讲得最透彻的电容式差压变送器原理带图

合集下载

压力和差压变送器详细详解使用说明书

压力和差压变送器详细详解使用说明书

压力和差压变送器详细使用说明(一)差压变送器原理与使用本节根据实际使用中的差压变送器主要介绍电容式差压变送器。

1. 差压变送器原理压力和差压变送器作为过程控制系统的检测变换部分,将液体、气体或蒸汽的差压(压力)、流量、液位等工艺参数转换成统一的标准信号(如DC4mA~20mA 电流),作为显示仪表、运算器和调节器的输入信号,以实现生产过程的连续检测和自动控制。

差动电容式压力变送器由测量部分和转换放大电路组成,如图1.1所示。

图1.1 测量转换电路图1.2 差动电容结构差动电容式压力变送器的测量部分常采用差动电容结构,如图1.2所示。

中心可动极板与两侧固定极板构成两个平面型电容H C和L C。

可动极板与两侧固定极板形成两个感压腔室,介质压力是通过两个腔室中的填充液作用到中心可动极板。

一般采用硅油等理想液体作为填充液,被测介质大多为气体或液体。

隔离膜片的作用既传递压力,又避免电容极板受损。

当正负压力(差压)由正负压导压口加到膜盒两边的隔离膜片上时,通过腔室内硅油液体传递到中心测量膜片上,中心感压膜片产生位移,使可动极板和左右两个极板之间的间距不相对,形成差动电容,若不考虑边缘电场影响,该差动电容可看作平板电容。

差动电容的相对变化值与被测压力成正比,与填充液的介电常数无关,从原理上消除了介电常数的变化给测量带来的误差。

2. 变送器的使用(1)表压压力变送器的方向低压侧压力口(大气压参考端)位于表压压力变送器的脖颈处,在电子外壳的后面。

此压力口的通道位于外壳和压力传感器之间,在变送器上360°环绕。

保持通道的畅通,包括但不限于由于安装变送器时产生的喷漆,灰尘和润滑脂,以至于保证过程通畅。

图1.3为低压侧压力口。

图1.3 低压侧压力口(2)电气接线①拆下标记“FIELD TERMINALS”电子外壳。

②将正极导线接到“PWR/COMN”接线端子上,负极导线接到“-”接线端子上。

注意不得将带电信号线与测试端子(test)相连,因通电将损坏测试线路中的测试二极管。

二、电容式差压变送器

二、电容式差压变送器

由上图可知,零点迁移后变送器的输出特性沿x坐标向右或左 平移,其斜率没有变,即变送器量程不变。进行零点迁移,在 辅以量程调整,可提高仪表的测量灵敏度。
上一页
目录
0755-83376489
下一页
5
第二节 差压变送器
差压变送器是将液体、气体或蒸汽的压力、流量、液位等工艺 量转换成统一的标准信号,作为只是记录仪、调节器或计算机 装置的输入信号,以实现对上述变量的显示、记录或自动控制。
上一页
目录
0755-83376489
下一页
26
(二)、测量部件
测量部件的作用是把被测差压ΔP i转换成电容量的变化。它由 正、负压测量室和差动电容检测元件(膜盒)等部分组成。
其结构图如下:
若不考虑边缘电场的影响,感压
膜片和两边固定电极构成的电容 Ci1、Ci2为:
A
A
Ci1 S 1 S 0 S
②当s<δ /2 时,因差动变压器,上半部磁路磁阻减小互感增 加
∴ ⅼe’2ⅼ>ⅼe’’2ⅼ
∴ UCD=ⅼe’2ⅼ- ⅼe’’2ⅼ>0
此③时当UsC>D与δ U/A2B同时相,因差动变压器,上半部磁路磁阻增大互感减 小
∴ ⅼe’2ⅼ<ⅼe’’2ⅼ
∴ UCD=ⅼe’2ⅼ- ⅼe’’2ⅼ<0
此时UCD与U上AB反一相页。
下一页
17
1、差动变压器
差动变压器是由检测片(衔铁)、上、下罐形磁芯和四组线 圈构成。如图2-13所示,其作用是将检测片的位移s转换成相 应的电压信号uCD
上一页
目录
0755-83376489
下一页
18
讨论:
①当s=δ /2 时

差压变送器

差压变送器
W1 W2 3, 故改变线圈匝数可实现的量程调整。 3: 1 W1
将 调 整 矢 量 角 和 改 变馈 动 圈 匝 数 结 合 起 来最 大 与 最 小 量 程 比 可: 反 , 达 3.8 3 : 1 11.4 : 1
• (三)低频位移检测放大器 作用:将副杠杆上检测片的微小位移S转换成直流输出电流I0.
时 , 因 差 动 变 压 器 上部 分 磁 路 的 磁 阻 增 大互 半 ,
• •
2、低频放大器 由振荡器、整流滤波及功率放大器三部分组成。
(1)振荡器
它是一个采用变压器耦合的LC振荡电路 。由变压器原边电感LAB和电容C4构成并 联谐振回路。
固有频率为: f0 1 2 LAB C 4
B
A
为F2和F3 F2带 动 副 杠 杆 逆 时 针 转 动 检 测 片 靠 近 差 动 变 压 器
变送器信号传输方框图如下:
F0 L0
Pi
A
Fi
L1 L2
F1
tan
L3
Mi
M0
K1
S
I0
K2
Mf Lf
FfΒιβλιοθήκη KfA 膜 片 有 效 作 用 面 积 ; L1 , L2 Fi , F1到 主 杠 杆 支 点 的 力 臂 ; H L3 , L0 , L f F2 , F0,F f 到 副 杠 杆 支 点 的 力 臂 ; M
F2

由 杠 杆 系 统 受 力 图 可, 各 项 力 矩 为 : 知 M i F2 L3 L3 F 1 tan L3 L1 Fi LL tan 1 3 APi tan L2 L2 M 0 F0 L0 M f Lf F f Lf K f I0

变送器-带图片课件

变送器-带图片课件
变送器
压力变送器
高精度大气压力、温度一体化变送器。
智能数字电路补偿,使用温域宽,防浪涌电压和极性反 相保护,抗干扰设计,灵敏度高,温漂小,可配现场 LCD显示 。
卫生型压力变送器
无线压力变送器
无线压力变送器,是一款具有液晶显示、信号无 线传输和菜单设置功能的高精度智能型仪表。
差压变送器 接线方法:
数字化电容压力/差压变送器 结构图如下:
该变送器核心部件采用十六位单片机,其强 大的功能和高速的运算能力保证了变送器的 优良品质。软件中应用了数字信号处理技术, 使其具有优良的抗干扰能力和零点稳定性, 且具备零点自动稳定跟踪能力(ZSC)和温 度自动补偿能力(TSC)。 强大的界面功能无需手操器保证了良好的交 互性。数字液晶显示表头能够显示压力、温 度、电流三种物理量,及0~100%模拟指示, 按键操作能方便地在无标准力源的情况下完 成零点迁移、量程设定、阻尼设定等基本的 参数设置,而且可以重新对变送器进行标定, 极大地方便了现场调试。 S-PORT串行通信口通过专用转接模块直接与 计算机通信,上位机界面可以完成比按键操 作更多的功能。接专用RS485模块可以实现 数字信号远传,或构建RS485工业局域网。 信号转换,信号采集与处理及电流输出控制 采用了一体化设计,使结构更加紧凑可靠。
广泛用于室外测温、 通讯机房、智 能楼宇、地铁、商场、图书馆、过程 控制等。特别用于需要高精度和高温 的测量场合。特别针对高温,防尘, 防水要求的工业应用场合。
双显示温湿度变送器
外形尺寸:
接线方法:
手持式温湿度变送器 接线方法:
外形尺寸:
用途: 传感、变送一体化设计,适用于暖通级室内 环境的温湿度测量,可手持或插入式测量。
两线制4mA~20mA电流远传

压力和差压变送器详细详解使用说明书

压力和差压变送器详细详解使用说明书

压力和差压变送器详细使用说明(一)差压变送器原理与使用本节根据实际使用中的差压变送器主要介绍电容式差压变送器。

1. 差压变送器原理压力和差压变送器作为过程控制系统的检测变换部分,将液体、气体或蒸汽的差压(压力)、流量、液位等工艺参数转换成统一的标准信号(如DC4mA~20mA 电流),作为显示仪表、运算器和调节器的输入信号,以实现生产过程的连续检测和自动控制。

差动电容式压力变送器由测量部分和转换放大电路组成,如图1。

1所示。

图1。

1 测量转换电路图1。

2 差动电容结构差动电容式压力变送器的测量部分常采用差动电容结构,如图1.2所示。

中心可动极板与两侧固定极板构成两个平面型电容H C和L C。

可动极板与两侧固定极板形成两个感压腔室,介质压力是通过两个腔室中的填充液作用到中心可动极板。

一般采用硅油等理想液体作为填充液,被测介质大多为气体或液体。

隔离膜片的作用既传递压力,又避免电容极板受损。

当正负压力(差压)由正负压导压口加到膜盒两边的隔离膜片上时,通过腔室内硅油液体传递到中心测量膜片上,中心感压膜片产生位移,使可动极板和左右两个极板之间的间距不相对,形成差动电容,若不考虑边缘电场影响,该差动电容可看作平板电容。

差动电容的相对变化值与被测压力成正比,与填充液的介电常数无关,从原理上消除了介电常数的变化给测量带来的误差.2。

变送器的使用(1) 表压压力变送器的方向低压侧压力口(大气压参考端)位于表压压力变送器的脖颈处,在电子外壳的后面。

此压力口的通道位于外壳和压力传感器之间,在变送器上360°环绕。

保持通道的畅通,包括但不限于由于安装变送器时产生的喷漆,灰尘和润滑脂,以至于保证过程通畅。

图1。

3为低压侧压力口。

图1.3 低压侧压力口(2)电气接线①拆下标记“FIELD TERMINALS”电子外壳。

②将正极导线接到“PWR/COMN”接线端子上,负极导线接到“—”接线端子上。

注意不得将带电信号线与测试端子(test)相连,因通电将损坏测试线路中的测试二极管。

变送器知识讲解PPT课件

变送器知识讲解PPT课件
(2)电子室旋转 电子室可以旋转以便数字显示位于最好的观察位置。 旋转时,先松开壳体旋转固定螺钉。然后进行调整。
第六页,共40页。
一、变送器原理与使用
3. 投运和零点校验 一体化三阀组与差压变送器投入运行时的操作程序
: 首先,打开差压变送器上两个排污阀,而后打开平衡阀 ,再慢慢打开二个截止阀,将导压管内的空气或污物排除 掉,关闭二个排污阀,再关闭平衡阀,变送器即可投入运 行。
差压变送器零点在线校验操作程序:先打开平 衡阀,关闭二个截止阀,即可对变送器进行零点校验 。三阀组的调整状态如下图所示。
以罗斯蒙特3051型差压变送器为例介绍差压变 送器的调零。松开电子壳体上防爆牌的螺钉,旋转防 爆牌,露出零点调节按钮。(注意,有两个按钮,一 个为零点调节按钮 (ZERO),另一个为恢复默认设 置按钮(SPAN),注意选择零点调节按钮。给变送 器加压,压力值等于4mA输出对应的压力值。按下零 点调节按钮2秒钟,检查输出是否变成4mA。带有表 头的变送器会显示“ZERO PASS”。
第十五页,共40页。
二 、变送器技术特性
四线制传输
二线制传输
第十六页,共40页。
二 、变送器技术特性
(2)二线制
对于二线制变送器,同变送器连接的导线只有两根,这两根导线同 时传输供电电源和输出信号,如图所示。可见,电源、变送器和负载 电阻是串联的。二线制变送器相当于一个可变电阻,其阻值由被测参 数控制。当被测参数改变时,变送器的等效电阻随之变化,因此流过 负载的电流也变化。
当正负压力(差压)由正负压导压口加到膜盒两边的隔离膜 片上时,通过腔室内硅油液体传递到中心测量膜片上,中心 感压膜片产生位移,使可动极板和左右两个极板之间的间距 不相对,形成差动电容,若不考虑边缘电场影响,该差动电 容可看作平板电容。差动电容的相对变化值与被测压力成正 比,与填充液的介电常数无关,从原理上消除了介电常数的 变化给测量带来的误差。

差压变送器原理及操作ppt课件

差压变送器原理及操作ppt课件

KF
1
y min 0 x min xmax x
变送器输出输入关系
1 Y (Dx z0) F
变送器的输出与输入之间的关系仅取决于测量 部分和反馈部分的特性,而与放大器的特性几乎无关。
4
2、量程调整
——量程调整的目的是使 变送器的输出信号的上限值y与 测量范围的上限值x相对应。 量程调整的方法,通常是 改变反馈部分的反馈系数F。F
y min 0 xmax xmax x y y max
愈大,量程就愈大;F愈小,量
程就愈小。
5
3、零点调整和零点迁移 ——零点调整和零点迁移的目的,是使 变送器输出信号的下限值ymin与测量信号的 下限值xmin相对应。
y y max
零点调整
y y max
正迁移
y min
y y max
负迁移
y min 0 x min xmax x
手动零点 标注按 钮
14
2、3051型变送器零点标定 使用375手操器标定: 1、连接375手操器并启动后进入菜单Display condition(显示条件) 2、点击进入Diag/Service(仪表诊断维修) 3、点击进入Calibration(校准) 4、点击进入Sensor trim(传感器设定 ) 5、Zero trim(标零设定) 此时观察显示屏输出显示是否归零,若归零则标零 点成功。 注:标定前将变送器停运并打开高、低压排污泄压 阀泄压。
三、实例分析—3051型差压变送器结构
1、工作原理
调零和迁移信号 电容 变化 差动电容 电流 信号 + 反馈 信号
位移 感压膜片
电容-电流 转换电路
放大和输出 限制电路
Iy
测量部分

压力和差压变送器详细详解使用说明书

压力和差压变送器详细详解使用说明书

压力和差压变送器详细使用说明(一)差压变送器原理与使用本节根据实际使用中的差压变送器主要介绍电容式差压变送器。

1. 差压变送器原理压力和差压变送器作为过程控制系统的检测变换部分,将液体、气体或蒸汽的差压(压力)、流量、液位等工艺参数转换成统一的标准信号(如DC4mA~20mA 电流),作为显示仪表、运算器和调节器的输入信号,以实现生产过程的连续检测和自动控制。

差动电容式压力变送器由测量部分和转换放大电路组成,如图1.1所示。

图1.1 测量转换电路图1.2 差动电容结构差动电容式压力变送器的测量部分常采用差动电容结构,如图1.2所示。

中心可动极板与两侧固定极板构成两个平面型电容H C和L C。

可动极板与两侧固定极板形成两个感压腔室,介质压力是通过两个腔室中的填充液作用到中心可动极板。

一般采用硅油等理想液体作为填充液,被测介质大多为气体或液体。

隔离膜片的作用既传递压力,又避免电容极板受损。

当正负压力(差压)由正负压导压口加到膜盒两边的隔离膜片上时,通过腔室内硅油液体传递到中心测量膜片上,中心感压膜片产生位移,使可动极板和左右两个极板之间的间距不相对,形成差动电容,若不考虑边缘电场影响,该差动电容可看作平板电容。

差动电容的相对变化值与被测压力成正比,与填充液的介电常数无关,从原理上消除了介电常数的变化给测量带来的误差。

2. 变送器的使用(1)表压压力变送器的方向低压侧压力口(大气压参考端)位于表压压力变送器的脖颈处,在电子外壳的后面。

此压力口的通道位于外壳和压力传感器之间,在变送器上360°环绕。

保持通道的畅通,包括但不限于由于安装变送器时产生的喷漆,灰尘和润滑脂,以至于保证过程通畅。

图1.3为低压侧压力口。

图1.3 低压侧压力口(2)电气接线①拆下标记“FIELD TERMINALS”电子外壳。

②将正极导线接到“PWR/COMN”接线端子上,负极导线接到“-”接线端子上。

注意不得将带电信号线与测试端子(test)相连,因通电将损坏测试线路中的测试二极管。

变送器教程ppt课件

变送器教程ppt课件
2) 当Vf增加,Vf1<Vc≤Vf2时,VS1~VS3均截止,电阻网络取 决于Rf17、Rf18、Rf7和Rf8,此时折线斜率为α1;
3) 当Vf继续增加,Vf2<Vc≤Vf3时,VS1导通,而VS2、VS3均 截止,将Rf9并联到支路1,此时折线斜率为α2;
4) 以此类推,当Vf继续增加,达到Vf3<Vc≤Vf4和Vf4<Vc≤Vf5 时,VS2和VS3相继导通,相继支路3和支路4的电阻并联 到电阻网络中去,此时,折线斜率为α3和α4。从而用4段 折线逼近热电偶的非线性特性。
DDZ-Ⅱ
DDZ-Ⅲ
3. 变送器的发展:
首先是传感器和变送器分离。传感器是借助敏感元
件按一定的规律(物理、化学等)将非电物理量形式的
信号转换成电信号。变送器是将传感器输出的电信号(
微弱的电流、电压等)转换成标准信号。
现在是传感器和变送器功能合一。变送器为输出标
准信号的传感器,由于微机械加工技术和微电子技术的
Ø1151型电容式差压变送器是该类变送器的典型产品。 以1151型压力变送器为例,美国Rosemount公司开发
的产品,综合误差为量程的±0.25% 。国内上海自动化仪 表一厂,西安仪表厂等引进生产。原理框图如图所示。它 是将传感器和变送器合二为一。传感器由敏感器和测量电 路组成。
12
电容式差压变送器组成方框图

防爆型式 安全
AC 220V 独供 防爆型 无
DC 24V集中供 并有断 用 源 安全火花型

构、 路 和 功能
气元件 差 送器 温度 送器
分立元件 双杠杆机构① 无 性化 路
集成 件 矢量机构 有 性化 路

偏差指示 硬手 手 -自 切 需先平衡 无保持 路 功能一般

讲得最透彻的电容式差压变送器原理(带图).

讲得最透彻的电容式差压变送器原理(带图).
CX Z 0 Y F
上式表明,在KF>>l 的条件下,变送器输出与输入之间的 关系取决于测量部分和反馈部分的特性,而与放大器的 特性几乎无关。如果转换系数 C 和反馈系数 F 是常数,则 变送器的输出与输入将保持良好的线性关系。
变送器的输入输出特性示于 右图, x max 和 xmin 分别为被测 参数的上限值和下限值,也 即变送器测量范围的上、下 限值 (图中xmin=0),ymax和ymin 分别为输出信号的上限值和 下限值。它们与统一标准信 号的上、下限值相对应。
调零 零点迁移 X 测量部分 zi+ z0 _ C zf 放大器 K 反馈部分 F y
由下图可以求得变送器输出与输入之间的关系为:
K (CX Z 0 ) Y 1 KF
式中,K—放大器的放大系数;
F—反馈部分的反馈系数; C—测量部分的转换系数。 当满足深度负反馈的条件,即KF>>l时,上式变为:
电源 装置
变送器 现场 两线传输
接收 R仪表 控制室
采用两线制变送器不仅可节省大量电缆线和安装费 用,而且有利于安全防爆。因此这种变送器得到了 较快的发展。 要实现两线制变送器,必须采用活零点的电流信号。 由于电源线和信号线公用,电源供给变送器的功率 是通过信号电流提供的。在变送器输出电流为下限 值时,应保证它内部的半导体器件仍能正常工作。 因此,信号电流的下限值不能过低。国际统一电流 信号采用4~2OmA(DC) ,为制作两线制变送器创造了 条件。
4 量程调整、零点调整和零点 迁移 变送器涉及的另一个共性问 题是量程、零点调整和零点 迁移。
ymax
y
ymin 0x
min Xmax
x
(1) 量程调整

电容式智能差压变送器工作原理

电容式智能差压变送器工作原理

电容式智能差压变送器工作原理发布者:admin 发布日期:2009-9-21--------------------------------------------------------------------------------DP系列智能变送器由传感器和电子线路板两部分组成,传感器部分包括:敏感元件、直接数字电容电路、温度传感器和特征化EEPROM等组成;电子线路板部分包括:微处理器、数/模信号转换器、数字通信和存储器EEPROM等几部分组成,完成压力信号到4~20mADC的转换。

以下对其原理进行简单的说明:(1) 传感器部分敏感元件:介质压力通过隔离膜片和灌充油传递到﹠室中心的测量膜片,该测量膜片是一张紧的弹性元件,用于检测在测量膜片上的差压。

测量膜片的位移与差压成正比,最大位移0.004inch(0.10mm)。

测量膜片的位置由它两侧的电容固定极板通过直接数字电容电路检测出来。

直接数字电容电路:该电路是用来将敏感元件所承受的压力转换成频率信号,并使该频率信号与压力信号成比例关系,供CPU采样使用。

温度传感器:用来测量压力传感器的工作介质温度,并将其转换为数字信号,供微处理器进行数字温度补偿。

特征化EEPROM:保存变送器温度补偿、传感器特征化曲线及特征数据和数字微调数据等。

即使关闭了电源,数据仍能完整地保存在存储器中。

EEPROM总存贮容量512字节。

(2)电子线路板部分微处理器:微处理器控制变送器的运行,对压力敏感元件通过直接数字电容电路和温度传感器对其工作压力和工作介质温度进行检测。

微处理器利用传感器特征化EEPROM中的数据进行线性化处理和补偿运算,计算出工作介质的压力值,并送往数/模转换器和HART 通信部分。

从而在原理上实现电子板与传感器的互换而不会影响变送器的输出特征。

除此之外微处理器还进行传递函数的运算、工程单位及量程的转换、阻尼调整及自诊断等功能。

存储器EEPROM:保存着通过远程、本地调整所能修改的所有组态数据。

压力和差压变送器详细详解使用说明书

压力和差压变送器详细详解使用说明书

压力和差压变送器详细使用说明(一)差压变送器原理与使用本节根据实际使用中的差压变送器主要介绍电容式差压变送器。

1. 差压变送器原理压力和差压变送器作为过程控制系统的检测变换部分,将液体、气体或蒸汽的差压(压力)、流量、液位等工艺参数转换成统一的标准信号(如DC4mA~20mA 电流),作为显示仪表、运算器和调节器的输入信号,以实现生产过程的连续检测和自动控制。

差动电容式压力变送器由测量部分和转换放大电路组成,如图1.1所示。

图1.1 测量转换电路图1.2 差动电容结构差动电容式压力变送器的测量部分常采用差动电容结构,如图1.2所示。

中心可动极板与两侧固定极板构成两个平面型电容H C和L C。

可动极板与两侧固定极板形成两个感压腔室,介质压力是通过两个腔室中的填充液作用到中心可动极板。

一般采用硅油等理想液体作为填充液,被测介质大多为气体或液体。

隔离膜片的作用既传递压力,又避免电容极板受损。

当正负压力(差压)由正负压导压口加到膜盒两边的隔离膜片上时,通过腔室内硅油液体传递到中心测量膜片上,中心感压膜片产生位移,使可动极板和左右两个极板之间的间距不相对,形成差动电容,若不考虑边缘电场影响,该差动电容可看作平板电容。

差动电容的相对变化值与被测压力成正比,与填充液的介电常数无关,从原理上消除了介电常数的变化给测量带来的误差。

2. 变送器的使用(1)表压压力变送器的方向低压侧压力口(大气压参考端)位于表压压力变送器的脖颈处,在电子外壳的后面。

此压力口的通道位于外壳和压力传感器之间,在变送器上360°环绕。

保持通道的畅通,包括但不限于由于安装变送器时产生的喷漆,灰尘和润滑脂,以至于保证过程通畅。

图1.3为低压侧压力口。

图1.3 低压侧压力口(2)电气接线①拆下标记“FIELD TERMINALS”电子外壳。

②将正极导线接到“PWR/COMN”接线端子上,负极导线接到“-”接线端子上。

注意不得将带电信号线与测试端子(test)相连,因通电将损坏测试线路中的测试二极管。

电容式差压变送器

电容式差压变送器

— 过程控制仪表及装置 — — 控制仪表和计算机控制装置 —
解调器

振荡器输出为正半周时
对通过差动电容 Ci1 、 Ci2 的高频电流进行半 波整流
电流i2的路线为 :
T1(2)→VD6、VD6→C2→Ci2→C17→C11→T1(11) 电流i1的路线为: T1(3)→R4→VD7、VD3→C1→Ci1→C17→R6∥R8→T1 (10) 上页
电路时间常数比振荡周期小得多,可以认为Ci1、Ci2两端 电压的变化等于振荡器输出高频电压的峰一峰值UPP i1和i2 的平均值I1、I2如下:
Ci1U PP I1 Ci1U PP f T I 2 Ci 2U PP f
目 录
上页
下页
11
武汉工程大学电气信息学院测控教研室 武汉工程大学电气信息学院
ΔP↑ Uc ↓ (Ci2+ Ci1)↑ Ic↓
振荡器振荡幅度↓
Ic和K2的变化方向相反Id与 ΔP成线性关系
目 录
上页
下页
17
武汉工程大学电气信息学院测控教研室 武汉工程大学电气信息学院
— 过程控制仪表及装置 — — 控制仪表和计算机控制装置 —

把测量部分输出的差动信号Id放大并转换 成4~20mA的直流输出电流 ,实现量程调整、 零点调整和迁移、输出限幅和阻尼调整功能
— 过程控制仪表及装置 — — 控制仪表和计算机控制装置 —
解调器
• i1、i2的平均值之差Id及两者之和Ic分别 为
I d I 2 I1 (Ci 2 Ci1 )U PP f
I c I1 I 2 (Ci 2 Ci1 )U PP f
I d I c KP K m P

压力差压变送器的结构原理与故障处理PPT课件

压力差压变送器的结构原理与故障处理PPT课件
E Io
RL
2019/9/10
1133
3.1.电容式压力、差压变送器
整机电路
2019/9/10
14
3.1.电容式压力、差压变送器
电容-电流转换电路
作用:将差动电容的相对变化值成比例地转换为差动信号Id。
Id

f

Ci2 Ci2
Ci1 Ci1

f P
解调器
电路组成:
振荡控制 放大器
2019/9/10
ST3000系统接线示意图 3322
4.压力、差压变送器调试基本知识
以1151序列电容式压力、差压变送器为例子。
量程调整范围
所有的1151变送器都可在最大量程和最大量程的1/6 范围内调整,比为6:1。如,量程范围4档时, 其可调的 范围是0—6.22kPa到37.29kPa。
2019/9/10
调整。
输出电流Io路线为: E+→D11→R31∥W3 →R33 → D12→R18→
R34 C11 VT2→VT4→RL→E-
2019/9/10
20
课 间 休 息
2019/9/10
21
3.1.电容式压力、差压变送器
线性调整电路
利用W1产生的附加电压UC进行补偿。(R22=R23 ) 若W1=0,正负半周负载相等,则UC=0 (无补偿作用)。 若W1≠0,正负半周负载不相等,则UC≠0 (有补偿作用)
2019/9/10
24
3.2.扩散硅式压力、差压变送器
扩散硅式差压变送器的检测元件采用扩散硅压阻传感 器。由于扩散硅的制造工艺与集成电路工艺有很好的兼 容性,随着MEMS技术的突破,扩散硅变送器的使用越 来越广泛。

电容式压力变送器原理

电容式压力变送器原理

电容式压力变送器原理电容式压力变送器简介科学技术的不断发展极大地丰富了压力测量产品的种类,现在,压力传感器的敏感原理不仅有电容式、压阻式、金属应变式、霍尔式、振筒式等等但仍以电容式、压阻式和金属应变式传感器最为多见。

金属应变式压力变送器是一种历史较长的压力传感器,但由于它存在迟滞、蠕变及温度性能差等缺点,其应用场合受到了很大的限制。

压阻式传感器是利用半导体压阻效应制造的一种新型的传感器,它具有制造方便,成本低廉等特点,但由于半导体材料对温度极为敏感,所以其性能受温度影响较大,产品的一致性较差。

电容式压力变送器是应用最广泛的一种压力变送器,其原理十分简单。

一个无限大平行平板电容器的电容值可表示为:C= ε s/d(ε 为平行平板间介质的介电常数,d 为极板的间距, s 为极板的覆盖面积)改变其中某个参数,即可改变电容量。

由于结构简单,几乎所有电容式压力变送器均采用改变间隙的方法来获得可变电容。

电容式压力变送器的初始电容值较小,一般为几十皮法,它极易受到导线电容和电路的分布电容的影响,因而必须采用先进的电子线路才能检测出电容的微小变化。

可以说,一个好的电容式传感器应该是可变电容设计和信号处理电路的完美结合。

Setra 压力变送器的工作原理Setra 的压力变送器采用了结构简单、坚固耐用且极稳定的可变电容形式,下图为 Setra 压力变送器的结构示意图,可变电容由压力腔上的膜片和固定在其上的绝缘电极所组成,当感受到压力变化时,膜片要产生微微的翘曲变形,从而改变了两极的间距,采用 Setra 独特的检测电路测电容的微小变化,并进行线性处理和温度补偿。

传感器输出与被测压力成正比的直流电压或电流信号。

精巧的结构、高性能的材料及先进的检测电路的完美结合,赋予了 Setra 压力变送器以很高的性能。

Setra 压力变送器的特点高性能为了保证产品的高性能,Setra 压力变送器采用材料构成可变电容,由于这些材料具有极稳定的物理化学性能,使产品具有极高的性能。

差压变送器原理及操作

差压变送器原理及操作

信号
位移
变化
感压膜43; -
放大和输出 I y 限制电路
反馈
信号
测量部分
转换放大部分
反馈电路
3051型差压变送器工作原理
8
2、3051型差压变送器结构
3051型差压变送器外形结构图
9
2、3051型差压变送器结构
3051型差压变送器测量头结构
10
2、 3051差压变送器装配分解图
点成功。 注:标定前将变送器停运并打开高、低压排污泄压
阀泄压。
15
xmin 0
xmax x
6
4、应用分析
H 1 h
差压变送器
正迁移情况
p Hg hg
正迁移量: hg
隔离罐
2
H 1 h1
2 差压变送器
负迁移情况
p H1g (h2 h1 )2 g
负迁移量: (h2 h1 )2 g
7
三、实例分析—3051型差压变送器结构
1、工作原理
调零和迁移信号
电流
电容
xmax x
变送器输出输入关系
变送器的输出与输入之间的关系仅取决于测量 部分和反馈部分的特性,而与放大器的特性几乎无关。
4
2、量程调整
——量程调整的目的是使
y
变送器的输出信号的上限值y与
ymax
测量范围的上限值x相对应。
量程调整的方法,通常是
改变反馈部分的反馈系数F。F
愈大,量程就愈大;F愈小,量
z0
x
测量部分 zi +
D
ε 放大器
K
z-f
反馈部分
F
变送器的构成原理图
输出与输入关系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量约为150~17OpF。
电源 装置
变送器
ቤተ መጻሕፍቲ ባይዱ
接收 R仪表
现场
控制室
两线传输
采用两线制变送器不仅可节省大量电缆线和安装费 用,而且有利于安全防爆。因此这种变送器得到了 较快的发展。 要实现两线制变送器,必须采用活零点的电流信号。 由于电源线和信号线公用,电源供给变送器的功率 是通过信号电流提供的。在变送器输出电流为下限 值时,应保证它内部的半导体器件仍能正常工作。 因此,信号电流的下限值不能过低。国际统一电流 信号采用 4~2OmA(DC) ,为制作两线制变送器创造了 条件。
一个典型的变送器的主要性能指标如下: (1)基本误差 有?0.25% ,?0.35% ,?0.5% 三 种; (2)输出信号 4~20mA(DC)(两线制) (3)负载电阻 0~600? (在24V(DC)供电时),
0~1650? (在45V(DC)供电时)。 (4)电源电压 12~45V(DC),一般为24V(DC)。
第六节 电容式差压变送器
一、有关变送器的常识
变送器是现场仪表,其输 出信号送至控制室中,而 它的供电又来自控制室。 变送器的信号传送和供电
方式通常有如下两种 :
1 四线制传输
供电电源和输出信号分别 用两根导线传输,如右图 所示。图中的变送器称为 四线制变送器。
电源 装置
变送器 现场
四线传输
接收 仪表
Y ? CX ? Z0 F
上式表明,在 KF>>l 的条件下,变送器输出与输入之间的 关系取决于测量部分和反馈部分的特性,而与放大器的 特性几乎无关。如果转换系数 C和反馈系数 F是常数,则 变送器的输出与输入将保持良好的线性关系。
变送器的输入输出特性示于
右图, xmax 和xmin 分别为被测 参数的上限值和下限值,也 即变送器测量范围的上、下 限值 (图中xmin=0),ymax和ymin 分别为输出信号的上限值和 下限值。它们与统一标准信 号的上、下限值相对应。
各种电容式压力变送器外形图
电子线 路位置
低压侧 进气口
高压侧 进气口
内部不锈钢膜片的位置
各种电容式压力变送器外形图
各种电容式压力变送器外形图 法兰
变送器包括测量部分和转换放大电路两部分,其构成方 框如图所示。输入差压? pi作用于测量部分的感压膜片, 使其产生位移,从而使感压膜片(即可动电极)与两固定 电极所组成的差动电容器之电容量发生变化。此电容变化 量由电容—电流转换电路转换成电流信号,电流信号与调 零信号的代数和同反馈信号进行比较,其差值送入放大电
3 许多模拟变送器的构成原理
许多模拟变送器的构成方框
图见右图,它包括测量部分 (即输入转换部分)、放大 器和反馈部分。测量部分用 以检测被测参数x,并将其转 换成能被放大器接受的输入
信号zi(电压、电流、位移、 作用力或力矩等信号)。反馈 部分则把变送器的输出信号y 转换成反馈信号zf,再回送至 输入端。zi与调零信号z0的代 数和同反馈信号zf进行比较, 其差值?送入放大器进放大,
并转换成标准输出信号y。
调零 零点迁移
X 测量部分zi+ z0? 放大器
y
C
_
K
zf
反馈部分 F
由下图可以求得变送器输出与输入之间的关系为:
Y ? K (CX ? Z0 ) 1 ? KF
式中,K—放大器的放大系数; F—反馈部分的反馈系数; C—测量部分的转换系数。
当满足深度负反馈的条件,即KF>>l时,上式变为:
路,经放大得到整机的输出电流 I0。
调零 零点迁移
电容
电源
ΔPi
位移 感压膜片
差动电容
变化
电容-电流 信号+ 转换电路
_
放大和输出 限制电路
Io
反馈
信号
测量部分
转换放大部分
反馈电路
电容式差压变送器构成方框图
(一)测量部分(部件)
测量部分的作用是把被测差压 ? pi转换成电容量的变 化。它由正、负压测量室和差动电容检测元件(膜 盒)等部分组成,其结构如图所示。
控制室
由于电源与信号分别传送, 因此对电流信号的零点及 元器件的功耗无严格要求。 在该传输方式中,若变送 器的一个输出端与电源装 置的负端相连,也就成了 三线制传输。
2 两线制传输
变送器与控制室之间仅用两 根导线传输。这两根导线 既是电源线,又是信号线, 如右图所示。图中的变送 器称为两线制变送器。
差动电容检测元件包括中心感压膜片 11,(即可动电 极),正、负压侧弧形电极 12、10(即固动电极 ), 电极引线1、2、3,正、负压侧隔离膜片 14、8和基 座13、9等。在检测元件的空腔内充有硅油,用以 传递压力。感压膜片和其两边的正 ·负压侧弧形电极 形成电容Ci1和Ci2。无差压输入时, Ci1=Ci2,其电容
当测量起始点由零变为某一正值,称为正迁移;反之, 当测量起始点由零变为某一负值,称为负迁移。
变送器零点调整和零点迁移可通过改变调零信号z0的 大小来实现。当z0为负时可实现正迁移;而当z0为正 时则可实现负迁移。
二、电容式差压变送器
(见教材P142~P146) 电容式差压变送器是没有杠杆机构的变送器,它采用 差动电容作为检测元件,整个变送器无机械传动、调 整装置,并且测量部分采用全封闭焊接的固体化结构, 因此仪表结构简单,性能稳定、可靠,且具有较高的 精度。
现的。F大,量程就大;F小, 0 量程就小。有些变送器还可
以通过改变转换系数C来调整
量程。
x max
x max x
(2) 零点调整和零点迁移
零点调整和零点迁移的目的,都是使变送器输出信号 的下限值ymin 与测量范围的下限值xmin相对应。即当 x=xmin 时,使y=ymin 。在xmin =0时,为零点调整,在xmin 不等于时,为零点迁移。也就是说,零点调整使变送 器的测量起始点为零,而零点迁移则是把测量起始点 由零迁移到某一数值 (正值或负值)。
4 量程调整、零点调整和零点 迁移 变送器涉及的另一个共性问 题是量程、零点调整和零点 迁移。
y ymax
ymin 0 x min
Xmax x
(1) 量程调整
量程调整 (即满度调整)的
y
目的是使变送器输出信号的
ymax
上限值ymax与测量范围的上限 值xmax 相对应。即当x=xmax 时, 使y=ymax。量程调整通常是通 过改变反馈系数F的大小来实 y min
相关文档
最新文档