数学建模-工厂最优生产计划模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模与数学实验
课程设计报告
学院数理学院专业数学与应用数学
班级学号
学生姓名指导教师
2015年6月
工厂最优生产计划模型
【摘要】本文针对工厂利用两种原料生产三种商品制定最优生产计划的问题,
建立优化问题的线性规划模型。在求解中得到了在不同生产计划下收益最优化的各产品的产量安排策略、最大收益,以及最优化生产计划的灵敏度分析。
对于问题一,通过合理的假设,首先根据题中所给的条件找出工厂收益的决定条件,利用线性规划列出目标函数MAX。由题目中所得,工厂原料及价格的约束条件下运用lingo软件算出最优生产条件下最大收益为1920元,其次是不同产品的产量。
对于问题二,灵敏度分析是研究当目标函数的费用系数和约束右端项在什么范围变化时,最优基保持不变。对产品结构优化制定及调整提供了有效的帮助。根据问题一所给的数据,运用lingo软件做灵敏度分析。
关键词:最优化线性规划灵敏度分析 LINGO
一、问题重述
某工厂利用两种原料甲、乙生产A1、A2、A3三种产品。如果每月可供应的原料数量(单位:t),每万件产品所需各种原料的数量及每万件产品的价格如下表所示:
(1)试制定每月和最优生产计划,使得总收益最大;
(2)对求得的最优生产计划进行灵敏度分析。
二、模型假设
(1)在产品加工时不考虑排队等待加工的问题。
(2)假设工厂的原材料足够多,不会出现原材料断货的情况。
(3)忽略生产设备对产品加工的影响。
(4)假设工厂的原材料得到充分利用,无原材料浪费的现象。
三、符号说明
Xij (i=1,2,;j=1,2,3;)表示两种原料分别生产出产品的数量(万件);
Max 为最大总收益;
A1,A2,A3为三种产品。
四、模型分析
问题一分析:对于问题一的目标是制定每月和最优生产计划,求其最大生产
效益。由题中所给的条件找出工厂收益的决定条件,利用线性规划列出目标函数MAX 。由题目中所得,工厂原料工厂原料及价格的约束,列出约束条件。
问题二分析:研究当目标函数的费用系数和约束右端项在什么范围变化时,
最优基保持不变。通过软件数据进行分析。
五、模型建立与求解
问题一的求解:
建立模型:
题目的目标是寻求总利益最大化,而利润为两种原料生产的六种产品所获得
的利润之和。
设Xij (i=1,2,;j=1,2,3;)表示两种原料分别生产出产品的数量(万件)
则目标函数:max=12(x11+x21)+5(x12+x22)+4(x13+x23)
约束条件:
1)原料供应:4x11+3x12+x13<=180;
2x21+6x22+3x23<=200
2)非负约束:x11,x12,x13,x21,x22,x23>=0
所以模型为:
max=12(x11+x21)+5(x12+x22)+4(x13+x23)
S.t
200x x 6x 2180x x 34x 232221131211<=++<=++ 0x >=ij (i=1,2;j=1,2,3且为整数)}
模型求解:
model :
max =12*x11+12*x21+5*x12+5*x22+4*x13+4*x23;
4*x11+3*x12+x13<=180;
2*x21+6*x22+3*x23<=200;
End
计算结果:
Global optimal solution found.
Objective value: 1920.000
Infeasibilities: 0.000000
Total solver iterations: 0
Variable Value Reduced
Cost
X11 0.000000 4.000000
X21 100.0000 0.000000
X12 0.000000 7.000000
X22 0.000000 31.00000
X13 180.0000 0.000000
X23 0.000000 14.00000
Row Slack or Surplus Dual
Price
1 1920.000
1.000000
2 0.000000 4.000000
3 0.000000 6.000000
结论:从数据表明,这个线性规划的最优解为
x11=0,x12=0,x13=180,x21=100,x22=0,x23=0 ,最优值为1920.即这个工厂的最
优生产计划为:用甲原料生产A1,A2,A3产品数量分别为0万件,0万件,180万
件;用乙原料生产A1,A2,A3产品数量分别为100万件,0万件,0万件。
问题二的求解:
用lingo软件对模型进行灵敏度分析的结果如下:
Ranges in which the basis is unchanged:
Objective Coefficient Ranges
Current Allowable Allowable
Variable Coefficient Increase Decrease
X11 12.00000 4.000000 INFINITY
X21 12.00000 INFINITY 9.333333
X12 5.000000 7.000000 INFINITY