新北师大版数学七年级上册5.6《追赶小明》精品课件
合集下载
北师大版初中数学七年级上册应用一元一次方程--追赶小明课件
秒钟可以相遇?
等量关系:
小明走的路程+小华走的路程=相距的路程
所用公式:路程=速度×时间
新知探究
情境引入
新知探究
你知道它蕴含的是我们数学中的什么问题吗?
新知探究
做一做
30
1.若杰瑞的速度是6米/秒,则它5秒跑了________米.
2.若汤姆的速度是7米/秒,要抓到14米远处正在吃食物而
毫无防范的杰瑞需要________秒.
解得
x=10.
答:小明爸爸从家出发10分钟后接到小明.
新知探究
归纳总结
两人从两地出发相向而行的行程问题称为相遇问题.
往往根据路程之和等于总路程列方程.如图所示,
甲的行程+乙的行程=两地距离.
新知探究
A,B两地相距60千米,甲、乙两人分别从A,
B两地出发相向而行,甲的速度是8千米/时,乙的
速度是6千米/时.经过多长时间两人相距4千米?
答:追上小明时,距离学校还有280米.
新知探究
注意单位统一
一队学生去校外进行军事野营训练,他们以5 km/h的速
度行进.走了18 min的时候,学校要将一个紧急通知传给
队长,通讯员从学校出发,骑自行车以14 km/h的速度按
原路追上去,通讯员用多少时间可以追上学生队伍?
相等关系:通讯员的行进路程=学生的行进路程.
8x
A
8x
A
6x
4
60
4
6x
60
B
B
解:设经过x小时两人相距4千米,根据题意,得
8 + 6 = 60 − 4或8 + 6 = 60 + 4
32
7
解得x=4或 .
等量关系:
小明走的路程+小华走的路程=相距的路程
所用公式:路程=速度×时间
新知探究
情境引入
新知探究
你知道它蕴含的是我们数学中的什么问题吗?
新知探究
做一做
30
1.若杰瑞的速度是6米/秒,则它5秒跑了________米.
2.若汤姆的速度是7米/秒,要抓到14米远处正在吃食物而
毫无防范的杰瑞需要________秒.
解得
x=10.
答:小明爸爸从家出发10分钟后接到小明.
新知探究
归纳总结
两人从两地出发相向而行的行程问题称为相遇问题.
往往根据路程之和等于总路程列方程.如图所示,
甲的行程+乙的行程=两地距离.
新知探究
A,B两地相距60千米,甲、乙两人分别从A,
B两地出发相向而行,甲的速度是8千米/时,乙的
速度是6千米/时.经过多长时间两人相距4千米?
答:追上小明时,距离学校还有280米.
新知探究
注意单位统一
一队学生去校外进行军事野营训练,他们以5 km/h的速
度行进.走了18 min的时候,学校要将一个紧急通知传给
队长,通讯员从学校出发,骑自行车以14 km/h的速度按
原路追上去,通讯员用多少时间可以追上学生队伍?
相等关系:通讯员的行进路程=学生的行进路程.
8x
A
8x
A
6x
4
60
4
6x
60
B
B
解:设经过x小时两人相距4千米,根据题意,得
8 + 6 = 60 − 4或8 + 6 = 60 + 4
32
7
解得x=4或 .
北师大版七年级数学上册应用一元一次方程-追赶小明课件
北师大版七年级《数学》上册 5.6应用一元一次方程—追赶小明
练习2:甲骑摩托车,乙骑自行车同时从相距150千米 的两地相向而行,经过5小时相遇,已知甲每小时行驶 的路程是乙每小时行驶的路程的3倍少6千米,求乙骑自行车的速度
解:设乙骑自行车的速度为x千米ቤተ መጻሕፍቲ ባይዱ时, 据题意得 5(3x-6)+5x =150. 解,得 x=9.
北师大版七年级《数学》上册 5.6应用一元一次方程—追赶小明
例1:小明早晨要在
7:20以前赶到距家
1000米的学校上学,一
天,小明以80m/min的
速度出发,5min后,
小明的爸爸发现他忘了
带历史作业,于是,爸
爸立即以180m/min的
速度去追小明,并且在 (1)爸爸追上小明用了多长时间?
途中追上了他.
北师大版七年级《数学》上册 5.6应用一元一次方程—追赶小明
教学目标
1.能借助“线段图”分析复杂问题中的数量关系,从而列出方 程,解决问题.熟悉行程问题中路程、速度、时间之间的关系, 从而实现从文字语言到符号语言的转换. 2.经历画“线段图”找等量关系,列出方程解决问题的过程, 进一步体验画“线段图”也是解决实际问题的有效途径.体会 “方程”是解决实际问题的有效模型,并进一步培养学生的文 字语言、符号语言、图形语言的转换能力.
北师大版七年级《数学》上册
强化练习
5.6应用一元一次方程—追赶小明
小华和小玲同时从相距700米的两地相对走来, 小华每分钟走60米,小玲每分钟走80米。几分钟后两人相遇? 分析:先画线段图:
小结:同向而行 ②甲、乙同时走;
等量关系:甲的时间=乙的时间; 乙的路程=甲的路程+起点距离.
北师大版七年级《数学》上册 5.6应用一元一次方程—追赶小明
北师大版数学七年级上册教学同步课件5.6应用一元一次
合作探究 达成目标 【小组讨论1】行程问题中路程、速度和时间三个量之间 有何关系?
【反思小结】
合作探究 达成目标
活动二:A,B两地间的路程为360千米,甲车从 A地出发开往B地,每小时行驶72千米.甲车出发 25分钟后,乙车从B地出发开往A地,每小时行 驶48千米. (1)几小时后两车相遇? (2)两车相遇后,各自仍按原速度和原方向继续行 驶.那么相遇以后两车相距100千米时,甲车从出 发共行驶了多少小时?
• 1.能分析行程问题中已知数和未知数之间的相等关系, 利用路程、时间与速度三个量之间的关系式,列出一元 一次方程解应用题 .
• 2.会区分行程问题中的相遇问题与追击问题,正确地 找出相等关系并列出相应的方程 .
• 3.会用“线段图”分析复杂问题中的数量关系,从而 建立方程解决实际问题 .
合作探究 达成目标
合作探究 达成目标
解答:(1)设经过x小时两车相遇,则据题意,得
【是:展甲示车点的评72行】 6205程本+x+小+乙题48车属x=的于36行相0.程遇解得=问x3题=60.2(千341).相米等.(2关)相系等 关(3答6系:0+是2 341:小00时甲)千后车米两行车.相驶相遇的遇问路. 题程的+特乙点车是行相驶向的而路行程,=相 等(2关)设系相一遇般以后是两:车双相方距所10走0千路米程时之,和甲=车共全行部驶路了程x小.它时 具助,有分根直析据观题题意性. ,,得因7此2x+通4常8画x 出6205示 =意36图0+(10直0.线型)帮
即可到达.甲乙两地的路程是____3_5_0___千米.
总结梳理 内化目标
1. 今天你们学到了什么知识?是 怎
样学到的?
2. 我的困惑:
达标检测 反思目标
北师大版初中数学七年级上册5.6 应用一元一次方程——追赶小明 课件
答:货车每小时行70千米.
课堂检测
5.6 应用一元一次方程——追赶小明/
基础巩固题
1
2.汽车以72 km/h的速度在公路上行驶,开向寂静的山谷, 驾驶员摁一下喇叭,4s后听到回声,已知空气中声音的传播 速度约为340 m/s,这时汽车离山谷多远?
解:72 km/h=20 m/s,设听到回声时,汽车离山谷x m. 由题意,得2x+4×20=340×4, 解得x=640.
小
小
强
彬
相
遇
巩固练习
5.6 应用一元一次方程——追赶小明/
解:(2) 设y秒后相遇,则可得方程: 4y+6y=100 解得:y=10
相遇问题—相向而行
等量关系:甲所用时间=乙所用时间; 甲的路程+乙的路程=总路程.
探究新知
5.6 应用一元一次方程——追赶小明/
行程问题 ①追及问题:男跑路程AC-女跑路程BC=相距路程AB.
所以,追上小明时,距离学校还有280米.
巩固练习
5.6 应用一元一次方程——追赶小明/
小彬和小强每天早晨坚持跑步,小彬每秒跑4米,小强 每秒跑6米 .
(1)如果小强站在百米跑道的起点处,小彬站在他前 面10米处,两人同时同向起跑,几秒后小强能追上小彬? 请用线段图表示!
4x
6x 解:设x秒后小强追上小彬,
课堂检测
5.6 应用一元一次方程——追赶小明/
拓广探索题
解:将所有时间设为x小时,
(1)60x+40x=300, (2)
解得x=3. 解得x=2.85.
(3)60x=300+40x,
解得x=15.
(4)
解得x=16.
慢车行驶距离为:
课堂检测
5.6 应用一元一次方程——追赶小明/
基础巩固题
1
2.汽车以72 km/h的速度在公路上行驶,开向寂静的山谷, 驾驶员摁一下喇叭,4s后听到回声,已知空气中声音的传播 速度约为340 m/s,这时汽车离山谷多远?
解:72 km/h=20 m/s,设听到回声时,汽车离山谷x m. 由题意,得2x+4×20=340×4, 解得x=640.
小
小
强
彬
相
遇
巩固练习
5.6 应用一元一次方程——追赶小明/
解:(2) 设y秒后相遇,则可得方程: 4y+6y=100 解得:y=10
相遇问题—相向而行
等量关系:甲所用时间=乙所用时间; 甲的路程+乙的路程=总路程.
探究新知
5.6 应用一元一次方程——追赶小明/
行程问题 ①追及问题:男跑路程AC-女跑路程BC=相距路程AB.
所以,追上小明时,距离学校还有280米.
巩固练习
5.6 应用一元一次方程——追赶小明/
小彬和小强每天早晨坚持跑步,小彬每秒跑4米,小强 每秒跑6米 .
(1)如果小强站在百米跑道的起点处,小彬站在他前 面10米处,两人同时同向起跑,几秒后小强能追上小彬? 请用线段图表示!
4x
6x 解:设x秒后小强追上小彬,
课堂检测
5.6 应用一元一次方程——追赶小明/
拓广探索题
解:将所有时间设为x小时,
(1)60x+40x=300, (2)
解得x=3. 解得x=2.85.
(3)60x=300+40x,
解得x=15.
(4)
解得x=16.
慢车行驶距离为:
初中数学北师大版七年级上册应用一元一次方程——追赶小明课件
第五章 一元一次方程
6 应用一元一次方程——追赶小明
感悟新知
知识点 1 行程问题
• 1. 行程问题中的基本关系式 •路程= 速度× 时间, •时间= 路程÷ 速度, •速度= 路程÷ 时间.
知1-讲
感悟新知
知1-讲
2. 行程问题中的相等关系 (1)相遇问题中的相等关系:
①若甲、乙相向而行,甲走的路程+ 乙走的路程= 甲、 乙出发点之间的路程; ②若甲、乙同时出发,甲用的时间= 乙用的时间.
根据题意,得 65z+85(0.5+z)=450. 解得 z=16603. 因此,慢车行驶16603 h 两车相遇.
感悟新知
知1-练
例2 李成在王亮的前方10 米处,若李成每秒跑7 米,王亮 每秒跑7.5 米,两人同时起跑,问:王亮跑多少米可 以追上李成?
解题秘方:此题是追及问题,属于“同时不同地”的 类型,可根据“王亮跑的路程- 李成跑的路程=10 米” 列方程求解.
1. 在行程问题的三个量(路程、速度、时间)中,一个
量已知,另一个量设元,则第三个量用来列方程.
2. 在相遇和追及问题中,若两者同时出发,则时间
相等,利用两者路程之间的关系列方程.
3. 航行问题中涉及顺和逆的问题,只要路线相同,
则路程不变.
感悟新知
知1-练
例 1 A,B 两地相距280 m,甲、乙两人同时相向而行, 甲从A 地每秒跑8 m,乙从B 地每秒跑6m,那么几秒 后甲、乙两人相遇?
感悟新知
知1-练
(1)两车同时开出, 相向而行, 那么两车行驶多少小时相遇? 解:设两车行驶x h相遇. 根据题意,得65x+85x=450,解得x=3. 因此,两车行驶3 h相遇.
感悟新知
6 应用一元一次方程——追赶小明
感悟新知
知识点 1 行程问题
• 1. 行程问题中的基本关系式 •路程= 速度× 时间, •时间= 路程÷ 速度, •速度= 路程÷ 时间.
知1-讲
感悟新知
知1-讲
2. 行程问题中的相等关系 (1)相遇问题中的相等关系:
①若甲、乙相向而行,甲走的路程+ 乙走的路程= 甲、 乙出发点之间的路程; ②若甲、乙同时出发,甲用的时间= 乙用的时间.
根据题意,得 65z+85(0.5+z)=450. 解得 z=16603. 因此,慢车行驶16603 h 两车相遇.
感悟新知
知1-练
例2 李成在王亮的前方10 米处,若李成每秒跑7 米,王亮 每秒跑7.5 米,两人同时起跑,问:王亮跑多少米可 以追上李成?
解题秘方:此题是追及问题,属于“同时不同地”的 类型,可根据“王亮跑的路程- 李成跑的路程=10 米” 列方程求解.
1. 在行程问题的三个量(路程、速度、时间)中,一个
量已知,另一个量设元,则第三个量用来列方程.
2. 在相遇和追及问题中,若两者同时出发,则时间
相等,利用两者路程之间的关系列方程.
3. 航行问题中涉及顺和逆的问题,只要路线相同,
则路程不变.
感悟新知
知1-练
例 1 A,B 两地相距280 m,甲、乙两人同时相向而行, 甲从A 地每秒跑8 m,乙从B 地每秒跑6m,那么几秒 后甲、乙两人相遇?
感悟新知
知1-练
(1)两车同时开出, 相向而行, 那么两车行驶多少小时相遇? 解:设两车行驶x h相遇. 根据题意,得65x+85x=450,解得x=3. 因此,两车行驶3 h相遇.
感悟新知
北师大版数学七年级上册同步教学课件:5-6用一元一次方程——追赶小明(共20张PPT)PPT课件
解:设乙的速度为x米/秒. 由题意,得30x+30(x+1)=450. 解这个方程得x=7,x+1=8. 答:甲的速度为8米/秒,乙的速度为7米/秒.
•最新精品中小学课件 •10
自主探究
例2 一队学生去校外进行军事野营训 练,他们以5千米/时的速度行进,走了18 分钟的时候,学校要将一个紧急通知传给 队长.通讯员从学校出发,骑自行车以14 千米/时的速度按原路追上去,通讯员用多 长时间可以追上学生队伍?
•最新精品中小学课件
•17
1.C
2.C 3.30
4.2(x+x-5.5)=27 5.解:(1)设经过x秒甲、乙两人首次相遇. 根据题意,得8x+6x=400-8. 解这个方程,得x=28. 答:经过28秒两人首次相遇. (2)设经过x秒甲、乙两人首次相遇. 根据题意,得8x=6x+400-8. 解这个方程,得x=196. 答:经过196秒两人首次相遇.
2.父亲从家跑步到公园需30分钟,儿子只 需20分钟.如果父亲比儿子早出发5分 钟,儿子追上父亲需( ) A.8分钟 B.9分钟 C.10分钟 D.11分钟 3.一条环形跑道长390米,甲跑步速度为6 米/秒,乙跑步速度为7米/秒.若两人同 时、同地、反方向跑,则经过________ 秒首次相遇.
•最新精品中小学课件 •15
4.甲、乙两人同时从相距27千米的两地 相向而行,2小时后相遇.已知乙骑车 的速度比甲步行的速度快5.5千米/ 时.如果设乙的速度为x千米/时,那么 可列出方程为 ____________________.
•最新精品中小学课件
•16
5.甲、乙两人在环形跑道上练习跑步.已 知环形跑道一圈长400米,乙每秒跑6米, 甲每秒跑8米. (1)如果甲、乙两人在跑道上相距8米处 同时反向出发,那么经过多少秒两人首 次相遇? (2)如果甲在乙前面8米处同时同向出发, 那么经过多少秒两人首次相遇?
•最新精品中小学课件 •10
自主探究
例2 一队学生去校外进行军事野营训 练,他们以5千米/时的速度行进,走了18 分钟的时候,学校要将一个紧急通知传给 队长.通讯员从学校出发,骑自行车以14 千米/时的速度按原路追上去,通讯员用多 长时间可以追上学生队伍?
•最新精品中小学课件
•17
1.C
2.C 3.30
4.2(x+x-5.5)=27 5.解:(1)设经过x秒甲、乙两人首次相遇. 根据题意,得8x+6x=400-8. 解这个方程,得x=28. 答:经过28秒两人首次相遇. (2)设经过x秒甲、乙两人首次相遇. 根据题意,得8x=6x+400-8. 解这个方程,得x=196. 答:经过196秒两人首次相遇.
2.父亲从家跑步到公园需30分钟,儿子只 需20分钟.如果父亲比儿子早出发5分 钟,儿子追上父亲需( ) A.8分钟 B.9分钟 C.10分钟 D.11分钟 3.一条环形跑道长390米,甲跑步速度为6 米/秒,乙跑步速度为7米/秒.若两人同 时、同地、反方向跑,则经过________ 秒首次相遇.
•最新精品中小学课件 •15
4.甲、乙两人同时从相距27千米的两地 相向而行,2小时后相遇.已知乙骑车 的速度比甲步行的速度快5.5千米/ 时.如果设乙的速度为x千米/时,那么 可列出方程为 ____________________.
•最新精品中小学课件
•16
5.甲、乙两人在环形跑道上练习跑步.已 知环形跑道一圈长400米,乙每秒跑6米, 甲每秒跑8米. (1)如果甲、乙两人在跑道上相距8米处 同时反向出发,那么经过多少秒两人首 次相遇? (2)如果甲在乙前面8米处同时同向出发, 那么经过多少秒两人首次相遇?
北师大版数学七年级上册5.6应用一元一次方程——追赶小明 课件(共32张PPT)
问题2:后队追上前队时联络员行了多少路程? 【分析】相等关系:联络员行的时间=后队行的时间.
解:由问题1得后队追上前队用了2小时, 因此联络员共进行了:
12×2=24(km). 所以,后队追上前队时联络员行了24千米.
知识回顾 典例探究 方法归纳 巩固练习 课堂小结 布置作业
议一议
育红学校七年级学生步行到郊外旅行:七(1)班的学生组成前队,步 行速度为4 km/h,七(2)班的学生组成后队,速度为6 km/h.前队出发1 h后, 后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回 进行联络,他骑车的速度为12 km/h.
驶55 km,慢车行驶1小时后,另有一列快车从B站开往A站,每小时
行驶85 km.设快车行驶了x小时后与慢车相遇,则可列方程为( D )
A.55x+85x=335
B.55( x-1 )+85x=335
C.55x+85( x-1 )=335
D.55( x+1 )+85x=335
慢车
快车
55×1
55x
85x
情况一
A
9x
5
80
6x B
【分析】等量关系: 甲ห้องสมุดไป่ตู้程+乙路程+5=80.
解:设经过x小时后两人相距5千米.
依题意,得 15x-5x=400,
解得
x=40.
所以,经过40秒两人第一次相遇.
知识回顾 典例探究 方法归纳 巩固练习 课堂小结 布置作业
典型例题
例4 操场一周是400米,小明每秒跑5米,小华骑自行车每秒行 驶15米,两人绕跑道同时同地相背而行,则两个人何时相遇?
小华
小明
解:由问题1得后队追上前队用了2小时, 因此联络员共进行了:
12×2=24(km). 所以,后队追上前队时联络员行了24千米.
知识回顾 典例探究 方法归纳 巩固练习 课堂小结 布置作业
议一议
育红学校七年级学生步行到郊外旅行:七(1)班的学生组成前队,步 行速度为4 km/h,七(2)班的学生组成后队,速度为6 km/h.前队出发1 h后, 后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回 进行联络,他骑车的速度为12 km/h.
驶55 km,慢车行驶1小时后,另有一列快车从B站开往A站,每小时
行驶85 km.设快车行驶了x小时后与慢车相遇,则可列方程为( D )
A.55x+85x=335
B.55( x-1 )+85x=335
C.55x+85( x-1 )=335
D.55( x+1 )+85x=335
慢车
快车
55×1
55x
85x
情况一
A
9x
5
80
6x B
【分析】等量关系: 甲ห้องสมุดไป่ตู้程+乙路程+5=80.
解:设经过x小时后两人相距5千米.
依题意,得 15x-5x=400,
解得
x=40.
所以,经过40秒两人第一次相遇.
知识回顾 典例探究 方法归纳 巩固练习 课堂小结 布置作业
典型例题
例4 操场一周是400米,小明每秒跑5米,小华骑自行车每秒行 驶15米,两人绕跑道同时同地相背而行,则两个人何时相遇?
小华
小明
北师大版七年级数学上册应用一元一次方程——追赶小明课件
新知探究
解:设X秒后两人相距260米,依题意列 方程,得
4X + 6X +100= 260 解得: X=16 答:经过16秒后两人相距260米。
新知探究
❖ 解决路程问题的关键是什么? 找出等量关系,列出方程。
❖找出等量关系的重要方法是:
画线段图。
议一议:
新知探究
育红学校七年级学生步行到郊外旅行.(1)班 的学生组成前队,步行速度为4千米/时,(2)班 的学生组成后队,速度为6千米/时。前队出发1小 时后,后队才出发,同时后队派一名联络员骑自行 车在两队之间不间断地来回进行联络,他骑车的速 度为12千米/时。
情境引入
小明每天早上要在7:50分之前赶到距家 1000米的学校上学。一天,小明以80米/分 的速度出发,5分后,小明的爸爸发现他忘 了带语文书。于是,爸爸立即以180米/分的速 度去追小明。小明的爸爸能追上小明吗?
目 Contents 录
新知探究
小明从家到校时间:1000÷80=12.5(分钟)
新知探究
问题5:联络员在前队出发多少时间后第一 次追上前队? 方法2:
解:由问题3,联络员经过0.5小时第一次追 上前队,联络员第一次追上前队时,前队已出 发1+0.5=1.5小时。
答:联络员在前队出发后1.5 小时后第一次 追上前队.
随堂练习
1.甲乙两人相距40千米,甲在后乙在前,两人 同向而行,甲先出发1.5小时后乙再出发,甲的速 度为每小时8千米,乙的速度为每小时6千米,甲出 发几小时后追上乙?
新知探究
解:设X秒后两人能相遇,依题意列方 程,得
4X + 6X = 100 解得: X=10 答:经过10秒后两人能相遇。
(新)北师大版数学七年级上册同步课件5.6 应用一元一次方程——追赶小明 (共19张PPT)
自主解答:解:设客车经过 x h 可追上货车, 根据题意得 90x=60+60x,解得 x=2. 答:客车经过 2 h 可追上货车.
规律总结:追及问题的类型及等量关系 1.甲、乙同向而行 (1)同时不同地:快者走的路程=慢者走的路程+两地间的路 程; (2)同地不同时:快者走的路程=慢者走的路程. 2.环形跑道上的追及问题:甲、乙两人在环形跑道上同时同 地同向而行, 则快者走的路程-慢者走的路程=跑道一圈的路程.
乙 甲
s • ②同地不同时:如图所示: =s甲(先走)
乙
s甲
-
4.航行问题的基本等量关系 (1)船顺水的速度=船在静水中的速度+ (2)船逆水的速度=船在静水中的速度-
水流的速度
水流的速度
; .
• 【议一议】 • 甲、乙两人分别从相距500 m的A,B两地,以 2 m/s,3 m/s的速度相向而行,同时甲所带的 小狗以5 m/s的速度奔向乙,小狗遇到乙后立即 掉头奔向甲,遇到甲后又奔向乙,遇到乙后又 立即奔向甲 „„直到甲、乙相遇,则小狗一共 500÷ (2+3)=100(s), 跑了多少米?
题组 B 相遇问题及航行问题 4.甲、乙两人骑摩托车从相距 170 km 的 A,B 两地相向而 行,2 h 相遇,如果甲比乙每小时多行 5 km,则乙每小时行( B ) A.30 km B.40 km C.50 km D.45 km
解析:设乙每小时行 x km,则甲每小时行(x+5)km,则 2x +2(x+5)=170,解得 x=40,故选 B.
C
) B.9 min C.10 min D.11 min
A.8 min
3.甲每小时走 8 km,乙每小时走 10 km.两人同时由同地同 向而行,走了 15 min,乙忘带东西,返回原地取了东西再追甲, 乙再过几小时可以追上甲?如果设乙再过 x 小时可以追上甲,则 1 10x=8( ×2+x) 4 所列方程为 .
北师大版七上数学应用一元一次方程——追赶小明课件(共38张)
第五章 一元一次方程
5.6 应用一元一次方程 ——追赶小明
1 课堂讲授 一般行程问题
顺速、逆速问题
上坡、下坡问题
2 课时流程
逐点 导讲练
课堂 小结
题的一般步骤有哪些? 2.路程、速度、时间的关系有哪些?
知识点 1 一般行程问题
知1-导
小明每天早上要在7: 50之前赶到距家1 000 m 的学校上学.一天,小明以80 m/min的速度出发,
知2-讲
总结
(1)行程问题:虽然不同的问题有不同的关系式,但列 表格分析的方式是一致的,在路程、速度、时间这 三个量中,已知量是一致的,设的未知量不同,所 列方程也不同.
(2)解有关行程问题时,我们始终要记住一句话:在行 程问题三个基本量(路程、速度、时间)中:①如果速 度已知,若从时间设元,则从路程找等量关系列方程;
方法一:设速度为未知数. 导引:设飞机无风时的平均速度为x km/h, 2 h 50 min=167 h.
列表:
知2-讲
速度/(km/h) 时间/h 路程/km
顺风飞行
x+24
17
17 (x+24)
6
6
逆风飞行
x-24
3
3(x-24)
相等关系:顺盛行驶路程=逆盛行驶路程.
知2-讲
解:2 h 50 min=167 h. 设飞机在无风时的平均速度为x km/h, 则顺风速度为(x+24) km/h, 逆风速度为(x-24) km/h, 根据题意,得 17 (x+24)=3(x-24).
C.80x+250
1 4
x
=2
900
D.250x+80(15-x)=2 900
知识点 2 顺速、逆速问题
5.6 应用一元一次方程 ——追赶小明
1 课堂讲授 一般行程问题
顺速、逆速问题
上坡、下坡问题
2 课时流程
逐点 导讲练
课堂 小结
题的一般步骤有哪些? 2.路程、速度、时间的关系有哪些?
知识点 1 一般行程问题
知1-导
小明每天早上要在7: 50之前赶到距家1 000 m 的学校上学.一天,小明以80 m/min的速度出发,
知2-讲
总结
(1)行程问题:虽然不同的问题有不同的关系式,但列 表格分析的方式是一致的,在路程、速度、时间这 三个量中,已知量是一致的,设的未知量不同,所 列方程也不同.
(2)解有关行程问题时,我们始终要记住一句话:在行 程问题三个基本量(路程、速度、时间)中:①如果速 度已知,若从时间设元,则从路程找等量关系列方程;
方法一:设速度为未知数. 导引:设飞机无风时的平均速度为x km/h, 2 h 50 min=167 h.
列表:
知2-讲
速度/(km/h) 时间/h 路程/km
顺风飞行
x+24
17
17 (x+24)
6
6
逆风飞行
x-24
3
3(x-24)
相等关系:顺盛行驶路程=逆盛行驶路程.
知2-讲
解:2 h 50 min=167 h. 设飞机在无风时的平均速度为x km/h, 则顺风速度为(x+24) km/h, 逆风速度为(x-24) km/h, 根据题意,得 17 (x+24)=3(x-24).
C.80x+250
1 4
x
=2
900
D.250x+80(15-x)=2 900
知识点 2 顺速、逆速问题
5.6 应用一元一次方程-追赶小明 课件(共29张PPT)-七年级数学上册同步精品课堂(北师大版)
10m
4x
6x
等量关系:小彬跑的路程+10m=小强跑的路程. 解:设经过 x 秒后小强追上小彬。 4x+10 = 6x 解得:x = 5. 答:经过5秒后小强追上小彬.
例:若小明到校后发现忘带语文书,打电话通知爸爸来.爸 爸立即以180米/分的速度从家里出发,同时小明以120米/分 的速度从学校返回,两人几分钟相遇?
则x+1=6.5. 答:甲、乙两人的速度分别为6.5千米/时、5.5千米/时.
学习目标
1.能借助“线段图“分析复杂问题中的数量关系,从而列出方 程,解决问题,熟悉行程问题中路程、速度、时间之间的关 系,从而实现从文字语言到符号语言的转换. 2.经历画“线段图”找等量关系,列出方程解决问题的过程, 进一步体验画“线段图"也是解决实际问题的有效途径.
新课引入
1.若杰瑞的速度是2米/秒,则它5秒跑了___1_0____米. 路程=速度×时间
解:设甲经过x秒追上乙.由题意, 得8x-5x=20+10. 解这个方程,得x=10.
答:甲经过10乙两人分别从A,B两地同时出 发,相向而行.已知甲比乙每小时多走1千米,经过2.5小时两人 相遇,求甲、乙两人的速度.
解:设乙的速度为x千米/时,则甲的速度为(x+1)千米/时. 根据题意,得2.5x+2.5(x+1)=30. 解这个方程,得x=5.5.
答:小明走的路程和小明爸爸走的路程相同
你能通过一定的示意图把整个过程表示出来吗?
(1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多远?
80×5
80x 180x
等量关系:爸爸走的路程=小明走的路程.
解: 设爸爸追上小明用了x分钟 180x=80x+5×80. 解得:x=4. 答:所以爸爸经过了4分钟追上了小明.
新北师大版数学七上课件:5.6用一元一次方程——追赶小明 (共20张PPT)
本节课主要学习列一元一次方程 解决行程类实际问题
习题5.6 1,2
分析:由于通讯员从学校出发按原路追上去,所以
与学生是同向而行,于是有这样一个相等关系:通讯员
行进路程=学生行进路程.
解:设通讯员追上学生队伍需要 x 小时.根据题意列 方程,得
14x=5×1680+5x.
解这个方程,得 x=16. 答:通讯员追上学生队伍需要用16小时(即 10 分钟).
练一练
2.甲、乙两人赛跑,甲每秒钟跑7米,乙每秒 钟跑6.5米,甲让乙先跑5米.设x秒钟后,甲 可追上乙,则下列方程中不正确的是( ) A.7x=6.5x+5 B.7x-5=6.5 C.(7-6.5)x=5 D.6.5x=7x-5
方法归纳
相遇问题的解决方法 相遇问题是比较重要的行程问题,其特点是 相向而行.如图(1)就是相遇问题.图(2)也可看 作相遇问题来解决.
相遇问题中的相等关系: ①甲、乙的速度和×相遇时间=总路程; ②甲行的路程+乙行的行程=总路程,即s甲 +s乙=s总.
方法归纳
追及问题的解决方法 追及问题的特点是同向而行.追及问 题有两类:
2.父亲从家跑步到公园需30分钟,儿子只
ቤተ መጻሕፍቲ ባይዱ
需20分钟.如果父亲比儿子早出发5分
钟,儿子追上父亲需( )
A.8分钟
B.9分钟
C.10分钟
D.11分钟
3.一条环形跑道长390米,甲跑步速度为6
米/秒,乙跑步速度为7米/秒.若两人同
时、同地、反方向跑,则经过________
秒首次相遇.
4.甲、乙两人同时从相距27千米的两地 相向而行,2小时后相遇.已知乙骑车 的速度比甲步行的速度快5.5千米/ 时.如果设乙的速度为x千米/时,那么 可列出方程为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小明
学校
爸爸
等量关系: 1、小明走的路程=爸爸走的路程; 2、爸爸追的时间+5分钟=小明走的总时间
议一议:育红学校七年级学生步行到郊外旅行,1班的学生 组成前队,步行的速度为4千米/小时,2班的学生组成后 队,速度为6千米/小时,前队出发1小时后,后队出发, 同时后队派一名联络员骑自行车在两队之间不间断地来回 进行联络,他骑车的速度为12千米 /小时。
时间 路程 速度Biblioteka t =s/v怎样画线段图呢?
相遇问题
甲列车从A地开往B地,速度是60千米/小时,乙列车 同时从B地开往A地,速度是90千米/小时,已知A、B 两地相距200千米,两车出发后几小时相遇?
A地(甲列车) 甲列车走 过的路程 60X 乙列车走过 的路程90X
(乙列车)B地
A、B两地的距离200千米
解:设联络员在前队出发x小时后第一次追上前队, 根据题意,得 4x = 12(x - 1) 解得: x = 1.5
∴联络员在前队出发后1.5 小时后第一次追上前队.
•
甲、乙两人在相距100米的两端同时相 向而行,与此同时一只小狗也开始与甲同 时同地起跑,它一遇到乙就立即转向跑回, 遇到甲再立即转向跑回,小狗就这样在两 个步行的人之间来回跑行,直到两人相遇。 如果两人以1米/秒的速度匀速前进,小狗以 2米/秒的速度匀速奔跑,那么小狗一共跑了 多少米?
解:设当后队追上前队时,他们已经行进了x千米, 根据题意,得 x x 1 6 4
解得 x = 12 ∴当后队追上前队时,他们已经行进12千米.
育红学校七年级学生步行到郊外旅行,1班的学生组成 前队,步行的速度为4千米/小时,2班的学生组成后队, 速度为6千米/小时,前队出发1小时后,后队出发, 同时后队派一名联络员骑自行车在两队之间不间断地 来回进行联络,他骑车的速度为12千米 /小时。 问题5:联络员在前队出发多少时间后第一次追上前队?
请根据以上的事实提出问题并尝试回答。
问题1:后队追上前队用了多长时间 ?
问题2:后队追上前队时联络员行了多少路程? 问题3:联络员第一次追上前队时用了多长时间? 问题4:当后队追上前队时,他们已经行进了多少路程? 问题5:联络员在前队出发多少时间后第一次追上前队? ………………
育红学校七年级学生步行到郊外旅行,1班的学生组成 前队,步行的速度为4千米/小时,2班的学生组成后队, 速度为6千米/小时,前队出发1小时后,后队出发, 同时后队派一名联络员骑自行车在两队之间不间断地 来回进行联络,他骑车的速度为12千米 /小时。 问题1:后队追上前队用了多长时间 ?
怎样画线段图呢?
相遇问题
甲列车从A地开往B地,速度是60千米/小时;甲列车出 发半小时后,乙列车从B地出发开往A地,速度是90千 米/小时,已知A、B两地相距200千米,乙列车出发后 几小时两车相遇?
A地 (甲列车) 甲列车先行的 路程60×0.5 甲列车后行的 路程60X (乙列车)B地 乙列车车行 驶的路程 90X
解:设后队追上前队用了x小时, 根据题意,得
6x = 4x + 4
解得x =2
∴ 后队追上前队时用了2小时。
育红学校七年级学生步行到郊外旅行,1班的学生组成 前队,步行的速度为4千米/小时,2班的学生组成后队, 速度为6千米/小时,前队出发1小时后,后队出发, 同时后队派一名联络员骑自行车在两队之间不间断地 来回进行联络,他骑车的速度为12千米 /小时。 问题2:后队追上前队时联络员行了多少路程? 解:由问题1得后队追上前队用了2小时, 12 × 2 = 24 (千米)
速度、路程、时间之间的关系? 路程= 速度×时间 速度= 路程÷时间 时间= 路程÷速度
1.若小明每秒跑4米,那么他5秒能跑_____米.
路程 = 速度 X 时间 S = vt
2.小明用4分钟绕学校操场跑了两圈(每圈400米), 那么他的速度为_____米/分.
速度 路程 时间
V=s/t
3.已知小明家距离火车站1800米,他以10米/秒的 速度骑车到达车站需要_____分钟.
1. 谈谈你的收获。
2.你还有什么疑惑吗?
(1)学会借助线段图分析等量关 系; (2)在探索解决实际问题时,应从 多角度思考问题.
A、B两地的距离200千米
怎样画线段图呢?
追及问题
两匹马赛跑,黄色马的速度是6m/s,棕色马的速度是 7m/s,如果让黄马先跑5m,棕色马再开始跑,几秒后可 以追上黄色马?
5米
棕色马跑过 = 黄色马跑过 +相隔的距离5 的路程7X 的路程6X
例1 :小明每天早上要在7:50之前赶到距家1000 米的学校上学.一天,小明以 80米/分钟的速度出发, 5分钟后,小明的爸爸发现小明忘了带语文书.于是, 爸爸立即以180米/分钟的速度去追小明, 并且在 途中追上了他.(1) 爸爸追上小明用了多长时间? (2) 追上小明时,距离学校还有多远? 分析: 家
解得:x =0.5
∴ 联络员第一次追上前队时用了0.5小时。
育红学校七年级学生步行到郊外旅行,1班的学生组成 前队,步行的速度为4千米/小时,2班的学生组成后队, 速度为6千米/小时,前队出发1小时后,后队出发, 同时后队派一名联络员骑自行车在两队之间不间断地 来回进行联络,他骑车的速度为12千米 /小时。 问题4:当后队追上前队时,他们已经行进了多少路程?
∴后队追上前队时联络员行了24千米。
育红学校七年级学生步行到郊外旅行,1班的学生组成 前队,步行的速度为4千米/小时,2班的学生组成后队, 速度为6千米/小时,前队出发1小时后,后队出发, 同时后队派一名联络员骑自行车在两队之间不间断地 来回进行联络,他骑车的速度为12千米 /小时。 问题3:联络员第一次追上前队时用了多长时间? 解:设联络员第一次追上前队时用了x小时, 根据题意,得 12x = 4x + 4
学校
爸爸
等量关系: 1、小明走的路程=爸爸走的路程; 2、爸爸追的时间+5分钟=小明走的总时间
议一议:育红学校七年级学生步行到郊外旅行,1班的学生 组成前队,步行的速度为4千米/小时,2班的学生组成后 队,速度为6千米/小时,前队出发1小时后,后队出发, 同时后队派一名联络员骑自行车在两队之间不间断地来回 进行联络,他骑车的速度为12千米 /小时。
时间 路程 速度Biblioteka t =s/v怎样画线段图呢?
相遇问题
甲列车从A地开往B地,速度是60千米/小时,乙列车 同时从B地开往A地,速度是90千米/小时,已知A、B 两地相距200千米,两车出发后几小时相遇?
A地(甲列车) 甲列车走 过的路程 60X 乙列车走过 的路程90X
(乙列车)B地
A、B两地的距离200千米
解:设联络员在前队出发x小时后第一次追上前队, 根据题意,得 4x = 12(x - 1) 解得: x = 1.5
∴联络员在前队出发后1.5 小时后第一次追上前队.
•
甲、乙两人在相距100米的两端同时相 向而行,与此同时一只小狗也开始与甲同 时同地起跑,它一遇到乙就立即转向跑回, 遇到甲再立即转向跑回,小狗就这样在两 个步行的人之间来回跑行,直到两人相遇。 如果两人以1米/秒的速度匀速前进,小狗以 2米/秒的速度匀速奔跑,那么小狗一共跑了 多少米?
解:设当后队追上前队时,他们已经行进了x千米, 根据题意,得 x x 1 6 4
解得 x = 12 ∴当后队追上前队时,他们已经行进12千米.
育红学校七年级学生步行到郊外旅行,1班的学生组成 前队,步行的速度为4千米/小时,2班的学生组成后队, 速度为6千米/小时,前队出发1小时后,后队出发, 同时后队派一名联络员骑自行车在两队之间不间断地 来回进行联络,他骑车的速度为12千米 /小时。 问题5:联络员在前队出发多少时间后第一次追上前队?
请根据以上的事实提出问题并尝试回答。
问题1:后队追上前队用了多长时间 ?
问题2:后队追上前队时联络员行了多少路程? 问题3:联络员第一次追上前队时用了多长时间? 问题4:当后队追上前队时,他们已经行进了多少路程? 问题5:联络员在前队出发多少时间后第一次追上前队? ………………
育红学校七年级学生步行到郊外旅行,1班的学生组成 前队,步行的速度为4千米/小时,2班的学生组成后队, 速度为6千米/小时,前队出发1小时后,后队出发, 同时后队派一名联络员骑自行车在两队之间不间断地 来回进行联络,他骑车的速度为12千米 /小时。 问题1:后队追上前队用了多长时间 ?
怎样画线段图呢?
相遇问题
甲列车从A地开往B地,速度是60千米/小时;甲列车出 发半小时后,乙列车从B地出发开往A地,速度是90千 米/小时,已知A、B两地相距200千米,乙列车出发后 几小时两车相遇?
A地 (甲列车) 甲列车先行的 路程60×0.5 甲列车后行的 路程60X (乙列车)B地 乙列车车行 驶的路程 90X
解:设后队追上前队用了x小时, 根据题意,得
6x = 4x + 4
解得x =2
∴ 后队追上前队时用了2小时。
育红学校七年级学生步行到郊外旅行,1班的学生组成 前队,步行的速度为4千米/小时,2班的学生组成后队, 速度为6千米/小时,前队出发1小时后,后队出发, 同时后队派一名联络员骑自行车在两队之间不间断地 来回进行联络,他骑车的速度为12千米 /小时。 问题2:后队追上前队时联络员行了多少路程? 解:由问题1得后队追上前队用了2小时, 12 × 2 = 24 (千米)
速度、路程、时间之间的关系? 路程= 速度×时间 速度= 路程÷时间 时间= 路程÷速度
1.若小明每秒跑4米,那么他5秒能跑_____米.
路程 = 速度 X 时间 S = vt
2.小明用4分钟绕学校操场跑了两圈(每圈400米), 那么他的速度为_____米/分.
速度 路程 时间
V=s/t
3.已知小明家距离火车站1800米,他以10米/秒的 速度骑车到达车站需要_____分钟.
1. 谈谈你的收获。
2.你还有什么疑惑吗?
(1)学会借助线段图分析等量关 系; (2)在探索解决实际问题时,应从 多角度思考问题.
A、B两地的距离200千米
怎样画线段图呢?
追及问题
两匹马赛跑,黄色马的速度是6m/s,棕色马的速度是 7m/s,如果让黄马先跑5m,棕色马再开始跑,几秒后可 以追上黄色马?
5米
棕色马跑过 = 黄色马跑过 +相隔的距离5 的路程7X 的路程6X
例1 :小明每天早上要在7:50之前赶到距家1000 米的学校上学.一天,小明以 80米/分钟的速度出发, 5分钟后,小明的爸爸发现小明忘了带语文书.于是, 爸爸立即以180米/分钟的速度去追小明, 并且在 途中追上了他.(1) 爸爸追上小明用了多长时间? (2) 追上小明时,距离学校还有多远? 分析: 家
解得:x =0.5
∴ 联络员第一次追上前队时用了0.5小时。
育红学校七年级学生步行到郊外旅行,1班的学生组成 前队,步行的速度为4千米/小时,2班的学生组成后队, 速度为6千米/小时,前队出发1小时后,后队出发, 同时后队派一名联络员骑自行车在两队之间不间断地 来回进行联络,他骑车的速度为12千米 /小时。 问题4:当后队追上前队时,他们已经行进了多少路程?
∴后队追上前队时联络员行了24千米。
育红学校七年级学生步行到郊外旅行,1班的学生组成 前队,步行的速度为4千米/小时,2班的学生组成后队, 速度为6千米/小时,前队出发1小时后,后队出发, 同时后队派一名联络员骑自行车在两队之间不间断地 来回进行联络,他骑车的速度为12千米 /小时。 问题3:联络员第一次追上前队时用了多长时间? 解:设联络员第一次追上前队时用了x小时, 根据题意,得 12x = 4x + 4