⎛+12111n kn f k n f 绝对收敛. 例4 判定级数∑∞=⎪⎭⎫⎝⎛+-+111s 101sin n n in n 的敛散性. 解:设函数()x x f 1sin=,则()x xx f 1cos 12⋅-=',知()x f '有界,令1,1021==k k ,由于满足上述定理条件,故级数∑∞=⎪⎭⎫ ⎝⎛+-+111s 101sin n n in n 收敛. 3.5对数判别法判断级数敛散性应用定理:若级数∑∞=1n n u 为正项级数,若有0>α,使得当0n n ≥时,α+≥1ln 1lnn u n,则级数∑∞=1n nu 收敛,若有0n n ≥时,1ln 1ln≤n u n,则级数∑∞=1n n u 发散. 证明:如果0n n ≥时,不等式α+≥1ln 1lnn u n 成立,则有α+≥11n u n .由于级数∑∞=+111n nα收敛,所以由比较判别法知级数∑∞=1n n u 收敛.同理可证,当不等式1ln 1ln≤n u n成立时,则级数∑∞=1n n u 发散. 例5 判定级数()∑∞=>1ln 12n n na a 的敛散性.解:由于a nn n a n n n a n u nn n ln ln 2ln ln ln ln 2ln ln 2ln ln 1ln ln -=•-==, 由洛必达法则可知:+∞=-=-=⎪⎭⎫⎝⎛-∞←+∞→+∞→a xa x x a n n n n n ln 11lim 2ln ln ln lim 2ln ln ln 2ln lim所以,对0>α,存在0n ,使得当0n n ≥时,α+≥-1ln ln 2ln a nn,因而根据以上定理原级数发散.3.6 泰勒展开式判断级数的敛散性例6 判别级数∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n n n e 的敛散性.解:因为⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-=-=⎪⎭⎫⎝⎛+-=22121111ln 11n o n n n n n nn ee e e n e u ~⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+--n o n e 12111 ~()∞→n n e 2.由于级数∑∞=12n ne 发散,所以原级数发散. 3.7拆项法判断级数的敛散性将级数的一般项运用等价变形、三角基本公式、有理化等方法拆成几项之差也是判别级数收敛的一种常用方法.例7 判别级数()∑∞=-122sin sin n n n n αα的敛散性. 解:因为()()n sin -sin sin sin 2222ααααn n n n n =-,而且()2221sin n n n ≤α,由于级数∑∞=121n n 收敛,根据比较判别法知级数()∑∞=122sin n n n α收敛;而且∑∞=1sin n n α,当παk =时,该级数收敛;当παk ≠时,该级数发散.由此可知,当παk =时,原级数收敛;当παk ≠时,原级数发散.3.8 Gauss 判别法判断级数的敛散性若()Λ,2,10=>n a n ,且⎪⎭⎫⎝⎛++=++εμλ111n O n a a n n ,0>ε,则级数∑∞=1n n a 当1>λ时收敛;当1<λ时发散;而当1=λ时,对1>μ收敛,对1≤μ发散.例8 判别级数()()∑∞=>>-++1)0,0(1!11n qq p n n n p p p Λ的敛散性.解:对于这个级数来说,⎪⎭⎫⎝⎛++-+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+++=+-+211111111111n O n p q n n p n n n p n a a q q n n , 所以它在p q >时收敛,在p q ≤时发散.3.9运用函数判定数项级数的敛散性以前讨论的方法判定级数敛散性都与数列极限紧密联系,这种方法利用函数来研究数项级数.给出了利用函数的导数和极限判别数项级数敛散性的的方法.应用定理1 若级数∑∞=⎪⎭⎫⎝⎛11n n f 收敛,则()0lim 0=→x f x证明:已知级数∑∞=⎪⎭⎫⎝⎛11n n f 收敛,有级数收敛的必要条件得01lim =⎪⎭⎫ ⎝⎛∞→n f x ,因而()01lim lim 0=⎪⎭⎫⎝⎛=∞→→n f x f n x . 例9 判别级数∑∞=⎪⎪⎭⎫⎝⎛-11cos 1n n n e n π的敛散性.解:由于11lim 1lim 01=-=⎪⎪⎭⎫ ⎝⎛-→∞→x e e n xx nn ,又由于 2cos lim 0π→x 不存在,所以⎪⎭⎫ ⎝⎛∞→n f x 1lim 不存在,由定理1的逆否命题可知,级数不收敛. 应用定理2 如果()x f x '→0lim 存在,∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛,则()0lim 0='→x f x .应用定理3 如果函数在0=x 存在二阶导数,且()()000='=f f ,则∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛. 应用定理4 如果()x f x ''→0lim 存在,而且()()0lim lim 0='=→→x f x f x x ,则∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛. 证明:首先作辅助函数⎩⎨⎧≠==0)(00)(x x f x x G考察()x G ,有()00=G ()()()0lim lim 000='=='→→x f xx f G x x()()()()()x f xx f x G x G G x x x ''=='-'=''→→→000lim lim 0lim0 由于已知()x f x ''→0lim 存在,即()00=''G 存在,对()x G 满足定理3条件,所以∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛.例10 判别级数2111112∑∞=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+n n nn a a a 的敛散性.解:不妨设()212⎪⎪⎭⎫ ⎝⎛--+=-x x x a a a x f ,则()()()3212ln 2--+='-x x x a a a a x f()()()4223211692146ln 2-+-+-+-=''--xx x x x x aa a a a a x f求极限得()0lim 0=→x f x应用洛必达法则,得()()03242722ln 8lim 3220=+-+-+='--→x x x xx x x x a a a a a a a a x f ()()a aa a a a a a a a x f x x x x x x x x x x x 2234223200ln 4248164932149681ln lim lim =-+--+-+=''--→→ 所以()x f x ''→0lim 存在,根据定理4知级数2111112∑∞=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+n n nn a a a 绝对收敛.从以上分析和各例子可以看出,判定数项级数敛散性方法众多,我们应深刻体会各个定义、性质、定理的条件及结论,同时也要善于观察和总结,正确且灵活地使用各定理.。

相关文档
最新文档