超宽带天线技术概要
超宽带天线匹配网络的设计概要
超宽带天线匹配网络的设计B.S.Yarman, Istanbul University,TurkeyDesign of Ultra WidebandAntenna Matching Networks2008, 308pp.HardcoverISBN 9781402084171B.S.亚曼等著天线、天线匹配网络(或均衡器)、天线开关以及天线阵列相位移位器是超宽带通讯系统最重要的部件。
作为一个整体,它们构成了我们称谓的天线系统。
很显然这些关键的部件处于通讯系统的前端。
如果天线系统是宽带的,那么无线装备是宽带的几率就很高。
否则不论通讯系统的其余部分的有多好,该系统的带宽是受到天线设备限制的。
实时频率技术(RFT)是1977年由美国康乃尔大学的H.J.Carlin教授提出的,该方法对许多应用提供了建造功率传输网络的出色解决方案。
此外经简化的实时频率技术(SRFT)已被证实最适用于人们为天线设计匹配网络和微波放大器。
本书致力于采用SRFT设计超宽带实用天线匹配网络,这是同类书中的第一本,并且预计会填补无线通讯领域中非常重要的空白。
对于书中的每一个例子,作者都提供了开放式Matlab代码,因此读者可以很容易地产生并验证这些例子的结果。
本书共有13章。
1.实时频率技术;2.天线基础;3.移动无线通讯天线;4.移动电话天线开发中的挑战;5.内部终端天线的设计技术;6.终端天线测量;7.依据散射参数的无损耗二端描述;8.天线匹配问题的分析方法;9.经简化的实时频率技术;10.应用;11.经简化实时频率技术的预置;12.匹配网络分析与最优化Ⅰ;13.匹配网络分析与最优化Ⅱ。
本书是斯普林格《信号与通讯技术》丛书中的一本,作者坚信本书对于那些供职于商业无线通讯公司以及政府和军队机构的研究经理及工程师非常有用。
胡光华,高级软件工程师(原中国科学院物理学研究所)Hu Guanghua, Senior Software Engineer(Former Institute of Physics,CAS)。
小型化超宽带与极宽带印刷天线
小型化超宽带与极宽带印刷天线一、本文概述随着无线通信技术的飞速发展,超宽带(UWB)和极宽带(EBW)技术已成为当前研究的热点。
作为无线通信系统的关键组件,天线的设计和性能直接影响到整个系统的性能。
本文将对小型化超宽带与极宽带印刷天线进行深入研究,探讨其设计原理、实现方法以及性能优化等方面的内容。
本文将介绍超宽带和极宽带技术的基本概念和特点,以及它们在无线通信领域的应用场景。
然后,重点讨论小型化超宽带与极宽带印刷天线的设计方法,包括天线结构的选择、材料的选择、尺寸优化等方面。
同时,还将探讨天线性能的评价指标,如带宽、增益、效率等,以及如何通过优化设计提高天线的性能。
本文还将关注小型化超宽带与极宽带印刷天线在实际应用中的挑战和解决方案。
例如,如何在保证天线性能的同时实现小型化,以及如何降低天线成本等。
通过深入分析和研究,本文旨在为天线设计工程师提供有益的参考和指导,推动超宽带和极宽带印刷天线技术的进一步发展和应用。
本文将总结小型化超宽带与极宽带印刷天线的研究现状和发展趋势,展望未来的研究方向和应用前景。
二、超宽带与极宽带印刷天线的基本原理超宽带(Ultra-Wideband, UWB)和极宽带(Extreme-Wideband, EWB)印刷天线是近年来无线通信领域的研究热点,它们的主要优势在于能够在极宽的频带范围内实现高效、稳定的信号传输。
这些天线的设计原理主要基于电磁波的辐射和传播特性,以及印刷电路板(PCB)上的电流分布和阻抗匹配。
电磁波辐射与传播:天线作为电磁波的发射和接收装置,其性能与电磁波的辐射与传播特性密切相关。
超宽带和极宽带印刷天线通过合理设计天线的形状、尺寸和馈电方式,使得天线能够在极宽的频带范围内产生有效的电磁波辐射和接收。
电流分布与阻抗匹配:印刷天线通常由金属导体印刷在介质基板上构成,当电流通过金属导体时,会在导体表面形成电流分布。
超宽带和极宽带印刷天线的设计需要优化导体表面的电流分布,以实现宽频带内的阻抗匹配,从而提高天线的辐射效率和接收灵敏度。
超宽带技术概述
超宽带( UW)B 技术一、UWB 技术简介UWB(Ultra Wide Band) 是一种短距离的无线通信方式。
其传输距离通常在10m 以内,使用1GHz 以上带宽,通信速度可以达到几百Mbit/s 以上。
UWB 不采用载波,而是利用纳秒至微微秒级的非正弦波窄脉冲传输数据,因此,其所占的频谱范围很宽,适用于高速、近距离的无线个人通信。
美国联邦通讯委员会(FCC)规定,UWB的工作频段范围从3.1GHz至U 10.6GHz,最小工作频宽为500MHz 。
超宽带传输技术和传统的窄带、宽带传输技术的区别主要有如下两方面:一个是传输带宽,另一个是是否采用载波方式。
从传输带宽看,按照FCC的定义:信号带宽大于1.5G 或者信号带宽与中心频率之比大于25%的为超宽带。
超宽带传输技术直接使用基带传输。
其传输方式是直接发送脉冲无线电信号,每秒可以发送数10亿个脉冲。
然而,这些脉冲的频域非常宽,可覆盖数Hz〜数GHz。
由于UWB 发射的载波功率比较小,频率范围很广,所以,UWB 对传统的无线电波影响相当小。
UWB 的技术特点显示出其具有传统窄带和宽带技术不可比拟的优势。
二、UWB 技术的发展历程现代意义上的超宽带UWB 数据传输技术,又称脉冲无线电( IR ,Impulse Radio) 技术,出现于1960 年,当时主要研究受时域脉冲响应控制的微波网络的瞬态动作。
通过Harmuth 、Ross 和Robbins 等先行公司的研究,UWB 技术在70 年代获得了重要的发展,其中多数集中在雷达系统应用中,包括探地雷达系统。
至80 年代后期,该技术开始被称为" 无载波"无线电,或脉冲无线电。
美国国防部在1989 年首次使用了"超带宽"这一术语。
为了研究UWB 在民用领域使用的可行性,自1998 年起,美国联邦通信委员会( FCC) 对超宽带无线设备对原有窄带无线通信系统的干扰及其相互共容的问题开始广泛征求业界意见,在有美国军方和航空界等众多不同意见的情况下,FCC 仍开放了UWB 技术在短距离无线通信领域的应用许可。
超宽带(UWB)无线通信技术详解
超宽带(UWB)无线通信技术详解作者:王德强李长青乐光新近年来,超宽带(UWB)无线通信成为短距离、高速无线网络最热门的物理层技术之一。
许多世界著名的大公司、研究机构、标准化组织都积极投入到超宽带无线通信技术的研究、开发和标准化工作之中。
为了使读者对UWB技术有所了解,本讲座将分3期对UWB 技术进行介绍:第1期讲述UWB的产生与发展、技术特点、信号成形及调制与多址技术,第2期对UWB信道、系统方案及接收机关键技术进行介绍,第3期介绍UWB的应用前景及标准化情况。
1 UWB的产生与发展超宽带(UWB)有着悠久的发展历史,但在1989年之前,超宽带这一术语并不常用,在信号的带宽和频谱结构方面也没有明确的规定。
1989年,美国国防部高级研究计划署(DARPA)首先采用超宽带这一术语,并规定:若信号在-20dB处的绝对带宽大于1.5GHz 或相对带宽大于25%,则该信号为超宽带信号。
此后,超宽带这个术语才被沿用下来。
其中,fH为信号在-20dB辐射点对应的上限频率、fL为信号在-20 dB辐射点对应的下限频率。
图1给出了带宽计算示意图。
可见,UWB是指具有很高带宽比(射频带宽与其中心频率之比)的无线电技术。
为探索UWB应用于民用领域的可行性,自1998年起,美国联邦通信委员会(FCC)开始在产业界广泛征求意见。
美国NTIA等通信团体对此大约提交了800多份意见书。
2002年2月,FCC批准UWB技术进入民用领域,并对UWB进行了重新定义,规定UWB信号为相对带宽大于20%或-10dB带宽大于500MHz的无线电信号。
根据UWB系统的具体应用,分为成像系统、车载雷达系统、通信与测量系统三大类。
根据FCCPart15规定,UWB通信系统可使用频段为3.1 GHz~10.6 GHz。
为保护现有系统(如GPRS、移动蜂窝系统、WLAN等)不被UWB系统干扰,针对室内、室外不同应用,对UWB系统的辐射谱密度进行了严格限制,规定UWB系统的最高辐射谱密度为-41.3 dBm/MHz.。
超宽带平面正弦天线与设计概要
超宽带平面正弦天线与设计
本文对超宽带平面正弦天线的设计理论及实现方法进行了研究。
研究内容主要分为三部分:1、研制了3~15GHz的常规两臂平面正弦天线;2、研制了3~15GHz的带有小型化馈电巴伦的两臂平面正弦天线;3、研制了3~15GHz的
四臂平面正弦天线。
传统的平面螺旋天线,如阿基米德螺旋天线和等角螺旋天线存在极化方式单一的不足之处,而正弦天线除了具有传统平面螺旋天线所具有的超宽带、圆极化、单孔径的优点外,还具有独特的“全极化”特性。
本文在超宽带理论和大量仿真计算的基础上,分析了正弦天线结构、介电常数等参数的变化对天线性能的具体影响,在此基础上设计制造了三款正弦天线实物样机,并在微波暗室进行了实验测试。
首先设计了工作频段为3~15GHz的两臂平面正弦天线,为了实现天线的输入阻抗与50?同轴电缆的良好匹配,设计了用于该天线平衡馈电的指数渐变微带巴伦。
为了弥补该巴伦纵向尺寸过大的缺陷,设计了“小型化”的微带巴伦,并用于两臂正弦天线的馈电,在保持原天线电特性的基础上,显著降低了整个天线系统的纵向几何尺寸。
同时,为实现正弦天线的“全极化”特性,设计了带双巴伦馈电结构的四臂正弦天线。
上述三款天线均进行了实物样机的研制,并对其进行了测试,结果表明天线和巴伦在工作频段内较好地符合了设计预期,能够满足工程应用要求。
同主题文章
【关键词相关文档搜索】:电磁场与微波技术; 正弦天线; 超宽带; 全极化; 巴伦; 小型化
【作者相关信息搜索】:南京航空航天大学;电磁场与微波技术;曹群生;
陈振华;。
超宽带天线 (2)
超宽带天线1. 引言超宽带(Ultra-Wideband,简称UWB)技术是一种基于大带宽无线传输的技术,可以实现高速数据传输、精确定位以及物联网应用等多种功能。
而超宽带天线作为UWB系统中至关重要的组成部分,其设计和性能对系统的整体性能有着重要影响。
本文将详细介绍超宽带天线的概念、设计原则以及常见的超宽带天线类型。
2. 超宽带天线概述超宽带天线是一种能够在超宽带频段内工作的天线。
它能够传输大量的数据,且具备透过墙体和障碍物传输数据的能力,因此在无线通信、雷达系统、物联网等领域有着广泛应用。
与传统窄带天线不同,超宽带天线具备以下特点:•带宽宽广:超宽带天线的工作频率范围通常达到几百兆赫兹到几十吉赫兹,因此能够传输更多的信息。
•抗干扰能力强:超宽带技术采用短脉冲信号传输,在频域内具有较好的抗多径干扰能力。
•精确定位能力:超宽带信号能够提供高精度的时延测量,从而实现精确定位功能。
3. 超宽带天线设计原则3.1 带宽匹配超宽带天线的设计需要考虑到其工作频率范围的宽广性。
天线的输入阻抗和辐射模式应当在整个超宽带频段内保持稳定,以保证信号的传输质量和距离。
在设计过程中,可以采用多种技术手段来改善带宽匹配,如使用宽带阻抗转换器、多振子设计等。
3.2 辐射效率超宽带天线的辐射效率对系统性能至关重要。
辐射效率高意味着更好的信号传输质量和更远的传输距离。
辐射效率的提高可以通过合理的设计天线结构、优化天线材料以及减小辐射功率损耗等方式来实现。
3.3 多频段覆盖超宽带天线不仅要满足带宽宽广的要求,还需要能够在不同频段内工作。
因此,设计超宽带天线时需要考虑多频段覆盖的需求。
可以采用多种技术手段,如使用多振子结构、配置可调谐元件等来实现多频段覆盖。
4. 常见的超宽带天线类型4.1 偶极天线偶极天线是最常见的超宽带天线类型之一。
它由两个电极构成,能够在多个频段内较好地匹配和辐射。
偶极天线具有简单的结构和方便的制造工艺,因此被广泛应用于超宽带通信系统中。
超宽带技术(UWB)概述
UWB的特点
2、信道容量大,传输速率高
➢ 香农信道容量公式
C
W
log2 (1
S N
)
(b / s)
➢ 超宽带信号占有数百兆赫兹(MHz)甚至几吉赫兹
(GHz)带宽,理论上可以提供极高的信道容量,达
到Gbps以上的传输速率,或者在很低的信噪比下,
以一定的传输速率实现可靠传输。假定一个超宽带信
号使用7GHz带宽,当信噪比S/N低至-10dB时,超宽 带可以提供的信道容量为C=7G×log2(1+0.1)≈ 0.963Gbps,接近1Gbps。
• 时隔这么多年后,在最近七八年中其它先 进的无线技术如蓝牙技术、WiFi、WiMAX 都先后面世,UWB为什么会重出江湖并引 起如此密切的关注呢?
UWB:由来
• UWB技术特点与时代需求的结合
– 随着网络技术的发展,网络信息传输从以文字 为主过渡到以多媒体信息为主,因此对带宽的 要求就比较高;
– 从技术层面来说,可靠地传输视频图像所需的 数据传输速度超过了蓝牙与WiFi的能力;
➢ 例如基于UWB技术的无线USB 2.0,可取代有线USB, 实现PC之间及消费类电子设备(电视、数码相机、 DVD播放器、MP3等)之间的无线数据互连与通信。
➢ 无线个域网(WPAN) 、高速智能无线局域网、智能交 通系统,公路信息服务系统,汽车检测系统,舰船、 飞机内部通信系统,楼内通信系统、室内宽带蜂窝电 话,战术组网电台,非视距超宽带电台,战术/战略 通信电台,保密无线宽带因特网接入等等
非正弦波形传输
传统无线发射信号
UWB发射信号
Signal1
Signal2
时域共享
Signal1
Signal2
超宽带阵列天线波束赋形技术
超宽带阵列天线波束赋形技术
超宽带阵列天线波束赋形技术是一种通过调整天线阵列中每个天线元素的相位和振幅来实现具有特定方向性和波束形状的信号发射或接收的技术。
它可以在空中传输多个独立的数据流,并提高通信系统的容量和效率。
超宽带阵列天线波束赋形技术的主要原理是利用天线阵列中的每个天线元素的相位差,使得相位叠加在某个方向上产生增强的信号,从而形成一个窄束。
这样一来,信号的传输方向性就可以被控制,可以避免多路径干扰和信号衰减,提高信号的传输质量和传输距离。
超宽带阵列天线波束赋形技术在无线通信领域有广泛的应用,例如室内Wi-Fi覆盖、5G通信系统、雷达系统等。
通过波束赋形技术,可以实现高速、高容量的通信,提高通信质量和用户体验。
同时,它也有助于降低功耗和减少电磁辐射,提高天线能效和系统效率。
总的来说,超宽带阵列天线波束赋形技术通过调整天线阵列中每个天线元素的相位和振幅,使得信号具有特定方向性和波束形状,从而提高通信质量、传输距离和系统效率。
它是无线通信领域中的重要技术之一,具有广阔的应用前景。
超宽带(UWB)技术
一、UWB技术简介UWB技术是一种与其它技术有很大不同的无线通信技术,它将会为无线局域网LAN和个人域网PAN的接口卡和接入技术带来低功耗、高带宽并且相对简单的无线通信技术。
超宽带技术解决了困扰传统无线技术多年的有关传播方面的重大难题,它开发了一个具有对信道衰落不敏感;发射信号功率谱密度低,有低截获能力,系统复杂度低,能提供数厘米的定位精度等优点。
UWB尤其适用于室内等密集多径场所的高速无线接入和军事通信应用中。
虽然超宽带的描述并不详细,它确实有助于将这项技术与传统的“窄带”系统分隔开,或者是更新的主要是指文献中描述的未来3G蜂窝技术的“宽带”系统。
关于超宽带和其它的“窄带”或者是“宽带”主要有两方面的区别。
一是超宽带的带宽,在美国联邦通信委员会(FCC)所定义比中心频率高25%或者是大于1.5G赫兹。
很清楚,这一带宽明显大于目前所有通信技术的带宽。
二是,超宽带典型的用于无载波应用方式。
传统的“窄带”和“宽带”都是采用无线电频率(RF)载波来传送信号,频率范围从基带到系统被允许使用的实际载波频率。
相反的,超宽带的实现方式是能够直接的调制一个大的激增和下降时间的“脉冲”,这样所产生的波形占据了几个GHz的带宽。
UWB无线通信技术与现有的无线通信技术有着本质的区别。
当前的无线通信技术所使用的通信载波是连续的电波,形象地说,这种电波就像是一个人拿着水管浇灌草坪时,水管中的水随着人手的上下移动形成的连续的水流波动。
几乎所有的无线通信包括移动电话、无线局域网的通信都是这样的:用某种调制方式将信号加载在连续的电波上。
与此相比,UWB无线通信技术就像是一个人用旋转的喷洒器来浇灌草坪一样,它可以喷射出更多、更快的短促水流脉冲。
UWB产品在工作时可以发送出大量的非常短、非常快的能量脉冲。
这些脉冲都是经过精确计时的,每个只有几个毫微秒长,脉冲可以覆盖非常广泛的区域。
脉冲的发送时间是根据一种复杂的编码而改变的,脉冲本身可以代表数字通信中的0,也可以代表1。
超宽带MIMO天线与电磁偶极子天线研究
超宽带MIMO天线与电磁偶极子天线研究一、本文概述随着无线通信技术的快速发展,MIMO(多输入多输出)天线和电磁偶极子天线在无线通信系统中扮演着越来越重要的角色。
特别是在超宽带(UWB)通信系统中,这些天线的设计和优化成为了研究的热点。
本文旨在深入研究超宽带MIMO天线与电磁偶极子天线的相关理论、设计方法和性能分析,为无线通信系统的优化和发展提供理论支持和实践指导。
本文首先介绍了超宽带MIMO天线和电磁偶极子天线的基本原理和特性,包括天线的辐射特性、增益、方向性、带宽等关键参数。
接着,文章对超宽带MIMO天线的设计和优化进行了详细的分析,包括天线阵列的布局、馈电网络的设计、阻抗匹配等方面。
同时,本文还探讨了电磁偶极子天线的设计方法,包括天线结构的选择、材料的选择、频率调谐等。
在性能分析方面,本文采用了多种仿真软件对超宽带MIMO天线和电磁偶极子天线的性能进行了仿真分析,包括天线的回波损耗、增益、方向图等关键指标。
通过对比不同设计方案和参数调整,文章深入探讨了天线性能优化的方法和策略。
本文总结了超宽带MIMO天线和电磁偶极子天线的研究现状和发展趋势,并对未来研究方向进行了展望。
本文的研究成果不仅为无线通信系统的优化和发展提供了理论支持和实践指导,同时也为相关领域的研究人员和技术人员提供了有益的参考和借鉴。
二、超宽带MIMO天线技术随着无线通信技术的飞速发展,超宽带(Ultra-Wideband, UWB)技术以其高数据传输速率、低能耗和抗干扰能力强等特点,在短距离无线通信中得到了广泛应用。
多输入多输出(Multiple-Input Multiple-Output, MIMO)技术作为一种有效的空间复用和分集技术,可以显著提高无线通信系统的频谱效率和可靠性。
因此,将UWB技术与MIMO技术相结合,形成超宽带MIMO天线,成为了当前天线技术研究的热点之一。
超宽带MIMO天线的设计关键在于如何在保证天线宽带性能的同时,实现多天线之间的低耦合、高隔离度以及良好的方向性。
超宽带(UWB)无线通信技术详解
超宽带(UWB)无线通信技术详解作者:王德强李长青乐光新近年来,超宽带(UWB)无线通信成为短距离、高速无线网络最热门的物理层技术之一。
许多世界著名的大公司、研究机构、标准化组织都积极投入到超宽带无线通信技术的研究、开发和标准化工作之中。
为了使读者对UWB技术有所了解,本讲座将分3期对UWB技术进行介绍:第1期讲述UWB的产生与发展、技术特点、信号成形及调制与多址技术,第2期对UWB信道、系统方案及接收机关键技术进行介绍,第3期介绍UWB的应用前景及标准化情况。
1 UWB的产生与发展超宽带(UWB)有着悠久的发展历史,但在1989年之前,超宽带这一术语并不常用,在信号的带宽和频谱结构方面也没有明确的规定。
1989年,美国国防部高级研究计划署(DARPA)首先采用超宽带这一术语,并规定:若信号在-20dB处的绝对带宽大于1.5GHz或相对带宽大于25%,则该信号为超宽带信号。
此后,超宽带这个术语才被沿用下来。
其中,fH为信号在-20dB辐射点对应的上限频率、fL为信号在-20 dB辐射点对应的下限频率。
图1给出了带宽计算示意图。
可见,UWB是指具有很高带宽比(射频带宽与其中心频率之比)的无线电技术。
为探索UWB应用于民用领域的可行性,自1998年起,美国联邦通信委员会(FCC)开始在产业界广泛征求意见。
美国NTIA等通信团体对此大约提交了800多份意见书。
2002年2月,FCC批准UWB技术进入民用领域,并对UWB进行了重新定义,规定UWB信号为相对带宽大于20%或-10dB带宽大于500MHz的无线电信号。
根据UWB系统的具体应用,分为成像系统、车载雷达系统、通信与测量系统三大类。
根据FCCPart15规定,UWB通信系统可使用频段为3.1 GHz~10.6 GHz。
为保护现有系统(如GPRS、移动蜂窝系统、WLAN等)不被UWB系统干扰,针对室内、室外不同应用,对UWB系统的辐射谱密度进行了严格限制,规定UWB系统的最高辐射谱密度为-41.3 dBm/MHz.。
新型超宽带单极子天线的设计概要
文章编号:1001-893X(201108-0121-04新型超宽带单极子天线的设计徐海洋,张厚,梁建刚,王洪光(空军工程大学导弹学院,陕西三原713800摘要:研制了一款超宽带印刷单极子天线,通过在接地板上开方形槽,展宽带宽的同时也改善了带内特性。
再在金属贴片顶部开扇形槽,进一步在高频段展宽了频带。
实测结果显示,改进后的天线-10dB阻抗带宽为2.1~25.5GHz,而原不加槽天线的仿真带宽为2~11.4GHz,带宽展宽了14GHz。
仿真和实测结果显示,天线在2.5GHz、8GHz、25GHz的方向图对称性良好。
关键词:超宽带;单极子天线;开槽中图分类号:TN821 文献标识码:A doi:10.3969/j.issn.1001-893x.2011.08.025Design of a Novel Ultra wideband Monopole AntennaXU Hai yang,Z HANG Hou,LIANG Jian gang,W ANG Hong guang(Missile Institute,Air Force Engineering University,Sanyuan713800,ChinaAbstract:The UWB(Ultra widebandprinted planar antenna in this paper is notched in the ground plane,so that the bandwidth is expanded,and the inner band performance is improved,too.Then through notching in the top of the patch,the bandwidth is further e xpanded at the high frequency section.The measured result shows that the-10dB impedance bandwidth of the improved antenna is2.1~25.5GHz in contrast to2~11.4GHz of the simulated bandwidth of the initial antenna,as a result,the bandwidthenhances14GHz.The simulated and measured results sho w that the radiation patterns are very symmetrical at2.5GHz,8G Hz and25GHz.Key words:ultra wideband(UWB;monopole antenna;notch1 引言超宽带(Ultra-Wideband,UWB[1-5]技术作为一种无线通信技术,具有小范围的超强无线设备连接能力,而且拥有低功耗、高性能和低成本无线数据通信能力,在精确定位系统、探地雷达以及短距通信等方面已有广泛的应用。
超宽带平面微带天线概要
超宽带平面微带天线本论文在对现有超宽带(UWB)平面天线广泛调研的基础上,借助于电磁仿真软件设计了七种新型超宽带平面微带天线,实际制作和测试了其中四种天线,测试结果和仿真结果进行了对比,吻合较好,证实了天线的优越性。
本论文的主要工作及创新之处可以归纳为以下几点:对圆形UWB天线进行了改进,将圆形贴片超宽带印刷单极子天线的带宽扩展到六倍频程。
在天线尺寸不变的情况下,极大地扩展了天线的带宽,但天线的增益随频率变化非常大,天线色散较为严重。
针对FCC规定的3.1~10.6GHz免费使用频段,并保证较好的天线增益频响特性,借助于电磁仿真软件HFSS研制了三款新型带陷超宽带印刷单极子天线,该天线既能有效覆盖相应频段又避免了与现有的WLAN系统干扰,具有相对稳定的增益特性和近似的全向特性。
论文分析了天线的回波损耗、增益、带陷特性和归一化方向图,并进行了实际制作和测试,测试结果和仿真结果吻合较好。
为了进一步有效地抑制该天线与WiMax系统的干扰,论文设计提出了一种结构紧凑的双带陷超宽带印刷单极子天线,通过在辐射贴片开圆弧形缝隙槽和在微带馈线加载两个匹配节实现了在WLAN频段和WiMAX频段上的双带陷功能。
借助电磁仿真软件HFSS对天线进行了详细仿真分析设计,研究结果表明其具有良好的双带陷性能。
为了进一步得到较好的辐射特性,设计提出了一种新颖的结构紧凑的超宽带平面天线,该天线工作频率覆盖了5.9GHz到9.4GHz,具有3.5GHz绝对带宽,并且在工作带宽内的y-z面的方向图具有稳定的增益特性和非常好的全向特性。
论文中设计的平面微带天线具有小型和超宽带的特点,仿真测试结果验证天线满足超宽带无线通信技术的要求,非常适合应用于超宽带短距离无线通信系统中。
同主题文章【关键词相关文档搜索】:电磁场与微波技术; UWB; 微带天线; 短距离无线通信; 平面天线; 单极子天线【作者相关信息搜索】:南京航空航天大学;电磁场与微波技术;刘少斌;邓宏伟;。
超宽带天线
超宽带天线研究报告一、背景1.1 超宽带(UWB——Ultra Wide Band)介绍超宽带技术[1-3]的最初形式为脉冲无线通信,起源于20世纪40年代,从其出现到20世纪90年代之前,UWB技术主要作为军事技术在雷达和低截获率、低侦侧率等通信设备中使用。
近年来,随着微电子器件的技术和工艺的提高,UWB 技术开始应用于民用领域。
超宽带通信是一种不用载波,而通过对具有很陡上升和下降时间的脉冲进行调制(通常,脉冲宽度在0.20-1.5ns之间)的一种通信,也称为脉冲无线电(Impulse Radio).时域(Time Domain)或无载波(Carrier Free)通信。
它具有GHz量级的带宽,并因其发射能量相当小,因此可能在不占用现在已经拥挤不堪频率资源的情况下带来一种全新的语音及数据通信方式。
超宽带要求相对带宽[4]比高出20%或者绝对带宽大于0.5GHz,其传输速率可超过100Mbps,具有这样特性的系统称为UWB系统。
图1.1 超宽带频谱图UWB由于占有带宽达到数GHz,即使传送路径特性良好也会产生失真,但其具有以下的优点,使得UWB仍然倍受重视[2]。
1、抗干扰性能强:UWB采用跳时扩频信号,系统具有较大的处理增益,在发射时将微弱的无线电脉冲信号分散在宽阔的频带中,输出功率甚至低于普通设备产生的噪声。
接收时将信号能量还原出来,在解扩过程中产生扩频增益,因此,在同等码速条件下,UWB具有更强的抗干扰性。
2、传输速率高:UWB的数据速率可以达到几十Mbps到几百Mbps.3、带宽极宽:UWB使用的带宽在1GHz以上。
超宽带系统容量大,并目可以和目前的窄带通信系统同时工作而互不干扰。
4、消耗电能小:通常情况下,尤线通信系统在通信时需要联系发剔载波,因此,要消耗一定电能。
而UWB不使用载波,只是发出瞬时脉冲电波,则只在需要时才发送脉冲电波,所以消耗电能小。
5、保密性好:UWB保密性能表现在两方面:一方面是采用跳时扩频,接收机只有己知发送端扩频码时才能解出发射数据:另一方面是系统的发射功率谱密度极低,用传统的接收机无法接收。
UWB天线的简介
超宽带及其应用超宽带技术的最初形式为脉冲无线通信,起源于20世纪40年代,从其出现到20世纪90年代之前,UWB技术主要作为军事技术在雷达和低截获率、低侦侧率等通信设备中使用。
近年来,随着微电子器件的技术和工艺的提高,UWB技术开始应用于民用领域。
超宽带通信是一种不用载波,而通过对具有很陡上升和下降时间的脉冲进行调制(通常,脉冲宽度在0.20-1.5ns之间)的一种通信,也称为脉冲无线电(Impulse Radio).时域(Time Domain)或无载波(Carrier Free)通信。
它具有GHz量级的带宽,并因其发射能量相当小,因此可能在不占用现在已经拥挤不堪频率资源的情况下带来一种全新的语音及数据通信方式。
超宽带要求相对带宽[4]比高出20%或者绝对带宽大于0.5GHz,其传输速率可超过100Mbps,具有这样特性的系统称为UWB系统。
图1.1 超宽带频谱图UWB由于占有带宽达到数GHz,即使传送路径特性良好也会产生失真,但其具有以下的优点,使得UWB仍然倍受重视。
1、抗干扰性能强:UWB采用跳时扩频信号,系统具有较大的处理增益,在发射时将微弱的无线电脉冲信号分散在宽阔的频带中,输出功率甚至低于普通设备产生的噪声。
接收时将信号能量还原出来,在解扩过程中产生扩频增益,因此,在同等码速条件下,UWB具有更强的抗干扰性。
2、传输速率高:UWB的数据速率可以达到几十Mbps到几百Mbps.3、带宽极宽:UWB使用的带宽在1GHz以上。
超宽带系统容量大,并目可以和目前的窄带通信系统同时工作而互不干扰。
4、消耗电能小:通常情况下,尤线通信系统在通信时需要联系发剔载波,因此,要消耗一定电能。
而UWB不使用载波,只是发出瞬时脉冲电波,则只在需要时才发送脉冲电波,所以消耗电能小。
5、保密性好:UWB保密性能表现在两方面:一方面是采用跳时扩频,接收机只有己知发送端扩频码时才能解出发射数据:另一方面是系统的发射功率谱密度极低,用传统的接收机无法接收。
超宽带平面天线技术
超宽带平面天线技术随着科技的迅速发展,超宽带平面天线技术在许多领域展现出巨大的潜力和应用价值。
本文将详细介绍超宽带平面天线技术的基本原理、技术特点、发展趋势以及实际应用案例,旨在帮助读者更好地理解和把握这一前沿技术。
超宽带平面天线技术是指在宽阔的频率范围内,利用平面结构的天线来捕捉和辐射电磁波。
与传统天线相比,超宽带平面天线具有许多独特优势,如体积小、重量轻、制造成本低、易于集成等。
因此,超宽带平面天线技术在无线通信、探测成像、雷达等领域具有广泛的应用前景。
超宽带平面天线技术的技术特点主要包括以下几个方面:首先,它采用平面结构,易于加工和制作,可以实现批量生产和集成化;其次,它具有宽频带特性,可以在很宽的频率范围内保持稳定的性能;第三,它采用辐射状传输,可以提高信号的抗干扰能力和传输效率;最后,它具有小型化和多样化的特点,可以根据不同需求进行定制化设计。
未来,超宽带平面天线技术的发展趋势将更加明显。
随着5G、6G等无线通信技术的快速发展,超宽带平面天线技术的需求将不断增加。
同时,随着材料科学和制造技术的进步,超宽带平面天线的性能和可靠性也将得到进一步提升。
此外,超宽带平面天线技术的多样化应用也将推动其不断创新和发展。
实际应用案例是超宽带平面天线技术的重要体现。
在无线通信领域,利用超宽带平面天线技术可以实现高速、可靠的数据传输。
例如,在智能交通领域,通过使用超宽带平面天线技术,可以实现车辆与车辆之间、车辆与道路基础设施之间的实时通信,提高交通安全性和效率。
在医疗领域,超宽带平面天线技术可以应用于远程医疗和无创检测,提高医疗水平和治疗效果。
总之,超宽带平面天线技术是一种具有重大意义和应用价值的前沿技术。
在未来的科技发展中,超宽带平面天线技术将继续发挥重要作用,推动无线通信、探测成像、雷达等领域的技术进步。
随着应用领域的不断拓展和创新,超宽带平面天线技术的应用前景也将更加广阔。
因此,我们应该积极和探索这一新技术,为推动人类社会的技术进步做出贡献。
超宽带天线
微波毫米波新技术研讨课课程报告超宽带天线一、超宽带天线概述传统超宽带天线主要形式为:阿基米德平面螺旋天线、平面等角螺旋天线、圆锥等角螺旋天线、平面喇叭天线、高斯褶皱喇叭天线以及对称振子天线的各种变形等等。
但随着对超宽带技术的研究越来越深入细致,超宽带天线的研究也分成了两个主要的不同方向:一种是针对瞬态时变,即窄脉冲宽频带信号的辐射,如偶极子天线的各种变形、平面槽天线等;一种是针对宽频带连续波信号的辐射,如螺旋天线、对数周期天线、双圆锥天线和喇叭天线等。
在许多应用领域中,如电视。
调频广播、遥测技术、宇航和卫星通信等,都要求设备具有宽带化、公用化等特点。
天线作为辐射和接收电磁波的重要部件,是无线电系统中的重要组成部分,无线电设备的发展趋势要求天线能在较宽的频带范围内有效的工作。
因此,宽频带天线的研究已成为天线领域的一个重要分支。
一般来说,天线的各项电特性指标都是随频率变化的,因而天线带宽也就取决于各项电特性指标的频率特性,在确定天线带宽时,应以其中最严格的要求作为天线带宽的确定依据。
二、天线带宽的限制因素天线的带宽取决于各项电特性指标的频率特性。
通常,天线的主要电特性指标均有其各自定义的带宽。
1.方向图带宽当频率偏离设计频率时,天线方向图可能发生主板偏移、主瓣分裂、副瓣电平增大、前后辐射比下降等。
一般来说,高品端方向图易迅速恶化,它往往是限制上限工作频率的主要因素。
2.增益带宽通常定义增益下降到最大增益值的50%时,相应的频带宽度为3dB增益带宽。
通常,随频率降低,天线增益明显下降,它往往限制天线工作频率的上限。
3.输入阻抗带宽当天线输入端电压一定时,输入电流会随着频率变化而改变,输入阻抗随频率变化。
因而可通过计算天线输入端电流的变化来计算天线的阻抗带宽。
此外,也可用馈线上的电压驻波比来表示。
4.极化带宽对于圆极化天线,工程上常以最大辐射方向上或主瓣半功率波瓣宽度内,轴比小于某一规定值来确定极化宽度。
(完整版)超宽带(UWB)技术
微波通信
到5 dB。 6、定位精确
超宽带无线电具有极强的穿透能力,可在室内和地下进行精确 定位,而GPS 定位系统只能工作在GPS 定位卫星的可视范围之 内; 与GPS 提供绝对地理位置不同,超短脉冲定位器可以给出相 对位置, 其定位精度可达厘米级。 7、抗干扰性能强(电磁兼容性),误码率低
获的可能性低、系统复杂度低、厘米级的定位精度等优点。 1、简单系统结构
UWB发射器直接用脉冲小型微带天线。由于UWB 不需要对载 波信号进行调制和解调,故不需要混频器、滤波器、RF/ IF 转换器 及本地振荡器等复杂器件,同时更容易集成到CMOS 电路中。 2、高速数据传输
理论上,一个宽度为0的脉冲具有无限的带宽,因此,脉冲信号要想够窄的
微波通信
围内变化,从而利用载波的状态变化来传输信息。相反的,超宽 带以基带传输。 UWB通信系统模型见下图。
按照FCC 的规定,从3. 1GHz 到10. 6GHz 之间的7. 5GHz 的带宽 频率为UWB 所使用的频率范围。
微波通信
二、UWB的技术特点 UWB具有对信道衰落不敏感、发射信号功率谱密度低、被截
由于不使用载波,仅在发射窄脉冲时消耗少量能量,从而节约了发 射连续载波时的大量能耗。这一特色还使UWB 可通过缩小脉冲 宽度,在提高带宽的同时而不增加功耗,这打破了过去传输技术中功 耗和带宽成正比的定律。民用的UWB 设备功率一般是传统移动 电话所需功率的1/ 100 左右,是蓝牙设备所需功率的1/ 20 左右。 军用的UWB 电台耗电也很低。因此,UWB 设备在电池寿命和电
超宽带天线
超宽带天线一、研究背景在当今世界,无线通信技术不断的改变着我们的生活,它把我们从有线的束缚中解放出来。
2002,美国联邦委员会(FCC)通过了超宽带技术规范且允许其商用,超宽带技术被视为一个拥有无线前景的无线通信技术。
超宽带天线(UWB)是一种为了与超宽带系统集成并且满足超宽带信号的收发,将电信号和空间电磁波相互转化的装置。
超宽带技术的发展有着悠久的历史,最早可以追溯到1886年赫兹的第一个无线通信系统,同时他也是提出超宽带的第一人。
而赫兹所提的产生超宽带信号的方式使用了20多年,而后马可尼将调谐电路引入到赫兹的无线系统中,之后就产生了无线通信服务。
但由于当时硬件条件困难。
超宽带理论也建立不成熟等造成了超宽带技术研究停滞不前。
而随着相关理论的成熟和硬件设施的各种发明应用,20世纪50年代到20世纪末超宽带技术发展趋势稳定。
由于超宽带天线有着独一无二的优势,UWB的应用领域十分广阔,其中包括通信、传感器、定位、雷达等等。
二、超宽带天线的设计2.1、用HFSS对天线的设计与仿真结果下图为天线设计的正反两个面:材料的厚度为1.6mm,介电常数为4.4的FR4,30mm*35mm经过优化得微带线的宽度为3.1mm天线设计中各个参数分别为:W1=30mm,L1=12mm,r=5mm,L=16mm,a=2mm背面H=15mm,b=4mm,圆的高度为22.5mm。
仿真后的结果为:图2-1 微带线的特性阻抗图2-2 电压驻波比图2-3 s(1,1)参数图2-4 史密斯圆图图2-5 中心频率为6GHz时的天线方向图2.2、仿真过程与分析2.2.1、天线锯齿线的有无对带宽的影响若不存在锯齿结构天线呈下图所示图2-6S(1,1)参数仿真结果图2-7天线渐变存在边长为2mm的正方形图2-8S(1,1)参数仿真结果图2-9改变渐变结构大小如图图2-10S(1,1)参数仿真结果:图2-11经过仿真结果对比可以看出,有锯齿结构比没有锯齿结构效果更好,表现在高频区域很好的实现了阻抗匹配。
超宽带技术要求和测试方法
超宽带技术要求和测试方法超宽带技术(Ultra-Wideband,UWB)是一种短距离、高速率的无线通信技术,具有大带宽、低功耗和高抗干扰能力等特点。
它在无线通信领域有着广泛的应用,如无线传感器网络、高清视频传输、室内定位等。
为了确保超宽带技术的性能和可靠性,需要进行相应的技术要求和测试方法的研究和制定。
一、超宽带技术的要求1. 频率范围:超宽带技术的频率范围应在3.1GHz到10.6GHz之间,以满足不同应用场景的需求。
2. 带宽要求:超宽带技术应具备大带宽特性,传输速率应达到100Mbps以上,以满足高速数据传输的需求。
3. 功耗要求:超宽带技术在实际应用中应具备低功耗的特点,以延长设备的续航时间。
4. 抗干扰能力要求:超宽带技术应具备较强的抗干扰能力,以保证在复杂的无线信道环境中能够稳定地传输数据。
5. 安全性要求:超宽带技术应具备一定的安全性能,以防止数据被非法获取或篡改。
二、超宽带技术的测试方法1. 频谱测试:通过频谱分析仪对超宽带技术的频谱进行测试,检测其频率范围是否满足要求。
2. 带宽测试:利用测试设备对超宽带技术的传输速率进行测试,检测其是否达到100Mbps以上。
3. 功耗测试:通过电流表或功率计等测试设备对超宽带技术的功耗进行测试,检测其是否符合低功耗要求。
4. 抗干扰测试:通过在复杂的无线信道环境下进行实验,测试超宽带技术在不同干扰条件下的性能表现,评估其抗干扰能力。
5. 安全性测试:通过搭建安全性测试平台,对超宽带技术进行安全性测试,检测其是否存在安全漏洞。
6. 传输距离测试:通过在不同距离下进行数据传输实验,测试超宽带技术的传输距离限制。
7. 灵敏度测试:通过在不同信噪比下进行实验,测试超宽带技术的灵敏度,评估其在弱信号环境下的表现。
8. 时延测试:通过对超宽带技术的数据传输时延进行测试,评估其实时性能。
9. 兼容性测试:通过与其他无线通信技术进行兼容性测试,确保超宽带技术能够与其他技术共存。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超宽带天线技术
超宽带(UWB)技术具有高传输速率、合理的图像解析和高安全性等优点,在无线通信、微波成像和电子对抗等诸多领域具有广阔的应用前景。
超宽带天线是超宽带通信系统的关键部件之一,其特性直接影响着整个系统的性能。
本文首先概要地叙述了超宽带通信系统和超宽带天线的发展现状,介绍了几种传统的超宽带天线;然后阐述了微带天线的理论分析方法,即传输线模型理论、空腔模型理论和全波分析理论;最后在理论分析的基础上,结合超宽带通信系统的要求,利用多种展宽频带的方法,设计了两款结构简单而紧凑、工作频带覆盖3.1—10.6GHz频段并在WLAN 5.2—5.8GHz和ITU 8.025—8.4GHz两个频带内具有明显陷波特性的超宽带天线。
在一款带状线宽缝天线的基础上,设计了具有新型贴片结构的超宽带微带天线,通过在馈线和矩形贴片之间附加一个“U”形结构来实现超宽带,而在贴片上蚀刻两个侧卧的“L”形槽来达到双带陷的效果。
与原天线相比,所设计的天线在尺寸缩小了31.1%的情况下保持了相对带宽基本不变,还实现了双带陷功能。
对部分地结构微带天线进行改进,设计了具有新型接地板结构的超宽带微带天线,通过在天线的接地板上附加一个平衡枝节来实现超宽带,在矩形贴片上蚀刻两个同心的带有缺口的圆环形槽来实现双频带陷。
在设计过程中,讨论分析了天线各个结构参数对天线性能的影响。
从仿真结果看,两款天线都具有良好的性能。
对具有新型接地板结构的超宽带微带天线加工出了样品,实测数据和仿真结果基本吻合。
同主题文章
【关键词相关文档搜索】:测试计量技术及仪器; 超宽带天线; 微带天线;
双带陷性能; 部分地结构
【作者相关信息搜索】:西安电子科技大学;测试计量技术及仪器;赵永久;杜立新;。