伺服电机与步进电机的应用场合

伺服电机与步进电机的应用场合
伺服电机与步进电机的应用场合

伺服电机与步进电机的应用场合

作者:CDGXZDH

在理想条件(温度、湿度、粉尘)下、额定参数范围(电压、负载)以内,伺服电机和步进电机在位置、速度控制上的表现基本无区别。但是实际的工业应用场合确实多种多样的,特定的应用场合就必须选用合适的电机才能达到最佳的性价比较优势。

一伺服电机

伺服有刷直流电机采用带电刷的结构从机械上保证了可靠地换相,外部只需供以直流电便能驱动直流伺服电机,易于控制。但正是由于其在结构上带有电刷,在长期工作过程中易磨损,直接影响了使用寿命。此类电机在伺服系统早期应用中比较普遍,但是伴随着无刷直流电机的出现逐步淡出了历史舞台。当然了,伺服有刷直流电机由于成本较低,在那种无需长期作业的场合还是有市场的,比如导弹等一次性产品上应用的还是比较广泛。

伺服无刷直流电机采用电子换相取代了有刷电机原有的电流由机械换向的模式,使得电机中的电流换向无触点摩擦,彻底改变了有刷电机寿命短的问题,同理,因为没有摩擦,所以也不会产生有刷电机那样导电体粉末附着现象,无刷电机的性能不会因为电机使用时间的推移而出现下降现象。但是为了完成电子换相必须外加转子位子的检测器件,短期成本相对较高,而且控制起来也相对复杂。此类电机具有伺服有刷直流电机的全部性能优势,而且还具有更长的寿命和更高的效率,所以在市场上应用相当广泛,比如电动自行车、玩具、航模、机器人等。

伺服交流感应电机结构上最大的不同在于其转子采用非永磁材料的硅钢片,转子必须通过与定子磁场的切割产生感应电流来建立转子磁场,这就决定了转子与定子之间磁场相差一定的角度,所以其磁场是非同步的。此类电机在成本上成本是最低的,但效率也是最低的。通常在大电压、中功率场合,伺服交流感应电机应用的较多,特别是在对旋转转速有要求的场合,比如磨床、铣床等。

伺服交流永磁同步电机在结构与伺服无刷直流电机上几乎没有区别,只是在驱动方式上不同,前者采用正弦电压驱动,后者采用脉冲电压驱动。因此此类电机兼具直流和交流电机的所有优势,也是现阶段伺服系统高端应用的唯一选择,比如对位置和转速精度要求较高的CNC系统。

总的来说,小功率的应用选伺服直流电机,中、大功率的应用选伺服交流电机;对长期可靠性要求较高的应选用无刷的;对成本敏感的应选用伺服有刷直流电机或伺服交流感应电机;对性能要求高的应选用伺服无刷直流电机或伺服交流永磁同步电机。

二步进电机

步进电机和伺服电机在结构和驱动控制方式上不同造成性能上的差异,主要体现在:

1、控制方式不同

伺服电机采用闭环控制方式,控制算法复杂,对控制器和反馈元件的性能要求较高,需要较高的成本;步进电机采用开环控制,无需反馈元件,因此成本较低。

2、低频特性不同

步进电机在低速时易出现低频振动,而伺服电机低速时运行非常平稳。

3、调速能力不同

步进电机一般的调速范围在0~1000RPM左右,而伺服电机可以达到20000RPM。

4、过载能力不同

步进电机无过载能力,一旦负载超过额定力矩便会失步,而伺服电机具有非常强的转速和转矩过载能力。

5、速度响应能力不同

步进电机从静止加速到工作转速,一般需要100多个毫秒,而伺服电机一般只需要几个毫秒。

步进电机只适合在对成本要求较低时作为伺服电机的替代品,但不适合在较宽调速范围、负载突变、需要快速启停的场合应用。

直流电机VS交流电机VS步进电机VS伺服电机-如何正确选择步进电机和伺服电机

什么是直流电机,什么是交流电机,什么是步进电机,什么是伺服电机? (1) 一般直流电机与直流伺服电机的区别 (2) 直流伺服电动机工作原理是什么? (2) 伺服马达的工作原理 (4) 伺服马达和步进马达的区别 (5) 如何正确选择伺服电机和步 (5) 1,如何正确选择伺服电机和步进电机? (5) 2,选择步进电机还是伺服电机系统? (5) 3,如何配用步进电机驱动器? (6) 4,2相和5相步进电机有何区别,如何选择? (6) 5,何时选用直流伺服系统,它和交流伺服有何区别? (6) 6,使用电机时要注意的问题? (7) 7,步进电机启动运行时,有时动一下就不动了或原地来回动,运行时有时还会失步,是什么问题? (7) 8,我想通过通讯方式直接控制伺服电机,可以吗? (8) 9,用开关电源给步进和直流电机系统供电好不好? (8) 10,我想用±10V或4~20mA的直流电压来控制步进电机,可以吗? (8) 11,我有一个的伺服电机带编码器反馈,可否用只带测速机口的伺服驱动器控制? (8) 12,伺服电机的码盘部分可以拆开吗? (8) 13,步进和伺服电机可以拆开检修或改装吗? (8) 14,几台伺服电机可以作同步运行吗? (8) 15,伺服控制器能够感知外部负载的变化吗? (8) 16,可以将国产的驱动器或电机和国外优质的电机或驱动器配用吗? (8) 17,使用大于额定电压值的直流电源电压驱动电机安全吗? (8) 18,我如何为我的应用选择适当的供电电源? (9) 19,对于伺服驱动器我可以选择那种工作方式? (9) 20,驱动器和系统如何接地? (10) 21,减速器为什么不能和电机正好相配在标准转矩点? (10) 22,我如何选择使用行星减速器还是正齿轮减速器? (10) 23,何为负载率(duty cycle)? (11) 24,标准旋转电机的驱动电路可以用于直线电机吗? (12) 25,直线电机是否可以垂直安装,做上下运动? (12) 26,在同一个平台上可以安装多个动子吗? (12) 27,是否可以将多个无刷电机的动子线圈安装于同一个磁轨道上? (12) 28,AMS的直线电机是否可以用于特殊环境,如水溅、真空、洁净室、辐射等环境? (12) 29,使用直线电机比滚珠丝杆的线性电机有何优点? (12) 30,你们的滑台可以做多个组合一起使用吗? (12) 什么是直流电机,什么是交流电机,什么是步进电机,什么是伺服电机? 1、什么是直流电机? 答:输出或输入为直流电能的旋转电机,称为直流电机 2、什么是交流电机

伺服电机工作原理及和步进电机的区别

伺服电机工作原理及和步进电机の区别 2010-03-30 17:14 伺服电机内部の转子是永磁铁,驱动器控制のU/V/W三相电形成电磁场,转子在此磁场の作用下转动,同时电机自带の编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动の角度。伺服电机の精度决定于编码器の精度(线数)。 什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到の电信号转换成电动机轴上の角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩の增加而匀速下降.。 请问交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制滚珠丝杆,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。永磁交流伺服电动机20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术の发展,永磁交流伺服驱动技术有了突出の发展,各国著名电气厂商相继推出各自の交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统の主要发展方向,使原来の直流伺服面临被淘汰の危机。90年代以后,世界各国已经商品化了の交流伺服系统是采用全数字控制の正弦波电动机伺服驱动。交流伺服驱动装置在传动领域の发展日新月异。 永磁交流伺服电动机同直流伺服电动机比较,主要优点有:⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。⑵定子绕组散热比较方便。⑶惯量小,易于提高系统の快速性波纹管联轴器。⑷适应于高速大力矩工作状态。⑸同功率下有较小の体积和重量。 伺服和步进电机 伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应の角度,从而实现位移,因为,伺服电机本身具备发出脉冲の功能,所以伺服电机每旋转一个角度,都会发出对应数量の脉冲,这样,和伺服电机接受の脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确の控制电机の转动,从而实现精确の定位,可以达到0.001mm。 步进电机是一种离散运动の装置,它和现代数字控制技术有着本质の联系。在目前国内の数字控制系统中,步进电机の应用十分广泛。随着全数字式交流伺服系统の出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制の发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号)弹性联轴器,但在使用性能和应用场合上存在着较大の差异。现就二者の使用性能作一比较。 一、控制精度不同 两相混合式步进电机步距角一般为 3.6°、 1.8°,五相混合式步进电机步距角一般为

几类典型步进电机的性价比分析和使用要求简介

几类典型步进电机的性价比分析和使用要求简介 步进电机是一种将电脉冲信号转化为机械角位移或者线位移的控制电机,它能够在不涉及复杂反馈环路的情况下实现良好的定位精度,并由于具有价格低廉、易于控制、无积累误差等优点,在民用、工业用的经济型数控定位系统中获得了广泛的应用,具有较高的实用价值。 基于电机的运动控制技术作为自动化领域的关键部分,在国民经济当中起着重要的作用。随着现代科学技术的进步,尤其是集成电路、电力电子器件、自动化控制理论等方面的进展,电机在其实际应用中已由过去简单地控制转动停止、以提供动力为目的应用上升到对速度、加速度、位移和转矩等进行精确控制阶段,以便使被驱动的机械运动准确符合预想的要求。 步进电机正好能够很好地符合这种需求,它是一种将数字脉冲信号转化为机械角位移或者线位移的数模转换控制电机。通常所说的步进电机一般是指机电一体化设备包括步进电机及其驱动器,当步进电机驱动器接受到一个脉冲之后就驱动步进电机转动一个固定的角度即步距角。步进电机不像其它电机那样连续旋转而是以一定的步距角一步一步做增量运动因此而得名。所以通过控制脉冲个数来控制步进电机转动的角位移,达到精确定位的目的:同时也可以通过控制脉冲的 频率来控制步进电机转动速度和加速度,达到调速的目的。 步进电机还具有以下一些优点: (1)无刷:步进电机是无刷结构电机,与带有换向器和电刷等易损部件的传统有刷电机相比而言可靠性更高。 (2)与负载无关:不超载时步进电机能够按照设定的速度运行。 (3)动态响应快:易于启动、停止和反转。 (4)保持转矩:停止时能够自锁。 (5)无累积误差:虽然步进电机每转动一步的角位移与标称的步距角具 有一定的误差(3-5%),但是转动一周后累积的误差和为零。 (6)步距角与环境无关:步进电机的固有步距角是由本身构造决定的,与 温度、电压、电流等使用环境无关。 (7)易于控制:只需控制脉冲的频率和个数,即可达到定位、调速目的。 (8)价格低廉:步进电机相对于同样用于定位领域交、直流伺服电机而言 具有较高的性价比。 正是由于这些优点,使得由步进电机及其驱动控制器构成的开环数控定位系统,既具有较高的控制精度,良好的控制性能,又能稳定可靠地工作。与同样应 用于定位领域的交、直流伺服电机构成闭环伺服系统相比较而言,主要优势在于性价比高和驱动控制简单,但是性能上却具有以下明显的不足之处:(1)低速转动时振动和噪声都比较大。 (2)输出力矩随着转动速度的升高而降低。 (3)启动频率不能太高,否则会堵转并伴随有呼啸声。 (4)速度突变较大时存在丢步和过冲现象。 (5)最高运动速度较低,且高速运转时输出力矩小。 (6)开环控制,不能保证实际转动的角度与设想的完全一致。

如何正确选择步进电机和伺服电机

步进电机和伺服电机的区别与正确选择 在行走定位系统中,常用的电机就是步进电机和伺服电机两种,其中步进电机主要有2相、 5相和微步进几种,伺服电机主要有交流伺服电机和直流伺服电机,以及有刷和无刷电机的分类。 2相、5相和微步步进电机主要是驱动器所表现出来解析度不同, 2相步进系统电机每转最细可分为400 格, 五相则为1000 格, 微步进则可从200 ~ 5000(或以上)格, 表现出来的特性以微步进最好, 加减速时间较短, 动态惯性较低. AC 和DC 伺服电机主要的分别为DC伺服比AC伺服电机多了一个碳刷, 会有维护上的问题, 而AC 伺服电机因没有碳刷, 所以后续并不会有太大维护上的问题. 所以基本上来说AC伺服系统是较DC 伺服系统为优, 但DC 伺服系统主要的优势则是价位上比AC 伺服系统较便宜. 而此两种系统的控制精度皆为相同. 以下为伺服电机与步进电机的特征介绍 步进电机: ◎特征 ●具保持力 由于步进电机在激磁状态停止时,具有很大的保持力,因此即使不使用机械式刹车亦可以保持停止位置(具有激磁状态停止时,与电机电流成比例的保持力)。 在停电时步进电机不具有保持力,因此停电时若需有保持力,请使用附电磁刹车机种。 藉由电机的高精度加工,可实现步进电机高精度定位功能。解析度是取决于电机的构造,一般的HYPRID型5相步进电机为1步级0.72°精度是取决于电机的加工精度而定,无负载时的停止精度误差为±3分(±0.05°)。 ● 角度控制、速度控制简单 步进电机为与输入的脉波成正比,一次以一步级角运转(0.72度)。 ●高转矩,高响应性 步进电机虽然体积小但在低速运转时皆可获得高转矩输出。因此在加速性、响应性、频繁的起动及停止皆可发挥很大的威力。

步进电机与伺服电机的区别

步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件,在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲个数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机安设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的,同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到高速的目的。 伺服电机又称执行电机,在自动控制系统中,用作执行元件,把收到的电信号转换成电机轴上的角位移或角速度输出。伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)也就是说伺服电机本身具备发出脉冲的功能,它每旋转一个角度,都会发出对应数量的脉冲,这样伺服驱动器和伺服电机编码器的脉冲形成了呼应,所以它是闭环控制,步进电机是开环控制。 步进电机和伺服电机的区别在于:1、控制精度不同。步进电机的相数和拍数越多,它的精确度就越高,伺服电机取块于自带的编码器,编码器的刻度越多,精度就越高。2、控制方式不同;一个是开环控制,一个是闭环控制。3、低频特性不同;步进电机在低速时易出现低频振动现象,当它工作在低速时一般采用阻尼技术或细分技术来克服低频振动现象,伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点便于系统调整。4、矩频特性不同;步进电机的输出力矩会随转速升高而下降,交流伺服电机为恒力矩输出,5、过载能力不同;步进电机一般不具有过载能力,而交流电机具有较强的过载能力。6、运行性能不同;步进电机的控制为开环控制,启动频率过高或负载过大易丢步或堵转的现象,停止时转速过高易出现过冲现象,交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。7、速度响应性能不同;步进电机从静止加速到工作转速需要上百毫秒,而交流伺服系统的加速性能较好,一般只需几毫秒,可用于要求快速启停的控制场合。 综上所述,交流伺服系统在许多性能方面都优于步进电机,但是价格比就不一样了。

步进电机工作原理特点及应用

步进电机工作原理,特点及应用 - 步进电机工作原理,特点及应用 一、前言 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。 目前,生产步进电机的厂家的确不少,但具有专业技术人员,能够自行开发,研制的厂家却非常少,大部分的厂家只一、二十人,连最基本的设备都没有。仅仅处于一种盲目的仿制阶段。这就给户在产品选型、使用中造成许多麻烦。签于上述情况,我们决定以广泛的感应子式步进电机为例。叙述其基本工作原理。望能对广大用户在选型、使用、及整机改进时有所帮助。 二、感应子式步进电机工作原理 (一)反应式步进电机原理 由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、结构: 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。 0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B

与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图: 2、旋转: 如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。 由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。 不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。并且导电按一定的相序电机就能正反转被控制——这是步进电机旋转的物理条件。只要符合这一条件我们理论上可以制造任何相的步进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。 3、力矩: 这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用A-AB-B-BC-C-CA-A这种导电状态,这样将原来每步1/3て改变为1/6て。甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。电机一旦通电,在定转子间将产生磁场(磁通量Ф)当转子与定子错开一定角度产生力F与(dФ/dθ)成正比 S

伺服电机工作原理及和步进电机的区别

伺服电机工作原理及和步进电机的区别 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降.。 请问交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制滚珠丝杆,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。永磁交流伺服电动机20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。 永磁交流伺服电动机同直流伺服电动机比较,主要优点有:⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。⑵定子绕组散热比较方便。⑶惯量小,易于提高系统的快速性波纹管联轴器。⑷适应于高速大力矩工作状态。 ⑸同功率下有较小的体积和重量。 伺服和步进电机 伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。 步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号)弹性联轴器,但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。 一、控制精度不同 两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机步距角更小。如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09°;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。 交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以松下全数字式交流伺服电机为例,对于带标准2500线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/10000=0.036°。对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=9.89秒。是步距角为1.8°的步进电机的脉冲当量的1/655。 二、低频特性不同 步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。 交流伺服电机运转非常平稳膜片联轴器,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。 三、矩频特性不同

步进电机工作原理及功能运用

步进电机工作原理及功能运用 双击自动滚屏发布者:admin 发布时间:2012-02-18 03:06:33 阅读:495次【字体:大中小】步进电机的概术: 步进电机是将电脉冲信号转变为角位移或线位移的开环控制组件,是目前行业设备的主要配件,如剥线机设备就需要用到此步进电机。 在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。 这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 单相步进电机有单路电脉冲驱动,输出功率一般很小,其用途为微小功率驱动。多相步进电机有多相方波脉冲驱动,用途很广。使用多相步进电机时,单路电脉冲信号可先通过脉冲分配器转换为多相脉冲信号,在经功率放大后分别送入步进电机各项绕组。每输入一个脉冲到脉冲分配器,电机各相的通电状态就发生变化,转子会转过一定的角度(称为步距角)。正常情况下,步进电机转过的总角度和输入的脉冲数成正比;连续输入一定频率的脉冲时,电机的转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转

过一个步距角。 步进电机按旋转结构分两大类:1是圆型旋转电机如下图A 2直线型电机,结构就象一个圆型旋转电机被展开一样,如下图B 步进电机的别称 步进电机(stepping motor),步进电机(step motor),或者是脉冲电机(pulse motor),其它的如(stepper motor)等……有着各式各样的称呼方式,这些用日本话来表示的时候,就成为阶动电动机,还有,阶动就是一步一步阶段动作的意思,这各用另外一种语言来表示时,就是成为步进驱动的意思,总之,就是输入一个脉冲就会有一定的转角,分配转轴变位的电动机。 一、步进电机的特点

伺服电机和步进电机有什么区别

伺服电机和步进电机有什么区别 伺服电机和步进电机有什么区别在于开环闭环之分,不进不带位置反馈伺服有位置反馈。电机上有编码器。 步进电机是驱动器发出的电脉冲转化为动能。步进电机接到一个脉冲信号,电机就会转动一个固定的角度,(步距角)它的位移和定位是一步一步来完成的。控制脉冲个数来完成唯一,定位。 伺服,有一个永磁的转子,UVW来控制磁场。在磁场作用

下完成位移,并且电机的编码器把实际位移量反馈给驱动器。驱动器再进行比较在做进一步调整。 步进电机和交流伺服电机性能比较 步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进

电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。 伺服电机和步进电机的控制精度不同 两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机步距角更小。 3 / 56

伺服电机和步进电机的低频特性不同 步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。 伺服电机和步进电机的过载能力不同 步进电机一般不具有过载能力。交流伺服电机具有较强的过载能力。以松下交流伺服系统为例,它具有速度过载和转矩过载能力。其最大转矩为额定转矩的三倍,可用于克

步进电机在控制系统中的应用

步进电机在控制系统中的应用 摘要:步进系统无需反馈就形成了开环控制系统, 使系统结构大大简化、使用维护更加方便、工作可靠, 在一般使用场合具有足够高的精度等特点步进系统无需反馈就形成了开环控制系统, 使系统结构大 大简化、使用维护更加方便、工作可靠, 在一般使用场合具有足够高的精度等特点步进电动机有上述特点和优点而广泛应用在机械、治金、电力、纺织、电信、电子、仪表、化工、轻工、办公自动化设备、医疗、印刷以及航空航天、船舶、兵器、核工业等国防工业等领 一、步进电机工作原理 步进电机是将给定的电脉冲信号转变为角位移或线位移的开环 控制元件。给定一个电脉冲信号,步进电机转子就转过相应的角度,这个角度就称作该步进电机的步距角。连续给定脉冲信号,步进电机就可以连续运转。由于电脉冲信号与步进电机转角存在的这种线性关系,使得步进电机在速度控制、位置控制等方面得到了广泛的应用。 步进电机的使用至少需要三个方面的配合,一是电脉冲信号发生器,它按照给定的设置重复为步进电机输送电脉冲信号,这种信号大多数由可编程控制器或单片机来完成;二是驱动器(信号放大器),它除了对电脉冲信号进行放大、驱动步进电机转动以外,还可以通过它改善步进电机的使用性能;三是步进电机,它有多种控制原理和型号,现在常用的有反应式、感应子式、混合式等。 步进电机的速度控制是通过输入的脉冲频率快慢实现的。当发生脉冲的频率减小时,步进电机的速度就下降;反之,速度就加快。还

可以通过频率的改变而提高步进电机的速度或位置精度。步进电机的位置控制是靠给定的脉冲数量控制的。给定一个脉冲,转过一个步距角,当停止的位置确定以后,也就决定了步进电机需要给定的脉冲数。二,步进电机的应用 随着新材料、新技术的发展及电子技术和计算机的应用, 步进电动机及驱动器的研制和发展进入了新阶段。步进电机除了结构简单、使用维护方便、工作可靠, 在精度高等特点。还有下列优点: ①步距值不受各种干扰因素的影响。转子运动的速度主要取决于脉冲信号的频率。转子运动的总位移量则取决于总的脉冲信号数。②误差不积累。步进电动机每走一步所转过的角度与理论步距值之间总有一定的误差, 走任意步数以后, 也总有一定的误差。但每转一圈的累积误差为零, 所以步距的误差不积累。③控制性能好。起动、转向及其他任何运行方式的改变, 都在少数脉冲内完成。在一定的频率范围内运行时, 任何运行方式都不会丢一步的。 由于步进电动机有上述特点和优点而广泛应用在机械、治金、电力、纺织、电信、电子、仪表、化工、轻工、办公自动化设备、医疗、印刷以及航空航天、船舶、兵器、核工业等国防工业等领域。 1.步进电机在物料计量方面的应用 1.粉状物料的计量 螺杆计量是常用的容积式计量方式,它是通过螺杆旋转的圈数多少来达到计量的多少,为了达到计量大小可调和提高计量精度的目

交流伺服电机的应用领域

交流伺服电机的应用领域 下面我们来看一下伺服电机和其他电机(如步进电机)相比到底有什么优点 1、精度:实现了位置,速度和力矩的闭环控制;克服了步进电机失步的问题; 2、转速:高速性能好,一般额定转速能达到2000~3000转; 3、适应性:抗过载能力强,能承受三倍于额定转矩的负载,对有瞬间负载波动和要求快速起动的场合特别适用; 4、稳定:低速运行平稳,低速运行时不会产生类似于步进电机的步进运行现象。适用于有高速响应要求的场合; 5、及时性:电机加减速的动态相应时间短,一般在几十毫秒之内; 6、舒适性:发热和噪音明显降低。 简单点说就是:我们平常看到的那种普通的电机,断电后它还会因为自身的惯性再转一会儿,然后停下。而伺服电机和步进电机是说停就停,说走就走(反应极快)。但步进电机存在失步现象。 (当然有这么多好处价格就相应的上去了就看怎么选择了) 至于原理什么的我觉得就没有必要深入了解了(如果你是做销售的话) 应用领域就太多了。只要是要有动力源的,而且对精度有要求的一般都可能涉及到伺服电机。如机床、印刷设备、包装设备、纺织设备、激光加工设备、机器人、自动化生产线等对工艺精度、加工效率和工作可靠性等要求相对较高的设备。 本人感觉数控机床上用的尤其多,你重点跑一些数控机床厂,一台机床(就说小型数控),他的主轴部分就需要一台,进给部分也需要一台(其他部分根据要求厂家会选择动力源),比如客户会因为成本原因选择步进电机,但你值得一试 你也可以多关心一下那些老师傅们经常跑那些领域 谢谢不够的话你再补充一下问题,我可以再详细一点 步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较步进电机和交流伺服电机性能比较步进电机和交流伺服电机性能比较c。一、控制精度不同两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机步距角更小。如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09°;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以松下全数字式交流伺服电机为例,对于带标准2500线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/10000=0.036°。对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=9.89秒。是步距角为1.8°的步进电机的脉冲当量的1/655。二、低频特性不同步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。三、矩频特性不同步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。四、过载能力

步进电机与伺服电机总结

步进电机 工作原理:通常电机的转子为永磁体,当电流流过定子绕组时,定子绕组产生一矢量磁场。该磁场会带动转子旋转一角度,使得转子的一对磁场方向与定子的磁场方向一致。当定子的矢量磁场旋转一个角度。转子也随着该磁场转一个角度。每输入一个电脉冲,电动机转动一个角度前进一步。它输出的角位移与输入的脉冲数成正比、转速与脉冲频率成正比。改变绕组通电的顺序,电机就会反转。所以可用控制脉冲数量、频率及电动机各相绕组的通电顺序来控制步进电机的转动。 直流电机 工作原理:直流电机里边固定有环状永磁体,直流电流通过转子上的线圈产生安培力,当转子上的线圈与磁场平行时,再继续转受到的磁场方向将改变,因此此时转子末端的电刷跟转换片交替接触,从而线圈上的电流方向也改变,产生的洛伦兹力方向不变,所以电机能保持一个方向转动。直流发电机的工作原理就是把电枢线圈中感应的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。 直流伺服电机 工作原理:.伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。 交流电机 工作原理:用单相电容式电机说明:单相电机有两个绕组,即起动绕组和运行绕组。两个绕组在空间上相差90度。在起动绕组上串联了一个容量较大的电容器,当运行绕组和起动绕组通过单相交流电时,由于电容器作用使起动绕组中的电流在时间上比运行绕组的电流超前90度角,先到达最大值。在时间和空间上形成两个相同的脉冲磁场,使定子与转子之间的气隙中产生了一个旋转磁场,在旋转磁场的作用下,电机转子中产生感应电流,电流与旋转磁场互相作用产生电磁场转矩,使电机旋转起来。 交流伺服电机 工作原理:交流伺服电动机的结构主要可分为两部分,即定子部分和转子部分。其中定子的结构与旋转变压器的定子基本相同,在定子铁心中也安放着空间互成90度电角度的两相绕组。其中一组为激磁绕组,另一组为控制绕组,交流伺服电动机是一种两相的交流电动机。交流伺服电动机使用时,激磁绕组两端施加恒定的激磁电压Uf,控制绕组两端施加控制电压Uk。当定子绕组加上电压后,伺服电动机很快就会转动起来。通入励磁绕组

步进电动机选型和应用

进电动机作为控制元件或驱动元件来使用,通常同驱动机构组合来实现所要求的功能。步进电动机系统的性能,除取决于电动机本体的特性外,还受驱动器的影响。在实际应用场合,步进电动机系统是由电动机本体、驱动器以及推动伏在用的机械驱动机构所构成。 1从机械角度出发考虑的要点 一般说来,步进电动机驱动机构通常是减速机构,其主要有齿轮减速、牙轮皮带减速、螺杆减速及钢丝减速等方式。因此步进电动机的选择必须满足整个运动系统的要求。通常,在选定步进电动机时,从机械角度出发考虑的要点是: (1)分辨率,由移动速度、每步所移动角度距离来决定; (2)负载刚度、移动物理质量; (3)电动机体积和质量; (4)环境温度、湿度等。 2从加减速运动要求出发考虑的要点 (1)在短时间内定位所需要的加速和减速速度的适当设定,以及最高速度的适当设定; (2)根据加速转矩和负载转矩设定电动机的转矩; (3)使用减速机构时,则要考虑电动机速度和负载速度的关系。 3步距角的选择 步进电动机具有固定分辨率,如每转24步,步距角为l5°。不采用齿轮变速或特殊驱动技术(如细分线路),15°步距角的电动机不能完成小于15°增量运动或实现分辨率高于每转24步的连续运动。当然15°的增量运动可采用步距角为5°的电动机走3步来完成或3°步距角电动机走5步。采用小步距角分几步来完成一定增量运动的优点是:运行时的过冲量小,振荡不明显,精度高。选用时应权衡系统的精度和速度要求,选择一种合适的标准步距角,如没有符合要求的步距角,可通过变速齿轮折算成标准步距角。例如:对直线进给驱动的装置,步距角β由系统所要求的脉冲当量δP丝杠螺距t和变比i确定,按公式进行计算:

伺服电机与步进电机的对比

关于伺服电机和步进电机的28个问答 1,如何正确选择伺服电机和步进电机? 主要视具体应用情况而定,简单地说要确定:负载的性质(如水平还是垂直负载等),转矩、惯量、转速、精度、加减速等要求,上位控制要求(如对端口界面和通讯方面的要求),主要控制方式是位置、转矩还是速度方式。供电电源是直流还是交流电源,或电池供电,电压范围。据此以确定电机和配用驱动器或控制器的型号。 2,选择步进电机还是伺服电机系统? 其实,选择什么样的电机应根据具体应用情况而定,各有其特点。 3,如何配用步进电机驱动器? 根据电机的电流,配用大于或等于此电流的驱动器。如果需要低振动或高精度时,可配用细分型驱动器。对于大转矩电机,尽可能用高电压型驱动器,以获得良好的高速性能。 4,2 相和5 相步进电机有何区别,如何选择? 2 相电机成本低,但在低速时的震动较大,高速时的力矩下降快。5 相电机则振动较小,高速性能好,比 2 相电机的速度高30~50% ,可在部分场合取代伺服电机。 5,何时选用直流伺服系统,它和交流伺服有何区别? 直流伺服电机分为有刷和无刷电机。 有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。 无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。 交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。大惯量,最高转动速度低,且随着功率增大而快速降低。因而适合做低速平稳运行的应用。 6,使用电机时要注意的问题? 上电运行前要作如下检查: 1)电源电压是否合适(过压很可能造成驱动模块的损坏);对于直流输入的+/- 极性一定不能接错,驱动控制器上的电机型号或电流设定值是否合适(开始时不要太大); 2)控制信号线接牢靠,工业现场最好要考虑屏蔽问题(如采用双绞线); 3)不要开始时就把需要接的线全接上,只连成最基本的系统,运行良好后,再逐步连接。 4)一定要搞清楚接地方法,还是采用浮空不接。 5)开始运行的半小时内要密切观察电机的状态,如运动是否正常,声音和温升情况,发现问题立即停机调整。 7,步进电机启动运行时,有时动一下就不动了或原地来回动,运行时有时还会失步,是什么问题? 一般要考虑以下方面作检查: 1)电机力矩是否足够大,能否带动负载,因此我们一般推荐用户选型时要选用力矩比实际需要大50%~100% 的电机,因为步进电机不能过负载运行,哪怕是瞬间,都会造成失步,严重时停转或不规则原地反复动。

伺服电机和步进电机的区别【详解】

伺服电机和步进电机的区别 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 步进电机和交流伺服电机性能比较 步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。 一、控制精度不同 两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机步距角更小。如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09°;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。 交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以松下全数字式交流伺服电机为例,对于带标准2500线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360° /10000=0.036°。对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=9.89秒。是步距角为1.8°的步进电机的脉冲当量的1/655。 二、低频特性不同 步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。 交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,

伺服电机与步进电机的应用场合

伺服电机与步进电机的应用场合 作者:CDGXZDH 在理想条件(温度、湿度、粉尘)下、额定参数范围(电压、负载)以内,伺服电机和步进电机在位置、速度控制上的表现基本无区别。但是实际的工业应用场合确实多种多样的,特定的应用场合就必须选用合适的电机才能达到最佳的性价比较优势。 一伺服电机 伺服有刷直流电机采用带电刷的结构从机械上保证了可靠地换相,外部只需供以直流电便能驱动直流伺服电机,易于控制。但正是由于其在结构上带有电刷,在长期工作过程中易磨损,直接影响了使用寿命。此类电机在伺服系统早期应用中比较普遍,但是伴随着无刷直流电机的出现逐步淡出了历史舞台。当然了,伺服有刷直流电机由于成本较低,在那种无需长期作业的场合还是有市场的,比如导弹等一次性产品上应用的还是比较广泛。 伺服无刷直流电机采用电子换相取代了有刷电机原有的电流由机械换向的模式,使得电机中的电流换向无触点摩擦,彻底改变了有刷电机寿命短的问题,同理,因为没有摩擦,所以也不会产生有刷电机那样导电体粉末附着现象,无刷电机的性能不会因为电机使用时间的推移而出现下降现象。但是为了完成电子换相必须外加转子位子的检测器件,短期成本相对较高,而且控制起来也相对复杂。此类电机具有伺服有刷直流电机的全部性能优势,而且还具有更长的寿命和更高的效率,所以在市场上应用相当广泛,比如电动自行车、玩具、航模、机器人等。 伺服交流感应电机结构上最大的不同在于其转子采用非永磁材料的硅钢片,转子必须通过与定子磁场的切割产生感应电流来建立转子磁场,这就决定了转子与定子之间磁场相差一定的角度,所以其磁场是非同步的。此类电机在成本上成本是最低的,但效率也是最低的。通常在大电压、中功率场合,伺服交流感应电机应用的较多,特别是在对旋转转速有要求的场合,比如磨床、铣床等。 伺服交流永磁同步电机在结构与伺服无刷直流电机上几乎没有区别,只是在驱动方式上不同,前者采用正弦电压驱动,后者采用脉冲电压驱动。因此此类电机兼具直流和交流电机的所有优势,也是现阶段伺服系统高端应用的唯一选择,比如对位置和转速精度要求较高的CNC系统。 总的来说,小功率的应用选伺服直流电机,中、大功率的应用选伺服交流电机;对长期可靠性要求较高的应选用无刷的;对成本敏感的应选用伺服有刷直流电机或伺服交流感应电机;对性能要求高的应选用伺服无刷直流电机或伺服交流永磁同步电机。

步进电机的发展

步进电机的发展、应用和种类简介 步进电机最早是在1920年代由英国人所开发。1950年代后期晶体管的发明也逐渐应用在步进电机上,对于数字化的控制变得更为容易。往后经过不断改良,使得今日步进电机已广泛运用在需要高定位精度、高分解能、高响应性、信赖性等灵活控制性高的机械系统中。在生产过程中要求自动化、省人力、效率高的机器中,我们很容易发现步进电机的踪迹,尤其以重视速度、位置控制、需要精确操作各项指令动作的灵活控制性场合步进电机用得最多。 步进电机依其构造上的差异可分为三大类:(下图一) 可变磁阻式(VR型): 转子以软铁加工成齿状,当定子线圈不加激磁电压时,保持转矩为零,故其转子惯性小、响应性佳,但其容许负荷惯性并不大。其步进角通常为15°。 永久磁铁式(PM型): 转子由永久磁铁构成,其磁化方向为辐向磁化,无激磁时有保持转矩。依转子材质区分,其步进角有45°、90°及7.5°、11.25°、15°、18°等几种。 混和式(HB型): 转子由轴向磁化的磁铁制成,磁极做成复极的形式,其乃兼采可变磁阻式步进电机及永久磁铁式步进电机的优点,精确度高、转矩大、步进角度小。 (图一) 目前市场上所使用的工业用步进电机,以混和式(HB型)最为普遍。 步进电机的特征 高精度的定位: 步进电机最大特征即是能够简单的做到高精 度的定位控制。以5相步进电机为例:其定位基本单位(分辨

率)为0.72°(全步级)/0.36°(半步级),是非常小的; 停止定位精度误差皆在±3分(±0.05°)以内,且无累计误 差,故可达到高精度的定位控制。 (步进电机的定位精度是取决于电机本身的机械加工精度) 位置及速度控制: 步进电机在输入脉冲信号时,可以依输入的脉 冲数做固定角度的回转进而得到灵活的角度控制(位置控制), 并可得到与该脉冲信号周波数(频率)成比例的回转速度。 具定位保持力: 步进电机在停止状态下(无脉波信号输入时),仍具有激磁保持力,故即使不依靠机械式的剎车,也能做到停 止位置的保持。 动作灵敏: 步进电机因为加速性能优越,所以可做到瞬时 起动、停止、正反转之快速、频繁的定位动作。 开回路控制、不必依赖传感器定位: 步进电机的控制系统构成简单,不需要速度感 应器(ENCODER、转速发电机)及位置传感器(SENSOR),就能 以输入的脉波做速度及位置的控制。也因其属开回路控制,故 最适合于短距离、高频度、高精度之定位控制的场合下使用。 中低速时具备高转矩: 步进电机在中低速时具有较大的转矩,故能够 较同级伺服电机提供更大的扭力输出。 高信赖性: 使用步进电机装置与使用离合器、减速机及极 限开关等其它装置相较,步进电机的故障及误动作少,所以在 检查及保养时也较简单容易。 小型、高功率: 步进电机体积小、扭力大,尽管于狭窄的空 间内,仍可顺利做安装,并提供高转矩输出。 步进电机的速度—转矩特性 速度-转矩特性取决于电机及驱动器,尤其与所搭配的驱动器有着极大的影响;使用的驱动器不同,特性上的差异也就会有明显的不同。

相关文档
最新文档